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Abstract

Falls are a major issue for bipeds. For elderly adults, falls can have a negative impact on

their quality of life and lead to increased medical costs. Fortunately, interventional methods

are effective at reducing falls assuming they are prescribed. For biped robots, falls prevent

them from completing required tasks. Thus, it is important to understand what aspects of

gait increase fall risk. Gait variability may be associated with increased fall risk; however,

previous studies have not investigated the variation in the movement of the legs. The pur-

pose of this study was to determine the effect of joint angle variability on falling to determine

which component(s) of variability were statistically significant. In order to investigate joint

angle variability, a physics-based simulation model that captured joint angle variability as a

function of time through Fourier series was used. This allowed the magnitude, the frequency

mean, and the frequency standard deviation of the variability to be altered. For the values

tested, results indicated that the magnitude of the variability had the most significant impact

on falling, and specifically that the stance knee flexion variability magnitude was the most

significant factor. This suggests that increasing the joint variability magnitude may increase

fall risk, particularly if the controller is not able to actively compensate. Altering the variability

frequency had little to no effect on falling.

Introduction

Falls in bipeds are widely acknowledged to be undesirable, but difficult to predict [1–4]. For

elderly adults, falls can cause death, reduce quality of life, and increase medical costs [5]. Exer-

cise and risk management can reduce falls [6–8], motivating identification of potential fallers

to provide interventional care. While falls are not as catastrophic for robotic bipeds, falling

prevents completion of required tasks and potentially damages the robot. Although humans

and robots are certainly different, their walking dynamics share many similarities [9–12],

allowing robotic modeling and control methods to be used to investigate fall risk for both

humans and robots.

One challenge with predicting falls is that they have many potential causes. Robotic studies

have primarily evaluated falls due external factors, such as walking across uneven terrain [13]

or due to velocity disturbances such as a push [14, 15]. These works also tend to focus on dis-

crete, rather than continuous, perturbations. In contrast, human studies generally focus on

finding correlations between risk factors [16–19] or gait parameters [20–22] and fall risk.
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Another source of falls is movement variability caused by noise within the system. Both

humans [23] and robots [24, 25] experience this.

In humans, stride to stride gait variability is correlated with fall rate [20, 26–28] and vari-

ability may be correlated with falling for robots as well [3]. Most studies have assumed that

increased variability increases fall risk [3, 20, 26–28], although a few studies have suggested

that the relationship is not that straightforward [29–32]. Prior studies have primarily examined

the variability in step period. However, the variability in step period must arise from variation

in leg movement, so this paper investigates joint angle variability.

Human gait variability (either for period or joint angles) has traditionally been modeled

as random noise using standard deviations [33–36], while robot variability has largely been

ignored. The variability is not entirely random, however. It is well established that there are

fractal-like fluctuations in stride duration [27]. While joint angle variability may not contain

this exact statistical structure [37], joint variability does contain some structure [38–40]. Fur-

ther, joint angles are continuous, so joint variability cannot be treated as random selections

from Gaussian distributions because those are discontinuous. Instead, joint angle variability

can be modeled using a Fourier series which is continuous and can account for the structure

in the variability [39]. Regardless of application, Fourier series are defined using a set of mag-

nitude coefficients along with a fundamental frequency. Following the method in [39], each

step can be modeled as having a different set of magnitude coefficients and fundamental fre-

quency. It is then straightforward to describe the statistical properties of the variability using

three parameter types—the standard deviation of the magnitude coefficients, the mean of the

frequency, and the standard deviation of the frequency. (The mean of the magnitude coeffi-

cients is defined as zero.) All three parameter types could impact fall risk, although likely by

differing amounts. Similarly, the variability at different joints may have different effects on

fall risk.

To evaluate how the different variability aspects impact fall risk, a physics-based model that

can fall (or otherwise fail) is needed. There are a wide variety of simulation approaches possible

spanning a wide range of model and simulation complexity [41]. Since this work focuses on

quantifying how different variability parameters affect fall risk, a moderately complex planar

model that incorporates variability at each joint is appropriate. (This work uses a planar model

is since most bipedal motion occurs in the sagittal plane.) The model used in this work is

based on the bipedal robot control technique hybrid zero dynamics (HZD), which uses input-

output linearization to track a commanded trajectory [42]. This modeling technique can pro-

duce gaits that predict healthy human walking [10], minimize robotic energy expenditure [24,

42], as well as handle discrete perturbations [43], model imperfections [25], and continuous

imposed joint variability [11]. A key feature of HZD-based control is that is has at least one

unactuated degree of freedom (DOF). Thus, the biped can fall forwards or backwards even

when exactly tracking the commanded trajectory at the actuated joints.

This paper quantifies how different aspects of joint angle variability affect falling. To do so,

the three parameters describing each joint’s variability were systematically altered within an

HZD-based biped model simulation, and the number of steps to fall was analyzed to determine

which factors had the most significant effect. Specifically, this paper tested the following

hypotheses related to the number of steps to fall:

1. the magnitude of stance leg variability would have the most effect on fall risk because the

stance leg is responsible for moving the center of mass and injecting energy into the next

step;

2. the magnitude of swing leg variability would have a limited effect on fall risk because the

swing leg is not in contact with the ground; and
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3. the timing of the variability would have a limited effect on fall risk because it does not sub-

stantially alter the amount of energy injected into the step.

