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ABSTRACT

Objective: We address a first step toward using social media data to supplement current efforts in monitoring

population-level medication nonadherence: detecting changes to medication treatment. Medication treatment

changes, like changes to dosage or to frequency of intake, that are not overseen by physicians are, by that, non-

adherence to medication. Despite the consequences, including worsening health conditions or death, 50% of

patients are estimated to not take medications as indicated. Current methods to identify nonadherence have

major limitations. Direct observation may be intrusive or expensive, and indirect observation through patient

surveys relies heavily on patients’ memory and candor. Using social media data in these studies may address

these limitations.

Methods: We annotated 9830 tweets mentioning medications and trained a convolutional neural network

(CNN) to find mentions of medication treatment changes, regardless of whether the change was recommended

by a physician. We used active and transfer learning from 12 972 reviews we annotated from WebMD to ad-

dress the class imbalance of our Twitter corpus. To validate our CNN and explore future directions, we anno-

tated 1956 positive tweets as to whether they reflect nonadherence and categorized the reasons given.

Results: Our CNN achieved 0.50 F1-score on this new corpus. The manual analysis of positive tweets revealed

that nonadherence is evident in a subset with 9 categories of reasons for nonadherence.

Conclusion: We showed that social media users publicly discuss medication treatment changes and may ex-

plain their reasons including when it constitutes nonadherence. This approach may be useful to supplement

current efforts in adherence monitoring.
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INTRODUCTION

Medication nonadherence refers to when patients do not follow medi-

cation treatments as prescribed by their doctors. Nonadherence can be

subdivided into 3 categories.1 In primary nonadherence, patients do

not fill their prescriptions or do not start their treatments. In nonper-

sistence, patients stop their treatments, intentionally or unintention-

ally, without being advised by a health professional to do so. In

suboptimal execution, patients are taking their medications but not as

recommended (eg, wrong dosage or frequency).

Medication nonadherence has long been recognized as a major

contributor to health problems, with the first mention dating from

Hippocrates.2–4 In 2003, the WHO estimated than 50% of patients
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in developed countries were failing to follow their medical treat-

ment. In 2018, nonadherence led to an estimated 275 689 deaths at

an annual cost of $528 billion per year in the US alone.5 Under-

standing its causes may help us design effective interventions to im-

prove adherence.6,7 According to Osterberg and Blaschke,8 the real

barriers to adherence lie in deficient interactions between patients,

providers, and the healthcare system. For example, by recommend-

ing a complex treatment, a provider increases the probability that

the patient will skip a medication; by maintaining high cost for a

medication, a healthcare system increases the risk for the patient to

not refill a prescription; and by showing poor knowledge of medica-

tion costs, a provider may prescribe expensive drugs even when

more affordable alternatives are available. Furthermore, in clinical

practice, patients rarely reveal their nonadherence. And even if they

do, they may be reluctant to openly discuss with their healthcare

providers the true reasons for altering their therapy against the pro-

viders’ advice.9

Current methods to identify and understand nonadherence have

major limitations. Direct observation may be intrusive or expensive,

and indirect observation through patient surveys relies heavily on a

patient’s capacity to remember and report adherence to medication

treatment. Our ultimate goal is to study for reasons for nonadher-

ence using social media data at a large scale, as it is generally inex-

pensive, nonintrusive, and does not rely on a patient’s memory of

events in the distant past. To the best of our knowledge, the few

studies on nonadherence using social media restrict their search to

health forums dedicated to long-term or chronic conditions. This

choice helps to process and interpret the data but greatly reduces the

size of their corpora and, therefore, limits the types of reasons dis-

covered. With 321 million active users per month in 2019,10 we

seek to assess whether Twitter could be a valuable source of data for

nonadherence studies at scale.

In preliminary work,11 we found that given the micro-blogging

format of Twitter, many users report changes to their medication

treatment in tweets separate from those reporting the reasons for

those changes (ie, that the mention of a change in treatment does

not always provide evidence of nonadherence). Thus, we approach

the detection of nonadherence on Twitter in 2 stages: (1) the tweet-

level detection of changes to medication treatment, and (2) the user-

level analysis to determine whether the reasons for change could be

understood as nonadherence. This study focuses on the first stage,

aiming to automatically detect tweets in which users report changes

to their treatment, regardless of whether the changes were recom-

mended. Automatically detecting tweet-level reports of changes to

medication treatment enables the large-scale use of Twitter data for

studying nonadherence at the patient level.

The main contributions of our work are (1) the release of 2 cor-

pora collected from social media, manually annotated with medica-

tion change, (2) a binary classifier based on neural networks to

detect changes in treatment, and (3) a manual analysis of nonadher-

ence reasons expressed in Twitter for a general set of drugs. Our an-

notation guidelines, our 2 corpora, and the codes of our classifier

were made publicly available during the #SMM4H’21 shared-task,

a natural language processing competition (available at: https://

healthlanguageprocessing.org/smm4h-2021/).

RELATED WORK

Prior work has focused on attempting to find nonadherence men-

tions and reasons for nonadherence from different data sources. For

this purpose, researchers have mined the unstructured portion of

clinical notes12,13 or messages from clinical portals.14 However,

these documents are protected, and they do not routinely contain

self-reported nonadherence written by patients.

Automatically extracting reasons for nonadherence is harder

from social media data. An intuitive approach to tackle this diffi-

culty is to manually analyze a sample of posts, and this has been

done with data from health forums, Facebook, and Twitter.15,16

However, larger studies can benefit from natural language process-

ing methods, to at least automatically filter relevant from irrelevant

posts and reduce annotation burden and to analyze large amounts of

data. Unsupervised methods are attractive for the latter, since they

require few or no annotations to learn the task, relying on topic

modeling17 or interactive exploration of the data with search

engines.18 In general, unsupervised approaches resulted in high re-

call but low precision.

Despite the challenges of annotation,19 supervised methods gave

the best results. Bigeard et al18 achieved a 0.824 F1-score on health

forums data in French with a Naı̈ve Bayes and hand-crafted features

approach. Yin et al20 reported comparable performance on health

forums using a binary logistic regression model with word

embeddings-based features and achieving a 0.882 F1-score. Both

studies used 1000 or fewer annotated examples. In 21 the authors

collected drug reviews written by users of the health forum WebMD

(available at: https://www.webmd.com/drugs/2/index). They applied

a binary classifier to detect sentences mentioning nonadherence,

then a sequence labeler to extract the reasons in 4500 reviews. The

performance of their classifier, a bidirectional Long Short-Term

Memory neural network, when trained on 8000 examples and tested

on 2000 examples gave a 0.828 F1-score. These performances are,

however, aided by the fact that they were working on health forums

where users focus their discussions on medical issues. In this context,

phrases are unambiguous, and automatic systems can learn reliable

linguistic patterns. A further limitation of these studies is that it is

unclear whether they validated if the stated change in medication

regimen was done with or without a doctor’s approval. This is a de-

fining characteristic of nonadherence that is particularly challenging

to establish, even for human annotators.

Thus, in this study, our main interest is to detect medication

treatment changes in Twitter. This is much less ambiguous and ena-

bles the deployment of automatic methods on a much larger scale.

The volume of reports that can be collected on Twitter could pro-

vide a broader view of nonadherence behaviors (eg, stopping a treat-

ment because of an adverse drug event experienced or feared).

Moreover, in Twitter, nonadherent users could potentially be di-

rectly contacted and invited to participate in a study. In contrast,

following up with the users would not be possible in WebMD since

they post reviews anonymously. However, compared to forums,

Twitter poses a new challenge for automatic detection. Whereas

55% of reviews mention a change in our WebMD corpus (see Sec-

tion Corpora), in a separate study22 we sought to ascertain the

topics discussed by users of statins, annotating a corpus of 12 649

tweets that mention a statin, and found that only 1.9% of them

(251 tweets) mentioned a change in medication treatment. Such

sparsity of positive examples makes the collection of training exam-

ples difficult and degrades the performance of learning algorithms.23

We addressed the data sparsity issue by training our classifiers

with transfer and active learning. In their review,24 Haixiang et al

observed that ensemble learning and resampling are the most popu-

lar techniques to train a classifier on class-imbalanced data. These

techniques are intuitive and do not need to modify the training algo-

rithm to be applied. In recent years, the combine used of active and
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transfer learning has been investigated, in the context of class-

imbalanced data, to reduce the size of training examples needed to

optimize deep neural networks—the state-of-the-art of machine

learning.25–27 Inspired by the success of these 2 techniques, we ex-

plored their performance on our real and very imbalanced data set

in this study. Note that resampling, ensemble, transfer, and active

learning are not exclusive techniques and can be combined to further

improve performance.28

MATERIALS AND METHODS

Our first effort was to collect corpora suitable to train our classifiers

with supervision. Knowing that mentions of medication changes in

Twitter are rare and that training corpora for supervised methods

usually contain several thousand positive examples, we judged the

cost too high to create a balanced training corpus. We opted for an

alternative solution. We took advantage of 2 training approaches to

reduce the annotation effort, transfer and active learning.26 We ex-

plain these approaches in detail in this section.

Corpora
We detail 2 corpora collected for this study in this section and sum-

marize their statistics in Table 1.

Twitter Corpus. We collected 9830 tweets to train and evaluate

the classifiers used for this study. We combined tweets mentioning

drugs from 2 existing corpora: (1) the corpus released during the

first track of the SMM4H’18 shared-task,29 a natural language proc-

essing competition to identify drug mentions, and (2) the corpus col-

lected by Golder et al.22 To select the tweets of the first corpus, the

authors collected 112 500 user timelines between 2014 and 2017.

They applied 4 weak classifiers on the timelines to detect tweets

mentioning medication names and manually annotated a subset of

the tweets retrieved by at least 2 classifiers to increase the likelihood

of selecting positive examples, or by only 1 classifier to select nonob-

vious negative examples. The classifiers were rule-based, lexicon-

based, data-centric misspelling-based, and a neural network trained

with weak supervision. From the first corpus, after manually exclud-

ing tweets not mentioning any medications or only mentioning die-

tary supplements or herbal remedies, we kept the 7457 tweets

mentioning a drug product.