Methods

Model

An existing planar six link model was used and is briefly described here (Fig 1) [10, 11]. The

six degree of freedom (DOF) model had a point mass at the hip. Each leg had knee and ankle

joints; the two legs were connected via the hip joint. Thus, there were five actuated joints—

stance (St) and swing (Sw) knee (K) and ankle (A) joints plus a swing hip (H) joint. Because

this was a planar model, all joint angles represented flexion/extension and will simply be

referred to as joint angles for conciseness. The five joints were actuated via ideal torque genera-

tors. The foot was modeled with a circular arc that rolls without slip, so the foot-ground inter-

face was unactuated. Thus, the final DOF was the unactuated absolute angle of the biped. As a

result, even when the actuated joints tracked the commanded motion perfectly, the biped

could still fall because of the unactuated DOF’s movement.

Each step consisted of a finite-time, continuous stance period and an instantaneous, impul-

sive impact period during which the stance foot switched [24]. While humans have a finite

time double support period, most HZD-based robots do not. Further, the relationship between

double support and fall risk is unclear [4], so using the simpler instantaneous transition period

did not automatically decrease either the model’s walking ability nor its stability.

The model used hybrid zero dynamics (HZD) to control the actuated joints’ movements

[11, 42]. HZD-based control uses input-output linearization to track a commanded trajectory

by encoding it in the output functions to be zeroed:

y ¼ hðqÞ ¼ H0q � hcðsðqÞÞ ð1Þ

where hwas a 5 dimensional vector-valued function to be zeroed,H0 was a matrix that mapped

the joint angles to the actuated angles, hc was a 5 dimensional vector-valued function of the

commanded joint angles that included the variability, q was a vector of the 6 joint angles, and s
was the phase variable. The phase variable defined the progression of the step; as the phase var-

iable increased, the biped moved forward and the swing leg moved from behind the stance leg

to in front of the stance leg. If the phase variable decreased, the biped moved backwards and

the swing leg moved back behind the stance leg. For this work, the phase variable was chosen

q2

Fig 1. The planar six-link model used in this study. The stance hip angle q1 was unactuated. The remaining joints

were actuated, where q2 was the swing hip angle, q3 was stance knee angle, q4 was the swing knee angle, q5 was the

stance ankle angle, and q6 was the swing ankle angle.

https://doi.org/10.1371/journal.pone.0262749.g001
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as the linearized hip position. The phase variable was normalized between 0 and 1 using:

sðyðqÞÞ ¼
y � y

þ

P

y
�

P � y
þ

P

ð2Þ

where θ was the phase variable, y
þ

P was the phase variable at the start of the stance period, and

y
�

P was the phase variable at the end of the stance period [24]. When normalizing the phase

variable, the nominal values for the periodic gait were used. The joint torques were found by

performing input-output linearization on the equations of motion and output function using

standard methods [44]. As a result, introducing variability into the output functions automati-

cally introduced coupled variability into the joint torques.

The commanded motion consisted of three components:

hcðsðqÞÞ ¼ hNðsÞ þ hVðsÞ þ hCðsÞ ð3Þ

where hc was the total commanded joint angle, hN defined the nominal periodic motion, hV
defined the joint variability, and hC defined a correction polynomial to remove start of step

error from the commanded motion and ensure the commanded motion was continuous

(Fig 2) [11]. The gait would be periodic if qc only consisted of hN. By varying hN, different

gaits were achieved. By varying hV, different variability conditions were tested.

The nominal motion (hN) was defined using a fifth order Bézier polynomial with a constant

velocity profile when s> 1 [11, 45]. Fifth order Bézier polynomials were used because they

capture average human walking joint trajectories well in an HZD model [10]. While the nomi-

nal motion was defined such that the phase variable was normalized between s = 0 (start of

stance period) and s = 1 (end of stance period), the addition of variability led to the phase vari-

able obtaining values outside of this range. This, in turn, lead to the Bézier polynomial diverg-

ing to unwanted values when s> 1. The switch to a constant velocity profile resolved this

issue. No special processing was performed when s< 0 since pilot testing indicated that the

Fig 2. Total commanded motion. Total commanded motion of one knee for two consecutive strides with each

component plotted separately. Negative angles indicate flexion. The nominal motion would be continuous if each step

ended when planned. It repeats every stride. In contrast, the variability will typically be discontinuous between steps

and is different for each step in the simulation. Because the total commanded motion must be strictly continuous, the

correction polynomial was used to ensure continuity.

https://doi.org/10.1371/journal.pone.0262749.g002
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correction polynomial handled that well. Thus, the nominal motion was defined as:

hNðsÞ ¼
S5

k¼1
ak

5!

ð5 � kÞ!k!
skð1 � sÞ5� k s � 1

a5 þ 5ða5 � a4Þðs � 1Þ s > 1

8
><

>:
ð4Þ

where αk were the polynomial coefficients chosen to minimize a weighted torque-square

objective function [10]. Because previous research indicated that speed has an impact on falls

[15, 21, 22, 46], three different nominal gaits from [10] were tested—slow (0.98 m/s), medium

(1.30 m/s), and fast (1.56 m/s). The models associated with each gait were adult-sized, although

each had somewhat different mass and length parameters because each gait was associated

with a different person or group. The model for the slow speed had a mass of 73 kg and a leg

length of 0.96 m. The model for the middle speed had a mass of 56 kg and a leg length of 0.90

m. The model for the fast speed had a mass of 52 kg and a leg length of 0.81 m. Other mass and

length parameters were scaled using standard anthropometric tables [47, 48].

The variability was defined using Fourier series because it provides a convenient mathemat-

ical form for an arbitrary smooth function. Inspired by human joint variability [39], a 2nd-

order Fourier series was used for the stance joints and a 1st-order Fourier series was used for

the swing joints in this work:

hVðsÞ ¼ a0 þ
XK

k¼1

ðak cosðkosÞ þ bk sinðkosÞÞ ð5Þ

where ak and bk were the magnitude coefficients, ω was the fundamental frequency, and K was

the order of the series. Different coefficients and frequencies were chosen every step, resulting

in a Gaussian distribution for each parameter. For each step, the frequency was chosen using a

random draw. For the magnitude coefficients, the distributions had zero mean and specified

standard deviations. Some magnitude coefficients were related using relationships based on

human subject data [39]. Specifically, there was a linear relationship between the swing hip a0

and b1 coefficients, a linear relationship between the stance knee b1 and b2 coefficients, a linear

relationship between the stance ankle a0, b1, and a2 coefficients, and a nonlinear relationship

between the swing knee a1 and b1 coefficients. For coefficients with a relationship, one of the

coefficients in the relationship was chosen using a random draw. The relationship was used to

find nominal values of the other coefficients which were then perturbed using a random draw

from a zero-mean Gaussian distribution with a standard deviation of 1˚. For the remaining

coefficients, the values were chosen using random draws. While this variability format was

inspired by human motion [39], and has been shown to well represent it, Fourier series are

very general, so the results likely apply to robotic systems as well.

Because of the variability, there were usually differences between the commanded and

actual joint states at the start of a step. A fifth-order polynomial removed them and then

smoothly decayed to 0 for s� 0.5 [49].

Analysis procedures

To quantify how variability affected fall risk, extensive simulations were performed while sys-

tematically varying the variability parameters.

Factors. Only the Fourier series representing the variability (Eq 5) were explicitly altered

in this study. Specifically, the magnitude and frequency coefficient distributions were altered

to analyze the effect of each aspect of variability on falling. The variability magnitude described

the amount the joint angle deviated from the nominal angle. The variability frequency
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described how quickly the commanded angle oscillated around the nominal joint trajectory.

This is related to the timing of the variability, which has been shown to change throughout the

gait cycle [50]. In practice, altering the variability frequency largely seemed to alter the joint

velocity. The following factors were altered for each actuated joint for a total of fifteen factors.

• Magnitude (Mag): the standard deviation of the Gaussian distribution for the magnitude

coefficients describing the variability. The mean is zero and therefore does not need to be

altered.

• Frequency Mean (FMean): mean of the Gaussian distribution for the fundamental frequency

describing the variability.

• Frequency Standard Deviation (FStd): standard deviation of the Gaussian distribution for

the fundamental frequency describing the variability.

All of these factors only alter the variability. Humans walk millions of steps before falling,

so to make the study computationally feasible, factor values were chosen so that the model fell

more quickly. To determine the values, feasibility simulations were performed by altering the

values of each joint individually. The goal was to incorporate enough variability so that the

model fell relatively quickly, while ensuring that the model still took some steps (> 20). Two

levels for each factor were chosen, low in which the biped took many steps (> 50) and high in

which the biped took a few steps (< 50) (Table 1). The standard deviations for a2 and b2 were

half of the standard deviation of the other coefficients. This generally results in smaller values

for a2 and b2 as is typical in Fourier series and as is seen for human joint variability [39]. Com-

pared to human values, the chosen values were up to eight times larger for magnitude, three

times larger for frequency mean, and five times larger for frequency standard deviation. To

ensure mostly positive frequency values, frequency standard deviation was set to 1/3 of fre-

quency mean.

Design of experiment. Because of the number of factors, it was not feasible to test every

possible combination, so a fractional factorial design was used [51]. Fractional factorial designs

intelligently choose factor combinations to test, reducing the total number of experiments.

This allows the analysis of main effects (when a factor by itself has a significant influence on

the outcome) as well as interactions (when multiple factors together have a significant influ-

ence). As is typical, many higher order interactions were assumed negligible, allowing a frac-

tional factorial design. Because a fractional design does not test all combinations, some effects

were aliased, where the measured effect includes the influence of one or more actual effects

and cannot be estimated separately from each other. A resolution IV design was used, meaning

that at most main effects were aliased with three-factor interactions.

To determine steps to fall, simulations were performed until the biped fell or took 500

steps. For each condition, the simulation was repeated 10 times to account for the stochastic

nature of the system. The median number of steps before falling was used in the analysis.

Table 1. Variability parameter values. Magnitude, frequency mean, and frequency standard deviations values used in

the experiment at both the low and high levels. For the magnitude coefficients, the second order coefficients a2 and b2

were half the value given in the table. The low and high levels for the magnitude of the stance ankle variability were dif-

ferent from the rest of the joints. Key: St = stance, Sw = swing, H = hip, K = knee, A = ankle.

Variable Joint Low Level High Level

Magnitude StK, SwH, SwK, SwA 4˚ 8˚

StA 0.5˚ 2˚

Frequency Mean StK, StA, SwH, SwK, SwA 3˚/% step 15˚/% step

Frequency Standard Deviation StK, StA, SwH, SwK, SwA 1˚/% step 5˚/% step

https://doi.org/10.1371/journal.pone.0262749.t001
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Evaluation methods. To evaluate the hypotheses, Pareto charts and an ANOVA analysis

(Minitab, State College, PA) were used to determine what factors and interactions had a signif-

icant effect on falling (α = 0.05). The median number of steps for each run was used to deter-

mine the significant factors. Pareto charts for each speed were generated; speed was not

included as a factor. Pareto charts visually depict the statistically significant factors. To do so,

they use t-statistics to compare the absolute standardized effects against the null hypothesis

that the effect is 0, so a larger t-statistic for a factor indicates a more significant effect on falling.

Factors were ordered from largest to smallest t-statistic and plotted. A t-statistic reference line

indicating the border of significance was included; any factors that crossed the line indicate

statistical significance.

For significant factors, additional analysis was performed to further quantify its impact.

Specifically, the average number of steps was calculated when the factor was at the low (or

high) value across all runs (set of 10 simulations all with the same speed and factor values)

allowing for a linear fit. This parameter will be referred to as “slope” throughout the rest of the

paper. The slope’s absolute value indicated how changing the factor changed steps to fall; the

greater the slope, the greater the change in steps to fall. The slope’s sign indicated whether the

factor had a positive effect (the number of steps increased as the factor increased) or a negative

effect (the number of steps decreased as the factor increased). Since increased variability is gen-

erally assumed to decrease the number of steps to fall (i.e., make the biped more unstable), the

slopes were generally expected to be negative.

An ANOVA was used to confirm the results of the Pareto chart as well as incorporate speed

as an additional factor. Within the ANOVA analysis, only main effects, speed, and interactions

between speed and other main effects were analyzed. Factors and interactions that had a p-

value� 0.05 were statistically significant.

Results

In general, steps to fall increased as speed increased. The model generally took 2–20 steps for

the slow speed, 5–40 steps for the middle speed, and 10–50+ steps for the fastest speed. The

slow and middle speeds never completed 500 steps (maximum possible) while the fast speed

completed 500 steps 49 times.

For all speeds combined, stance knee magnitude, stance knee frequency mean, and swing

hip magnitude had the largest effect on falling (Fig 3, Table 2). All significant factors decreased

steps to fall as the variability increased. Stance knee magnitude had the most significant effect

on falling; on average, the model took 31 more steps when at the low level of variability com-

pared to the high level of variability when combining results from all speeds. The stance knee

frequency mean had almost as large of an effect, with the model taking 29 more steps on aver-

age when at the low level of variability compared to the high level of variability.

For the slow speed, stance knee magnitude, the interaction between swing hip magnitude &

swing hip frequency mean, and swing knee magnitude had the largest effect on falling (Fig 4).

Stance knee magnitude was approximately twice as significant as the next two factors, indicat-

ing that varying this factor changed steps to fall the most. Increasing stance knee magnitude

from the low to the high value decreased the number of steps by 8 steps on average, a change

of approximately 60% (Table 3). While increasing stance knee magnitude variability decreased

the number of steps taken, over half of the factors increased steps to fall as variability increased

for the slow speed.

For the middle speed, stance knee frequency mean, stance knee magnitude, and swing hip

frequency mean had the largest effects on falling (Fig 5). Varying the stance knee frequency

mean resulted in the model taking 15 more steps on average when at the low level of variability,
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while decreasing the stance knee magnitude variability and swing hip frequency mean resulted

in an additional 11 and 8 steps on average before falling, respectively (Table 4). As the variabil-

ity increased for the middle speed, all significant main effects decreased steps to fall, while

most significant interactions increased steps to fall by 25–40%.

For the fast speed, stance knee magnitude, stance knee frequency mean, and swing hip mag-

nitude had the largest effects on falling (Fig 6). Stance knee magnitude and stance knee fre-

quency mean had about the same effect on falling; changing stance knee magnitude resulted in

a difference of 73 steps to fall on average between low and high variability while changing the

stance knee frequency mean resulted in a difference of 72 steps to fall on average (Table 5).

Changing the swing hip magnitude resulted in a difference of 65 steps to fall on average. Thus,

increasing the top three factors all decreased steps to fall by approximately 70% for the fast

Fig 3. The Pareto chart with the 30 most significant factors on the number of steps before a fall across all three

speeds. Out of a total of seven significant factors, stance knee magnitude and stance knee frequency mean were the

most significant factors when all three speeds were analyzed together. Key: St = stance, Sw = swing, H = hip, K = knee,
A = ankle, Mag = magnitude, FMean = frequency mean, FStd = frequency standard deviation.

https://doi.org/10.1371/journal.pone.0262749.g003

Table 2. The slope for all significant factors on the number of steps before a fall across all three speeds. Interactions

are indicated with a “+”. The slope indicates the magnitude and sign of the effect, where a negative slope indicates that

the number of steps taken decreases as the variability changes from low to high. As expected, all slopes were negative.

Factor Slope

Stance Knee Magnitude -15.4

Stance Knee Frequency Mean -14.5

Swing Hip Magnitude -10.8

Swing Hip Magnitude + Stance Knee Frequency Mean -9.4

Swing Hip Magnitude + Stance Knee Magnitude -8.0

Swing Knee Magnitude -7.0

Stance Ankle Magnitude -6.4

https://doi.org/10.1371/journal.pone.0262749.t002
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speed. Similar to the middle speed, all significant main effects decreased steps to fall, while

most significant interactions increased steps to fall as variability increased.

To verify that speed interacted significantly with the variability factors, an ANOVA was

completed. Speed, the magnitude for all joints except the swing ankle, and stance knee fre-

quency mean were significant factors (Table 6). Additionally, the interaction between speed

and the above factors were significant. Most significant factors in the ANOVA were also signif-

icant in the Pareto charts (Table 7).

Fig 4. The Pareto chart with the 30 most significant factors on the number of steps before a fall for the slow speed.

By far the most significant factor was stance knee magnitude, although there were a total of eleven significant factors.

Key: St = stance, Sw = swing, H = hip, K = knee, A = ankle, Mag = magnitude, FMean = frequency mean, FStd = frequency
standard deviation.

https://doi.org/10.1371/journal.pone.0262749.g004

Table 3. The slope for all significant factors for the slow speed. Interactions are indicated with a “+”. While the

slopes were expected to be negative (indicating that the model fell more quickly at high levels of variability), approxi-

mately half of the slopes were positive.

Factor Slope

Stance Knee Magnitude -4.1

Swing Hip Magnitude + Swing Hip Frequency Mean 2

Swing Knee Magnitude 1.9

Swing Hip Frequency Mean 1.8

Stance Ankle Magnitude + Swing Knee Frequency Mean -1.5

Stance Knee Magnitude + Swing Hip Frequency Mean -1.2

Swing Hip Magnitude 1.2

Stance Ankle Magnitude + Stance Ankle Frequency Standard Deviation -1

Swing Ankle Magnitude + Swing Knee Magnitude 1

Stance Knee Magnitude + Swing Knee Magnitude -0.9

Swing Knee Magnitude + Swing Hip Frequency Standard Deviation 0.9

https://doi.org/10.1371/journal.pone.0262749.t003
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Discussion

Factors that significantly affected falling were somewhat different for each speed (Table 7). In

most cases, only main effects were significant at more than one speed. Depending on the con-

dition, going from the low to high value of variability changed the number of steps by 10–70%.

In general, steps to fall decreased as variability increased for the main effects, indicating that

increasing variability increased fall risk. This is consistent with previous work showing that

Fig 5. The Pareto chart showing the 30 most significant factors on the number of steps before a fall for the middle

speed. Stance knee frequency mean and stance knee magnitude were the most significant factors out of thirteen total

significant factors. Key: St = stance, Sw = swing, H = hip, K = knee, A = ankle, Mag = magnitude, FMean = frequency
mean, FStd = frequency standard deviation.

https://doi.org/10.1371/journal.pone.0262749.g005

Table 4. The slope for all significant factors for the medium speed. Interactions are indicated with a “+”. When

changing just one factor, the slopes are negative, indicating that the model falls more quickly when that aspect of vari-

ability is increased.

Factor Slope

Stance Knee Frequency Mean -7.4

Stance Knee Magnitude -5.6

Swing Hip Frequency Mean -4

Swing Hip Frequency Mean + Stance Knee Frequency Mean 3.2

Stance Ankle Magnitude -2.7

Stance Ankle Magnitude + Swing Knee Frequency Mean -2.7

Stance Knee Frequency Standard Deviation -2.6

Stance Knee Magnitude + Stance Ankle Magnitude 2.4

Stance Knee Magnitude + Swing Hip Frequency Mean 2.3

Swing Hip Frequency Mean + Swing Hip Frequency Mean 2.3

Swing Hip Magnitude + Swing Ankle Magnitude -2.2

Swing Knee Magnitude + Swing Hip Frequency Standard Deviation 2.2

Swing Knee Magnitude + Swing Hip Frequency Mean 2

https://doi.org/10.1371/journal.pone.0262749.t004
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increased variability is correlated with increased fall risk [3, 20, 26–28]. However, in a few

cases, increasing variability decreased fall risk. This may also be consistent with previous work

showing there is an optimal level of variability and values either above or below that level

increased fall risk [29]. These results are somewhat in contrast to prior work in which

Fig 6. The Pareto chart showing the 30 most significant factors on the number of steps before a fall for the fastest

speed. Out of a total of fourteen significant factors, stance knee magnitude, stance knee frequency mean, and swing hip

magnitude were the most significant. Key: St = stance, Sw = swing, H = hip, K = knee, A = ankle, Mag = magnitude,
FMean = frequency mean, FStd = frequency standard deviation.

https://doi.org/10.1371/journal.pone.0262749.g006

Table 5. The slope for all significant factors for the fast speed. Interactions are indicated with a “+”. The slopes for

the main effects (when one factor was varied) tended to be negative as expected. In contrast, many of the interactions

were positive, indicating that the combination of factors did not reduce number of steps to fall as variability increased

as much as would be expected from just the main effects.

Factor Slope

Stance Knee Magnitude -36.5

Stance Knee Frequency Mean -36.2

Swing Hip Magnitude -32.8

Swing Hip Magnitude + Stance Knee Frequency Mean 26.7

Swing Hip Magnitude + Stance Knee Magnitude 23.8

Swing Knee Magnitude -21.3

Stance Knee Magnitude + Stance Knee Frequency Mean 18.1

Stance Ankle Magnitude + Stance Ankle Frequency Mean -16.3

Stance Ankle Magnitude -16.2

Stance Knee Magnitude + Swing Knee Magnitude 15

Swing Knee Magnitude + Stance Knee Frequency Mean 14.7

Swing Hip Magnitude + Swing Knee Magnitude 13.9

Stance Knee Frequency Mean + Swing Knee Frequency Standard Deviation 12.9

Swing Ankle Magnitude + Swing Hip Frequency Mean 5.6

https://doi.org/10.1371/journal.pone.0262749.t005
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Table 6. ANOVA analysis including speed as a factor. For conciseness, all factors and interactions that had a p-

value> 0.1 were omitted from the table. The significant factors in the ANOVA analysis included the magnitude of all

joints except for the swing ankle, the frequency mean for the stance knee, the speed, and the interaction between speed

and all factors mentioned above.

Source p-Value

Swing hip magnitude � 0.001

Stance knee magnitude � 0.001

Swing knee magnitude 0.006

Stance ankle magnitude 0.011

Stance knee frequency mean � 0.001

Speed � 0.001

Swing hip magnitude × Speed � 0.001

Stance knee magnitude × Speed � 0.001

Swing knee magnitude × Speed � 0.001

Stance ankle magnitude × Speed 0.022

Stance knee frequency mean × Speed � 0.001

Swing knee frequency standard deviation × Speed 0.085

https://doi.org/10.1371/journal.pone.0262749.t006

Table 7. All significant factors across the different analyses. Factors that are significant in at least three analyses are indicated with �. The main effects of the magnitude

factors were found across most of the analyses, while frequency factors and interactions were more likely to only be found in one of the analyses. Key: St = stance,
Sw = swing, H = hip, K = knee, A = ankle, Mag = magnitude, FMean = frequency mean, FStd = frequency standard deviation.

Factor Pareto ANOVA

All Speeds Slow Middle Fast

SwH Mag � Yes Yes No Yes Yes

StK Mag � Yes Yes Yes Yes Yes

SwK Mag � Yes Yes No Yes Yes

StA Mag � Yes No Yes Yes Yes

SwH FMean No Yes Yes No No

StK FMean � Yes No Yes Yes Yes

StK FStd No No Yes No No

SwH Mag + StK Mag Yes No No Yes -

SwH Mag + SwK Mag No No No Yes -

SwH Mag + SwA Mag No No Yes No -

SwH Mag + SwH FMean No Yes Yes No -

SwH Mag + StK FMean Yes No No Yes -

StK Mag + SwK Mag No Yes No Yes -

StK Mag + StA Mag No No Yes No -

StK Mag + SwH FMean No Yes Yes No -

StK Mag + StK FMean No No No Yes -

SwK Mag + SwH FMean No No Yes No -

SwK Mag + StK FMean No No No Yes -

SwK Mag + SwH FStd No Yes Yes No -

StA Mag + SwK FMean No Yes Yes No -

StA Mag + StA FMean No No No Yes -

StA Mag + StA FStd No Yes No No -

SwA Mag + SwH FMean No No No Yes -

SwA Mag + StK FMean No Yes No No -

SwH FMean + StK FMean No No Yes No -

StK FMean + SwK FStd No No No Yes -

https://doi.org/10.1371/journal.pone.0262749.t007
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normally-distributed noise was applied to the swing hip of the simplest walking model [32]. In

that study, increasing noise increased variability in step length and period but had little effect

on stability. While few of the interactions in this study were significant, approximately half of

the significant interactions increased steps to fall as variability increased, indicating that a com-

bination of increased variability may not affect the steps to fall as significantly as the main

effects themselves would predict. In other words, this may mean that the effect of variability at

one joint can be partially canceled out by variability at a different joint.

Except for the swing ankle, the magnitude factors consistently had the most significant

effect on steps to fall for the values tested (Table 7); most were significant for two of the three

speeds. Further, these factors were a part of many significant interactions. This suggests that

altering variability magnitude has the most significant effect on falling and confirms our first

hypothesis. Stance knee magnitude was the most significant factor and decreased steps to fall

by 50–70% as the variability increased. In other words, doubling the variability approximately

doubled the fall risk. It was the only factor that was significant in every analysis (Table 7) and

was a top factor in every Pareto chart. The stance knee appears to position the back leg so that

both the angle between the point of contact and the hip and the hip’s velocity vector are

aligned appropriately for a good step-to-step transition. Increased knee extension, and some-

times hyperextension, caused the biped to stall and fall backward as there was insufficient

momentum to progress over the extended stance knee. Hyperextension was most likely at the

slowest speed because the mean angle was closer to zero, so a smaller change was required.

Increased stance knee flexion often resulted in a longer step and increased extension of the

next step. This suggests that reducing knee variability in the absence of other control actions

could reduce backwards falls.

The relative importance of stance ankle variability on steps to fall was inconclusive. For the

values used in the full study, stance ankle variability magnitude did not impact steps to fall as

much as the stance knee variability magnitude did. For all three speeds, increasing stance

ankle magnitude decreased the number of steps to fall by 25–40%, but was not a top factor for

any Pareto chart. The apparent lack of importance could partly be because the absolute change

in ankle variability magnitude was smaller than for the other joints, although the relative

change was larger. This is in contrast to the results from the feasibility study which indicated

that stance ankle magnitude values had a much larger effect and therefore required lower mag-

nitude values than the for other joints (Table 1). Previous studies have also found that stance

ankle motion significantly contributes to start-of-step energy [11, 52–54], possibly due to the

proximity of the stance ankle to ground. The inconsistency between the feasibility study results

and the full study results suggests a nonlinear relationship between stance ankle magnitude

and steps to fall. This is perhaps not surprising, given that the simplest walking model appears

to have a nonlinear relationship between noise at the joint level and variability in step length

and period [32]. In terms of shape of the nonlinearity, one possibility is that stance ankle mag-

nitude is moderately important for low values and suddenly becomes very important at higher

values. The other possibility is that the impact of variability magnitude grows smoothly. Unfor-

tunately, only two values of stance ankle magnitude were used in this study, so it was only pos-

sible to find a linear relationship. Further work is required to fully determine the effect of

stance ankle magnitude on falling, but these results suggest that stance ankle magnitude has a

moderate effect on steps to fall at low values of stance ankle magnitude variability and a large

effect at higher values of stance ankle magnitude variability.

Swing hip magnitude primarily affected swing leg timing and changed steps to fall by 20–

70%. For all speeds combined and the fast speed, increasing swing hip magnitude variability

decreased steps to fall by 50–70% (i.e., it increased fall risk). In contrast, steps to fall increased

by 30% as variability increased for the slow speed (i.e., it decreased fall risk). With higher
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variability, the biped often fell backward as the swing leg mass was too far behind the point of

contact. Occasionally, the biped fell forward, as the increased hip variability increased the

swing leg acceleration and caused the biped to trip.

Swing knee and ankle magnitude were not originally expected to impact falling because the

swing leg does not contact the ground. However, swing knee magnitude was a significant fac-

tor possibly because knee variability just before foot contact affected the stance knee’s next

step. In other words, the variability during swing may not matter, but the altered position at

heel contact may. Another possibility is that the swing knee’s variability altered the biped’s

overall momentum, causing it to speed up or slow down, and therefore making it easier or

harder to complete the step. Increasing swing knee magnitude decreased steps to fall by 40–

50% for all speeds combined and the fast speed, but increased steps to fall by 50% for the slow

speed. In contrast, the swing ankle was not a significant factor. Because of the split results, our

second hypothesis cannot be confirmed or rejected.

Our results support the third hypothesis that variability frequency has little effect on steps

to fall. While the frequency mean, particularly for the stance knee, had some significant results,

no frequency mean component was significant for all speeds, indicating that the variability fre-

quency has less of an impact than the variability magnitude. It appears that the main impact of

increasing the frequency mean is to increase the velocity difference between the periodic and

variable gait. The frequency standard deviation had little effect on falling. Because it increases

the number of steps with both higher and lower frequencies, this is not surprising, particularly

since the variability frequency in general does not have much of an effect. This is consistent

with human subject studies that found that fall risk was not correlated with variation in the

timing of muscle activations [55]. Thus, our third hypothesis is confirmed as the timing of the

variability (frequency) did not have as large of an impact as the variability magnitude.

In addition to the variability components, speed also had a significant effect on steps to fall.

Previous studies have indicated that slower walking may increase [56, 57] or decrease stability

[15, 21, 22, 46]. For this study, the biped tended to fall more quickly at slower speeds because it

had less momentum in general, so variability was more likely to result in insufficient momen-

tum and a backwards fall.

While certain aspects of the model were based on human gait, the results do not, and were

not expected to, directly correlate with falls in humans. The model fell much more frequently

than humans do by design. We chose variability parameters, particularly for the variability

magnitudes, that were much larger than observed in human walking. Given the apparent non-

linearity in the relationship between ankle variability and fall risk, a future study should inves-

tigate how fall risk changes as variability magnitude increases from very low values to very

high values for all joints. Further, when the variability caused the phase variable to drop below

zero or rise above one, no effort was made to ensure the nominal motion remained humanlike.

As a result, the variability could have an exaggerated effect at the beginning and end of some

steps if both the nominal and variability terms in the commanded motion diverged from peri-

odic walking motions. In addition, unlike the model, humans actively redistribute forces to

compensate for undesirable joint positions. Studies have observed intra-joint coordination

between the hip and the knee [58] as well as between the knee and the ankle [38]. Similarly,

humans react to falling using their whole body [59] while the model’s controller had no explicit

fall prevention action. Further, humans appear to modulate their variability for a variety of

tasks so that task-relevant variability is much smaller than task-irrelevant variability [60, 61].

Thus, the active control in humans likely allows them to adapt and prevent many of the falls

that the model experienced. Instead, this study provides insight into which aspects of variabil-

ity are most likely to cause falls in the absence of active control to reject or modulate the

variability.
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Overall, this simulation study found that, except at the swing ankle, the variability magni-

tude had the most significant effect on steps to fall for the values tested. Stance knee variability

magnitude was the most significant factor for the values tested. In addition, speed was a signifi-

cant factor. This suggests that increasing the joint variability magnitude may increase fall risk,

particularly if the controller is not able to actively compensate. Because the variability fre-

quency generally does not affect fall risk, future studies should focus on further exploring the

likely nonlinear relationship between variability magnitude and fall risk.
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1. Bruijn SM, Meijer OG, Beek PJ, van Dieën JH. Assessing the stability of human locomotion: A review of

current measures. Journal of the Royal Society, Interface. 2013; 10(83):20120999. https://doi.org/10.

1098/rsif.2012.0999 PMID: 23516062

2. Klenk J, Becker C, Palumbo P, Schwickert L, Rapp K, Helbostad JL, et al. Conceptualizing a dynamic

fall risk model including intrinsic risks and exposures. Journal of the American Medical Directors Associ-

ation. 2017; 18(11):921–927. https://doi.org/10.1016/j.jamda.2017.08.001 PMID: 28916290

3. Hobbelen DGE, Wisse M. A disturbance rejection measure for limit cycle walkers: The gait sensitivity

norm. IEEE Transactions on Robotics. 2007; 23(6):1213–1224. https://doi.org/10.1109/TRO.2007.

904908

4. Williams DS, Martin AE. Does a finite-time double support period increase walking stability for planar

bipeds? Journal of Mechanisms and Robotics. 2021; 13(1):011019. https://doi.org/10.1115/1.4048832

5. Shumway-Cook A, Ciol MA, Hoffman J, Dudgeon BJ, Yorkston K, Chan L. Falls in the Medicare popula-

tion: Incidence, associated factors, and impact on health care. Physical Therapy. 2009; 89(4):324–332.

https://doi.org/10.2522/ptj.20070107 PMID: 19228831

6. Chang JT, Morton SC, Rubenstein LZ, Mojica WA, Maglione M, Suttorp MJ, et al. Interventions for the

prevention of falls in older adults: Systematic review and meta-analysis of randomised clinical trials.

BMJ. 2004; 328:680. https://doi.org/10.1136/bmj.328.7441.680 PMID: 15031239

7. Tinetti ME, Baker DI, McAvay G, Claus EB, Garrett P, Gottschalk M, et al. A multifactorial intervention

to reduce the risk of falling among elderly people living in the community. The New England Journal of

Medicine. 1994; 331(13):821–827. https://doi.org/10.1056/NEJM199409293311301 PMID: 8078528

8. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson L, et al. Interventions for

preventing falls in older people living in the community. Cochrane Database of Systematic Reviews.

2012;(9):CD007146. https://doi.org/10.1002/14651858.CD007146.pub3 PMID: 22972103

9. Kuo AD. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspec-

tive. Human Movement Science. 2007; 26(4):617–656. https://doi.org/10.1016/j.humov.2007.04.003

PMID: 17617481

PLOS ONE Joint variability and bipedal fall risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0262749 January 26, 2022 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262749.s001
https://doi.org/10.1098/rsif.2012.0999
https://doi.org/10.1098/rsif.2012.0999
http://www.ncbi.nlm.nih.gov/pubmed/23516062
https://doi.org/10.1016/j.jamda.2017.08.001
http://www.ncbi.nlm.nih.gov/pubmed/28916290
https://doi.org/10.1109/TRO.2007.904908
https://doi.org/10.1109/TRO.2007.904908
https://doi.org/10.1115/1.4048832
https://doi.org/10.2522/ptj.20070107
http://www.ncbi.nlm.nih.gov/pubmed/19228831
https://doi.org/10.1136/bmj.328.7441.680
http://www.ncbi.nlm.nih.gov/pubmed/15031239
https://doi.org/10.1056/NEJM199409293311301
http://www.ncbi.nlm.nih.gov/pubmed/8078528
https://doi.org/10.1002/14651858.CD007146.pub3
http://www.ncbi.nlm.nih.gov/pubmed/22972103
https://doi.org/10.1016/j.humov.2007.04.003
http://www.ncbi.nlm.nih.gov/pubmed/17617481
https://doi.org/10.1371/journal.pone.0262749


10. Martin AE, Schmiedeler JP. Predicting human walking gaits with a simple planar model. Journal of Bio-

mechanics. 2014; 47(6):1416–1421. https://doi.org/10.1016/j.jbiomech.2014.01.035 PMID: 24565183

11. Martin AE, Gregg RD. Incorporating human-like walking variability in an HZD-based bipedal model.

IEEE Transactions on Robotics. 2016; 32(4):943–948. https://doi.org/10.1109/TRO.2016.2572687

PMID: 28082836

12. Patil NS, Dingwell JB, Cusumano JP. Correlations of pelvis state to foot placement do not imply within-

step active control. Journal of Biomechanics. 2019; 97:109375. https://doi.org/10.1016/j.jbiomech.

2019.109375 PMID: 31668906

13. Su JLSS, Dingwell JB. Dynamic stability of passive dynamic walking on an irregular surface. Journal of

Biomechanical Engineering. 2007; 129(6):802–810. https://doi.org/10.1115/1.2800760 PMID: 18067383

14. Braun DJ, Goldfarb M. A control approach for actuated dynamic walking in biped robots. IEEE Transac-

tions on Robotics. 2009; 25(6):1292–1303. https://doi.org/10.1109/TRO.2009.2028762

15. Fevre M, Goodwine B, Schmiedeler JP. Velocity decomposition-enhanced control for point and curved-

foot planar bipeds experiencing velocity disturbances. Journal of Mechanisms and Robotics. 2019; 11

(2):020901. https://doi.org/10.1115/1.4042485

16. Bongue B, Dupre C, Beauchet O, Rossat A, Fantino B, Colvez A. A screening tool with five risk factors

was developed for fall-risk prediction in community-dwelling elderly. Journal of Clinical Epidemiology.

2011; 64(10):1152–1160. https://doi.org/10.1016/j.jclinepi.2010.12.014 PMID: 21463927

17. Tinetti ME, Speechey M, Ginter SF. Risk factors for falls among elderly persons living in the community.

The New England Journal of Medicine. 1988; 319(26):1701–1707. https://doi.org/10.1056/

NEJM198812293192604 PMID: 3205267

18. Tromp AM, Pluijm SMF, Smit JH, Deeg DJH, Bouter LM, Lips P. Fall-risk screening test: A prospective

study on predictors for falls in community dwelling elderly. Journal of Clinical Epidemiology. 2001; 54

(8):837–844. https://doi.org/10.1016/S0895-4356(01)00349-3 PMID: 11470394

19. Smith MI, de Lusignan S, Mullett D, Correa A, Tickner J, Jones S. Predicting falls and when to intervene

in older people: A multilevel logistical regression model and cost analysis. Public Library of Science

ONE. 2016; 11(7):e0159365. https://doi.org/10.1371/journal.pone.0159365 PMID: 27448280
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