To select the tweets of the second corpus, Golder et al intermit-

tently collected tweets from the Twitter Streaming Application Pro-

gramming Interface (API) between 2013 and 2018. They collected

all tweets mentioning the name of 8 statin medications and their var-

iants. They randomly sampled 12 649 tweets and manually analyzed

their contents. From the second corpus, we kept 2373 tweets. We se-

lected these tweets because they were posted by users who were us-

ing statins themselves, knew personally the statin user that they

reported on, or were healthcare professionals. We excluded all other

tweets that Golder et al identified as nonhealth or informational/re-

search-related tweets, since they would have been negative examples

for our task. Note that we had to annotate the 2373 tweets with

medication changes, since Golder et al only annotated their corpus

for nonadherence mentions, which is a subset of the tweets mention-

ing changes in medication treatments.

Annotation guidelines (https://healthlanguageprocessing.org/

smm4h-2021/task-3/) were developed to help 2 annotators distin-

guish tweets that mention a change in the medication treatment and

those that do not. One annotator labeled all tweets with “1” if the

tweets mention a change in the medication treatment, “0” other-

wise. Two annotators double-annotated 4931 of the 9830 tweets,

and their interannotator agreement was 0.65 (Cohen’s Kappa score).

Disagreements were adjudicated by a third annotator. This interan-

notator agreement score reflects a moderate agreement between the

annotators,30 implying that they had to rely often on their common

and medical knowledge to label the tweets. For example, in the

tweet “I overdosed on Benadryl today,” our annotators interpreted

differently from the language whether the person was taking an ex-

cess of the medication or not; in the tweet “I took some of Danny’s

antihistamine and I feel very high!” our annotators came to a differ-

ent resolution over the ambiguity of a possible misuse of the medica-

tion prescribed to another person versus the use of an over-the-

counter medication.

WebMD Corpus. Our second corpus consists of reviews written

by anonymous users on WebMD. This website provides an opportu-

nity for users to review drugs. A review is assigned to exactly 1 drug

and is composed of 3 scores evaluating the satisfaction, effective-

ness, and ease of use of the drug. The scores range from 1 to 5 stars,

with 1 star being the lowest value. Users can also comment on their

personal experience with the drug in a free text form. The comment

is optional and limited to 2000 characters. In August 2018, we col-

lected all of the available reviews from the WebMD website using

in-house software, totaling 241 094 reviews (989.7 GB). We ran-

domly sampled 12 972 reviews with a comment and 1 or 2 stars for

satisfaction. We selected posts with low satisfaction scores since

unsatisfied users are more likely to stop or to change medication.

Two annotators labeled the reviews with “1” if a review mentions a

change of medication, “0” otherwise. The interannotator agreement

was also moderate with 0.74 Cohens’ Kappa score;30 disagreements

were again adjudicated by a third annotator.

Classification approaches
Baseline

We implemented a simple rule-based classifier as a baseline. It applies a

set of regular expressions on a corpus and every post matched by 1 ex-

pression was labeled as mentioning a medication change. We designed

2 sets of regular expressions manually, 1 on the training set of the

WebMD Corpus (RE_WebMD), and 1 on the training set of the Twit-

ter Corpus (RE_Twitter). RE_WebMD applies 40 regular expressions

encoding generic patterns such as “side effect”, “(madejgave) me”, or

Table 1. Corpora statistics

Counts per Corpus

WebMD Twitter

Training Set 10 378 reviews (5746 1/4632 -) 5898 tweets (518 1/5380 2)

Validation Set 1297 reviews (741 1/556 -) 1572 tweets (138 1/1434 2)

Test Set 1297 reviews (735 1/562 -) 2360 tweets (208 1/2152 2)

Total 12 972 reviews 9830 tweets
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“(ineffectivejhad no effect)”. RE_Twitter applies 116 regular expres-

sions, some borrowed from the RE_WebMD but modified to include a

placeholder indicating that a drug name should occur at a given posi-

tion, for example “now on _drug_name_” or “took an extra

(\wþ\s)f,2g_drug_name_”. We manually wrote the regular expressions

to recognize phrases repeated in the positive examples of each training

set. We iteratively corrected these expressions to reject the negative

examples they captured in the training set, until any further changes in

the expressions degraded their overall performance on the validation

sets. We evaluated this classifier on both test sets of the corpora.

Convolutional Neural Network

We selected Convolutional Neural Networks (CNNs) to detect posts

stating a medication change. We ran experiments involving active

learning which requires training several networks during multiple

iterations.31 In this setting, CNNs present an advantage over more

complex networks as they are fast to train. The common architec-

ture of a CNN is a single convolutional layer of m filters producing

m vectors. These vectors are combined into a unique vector by the

following max-pooling layer. This vector is passed to a fully con-

nected layer which computes the probability of the input to belong

to a predefined class—in our case, for the post to mention a change

in medication or not

A trained CNN provides an efficient mechanism to compute the

probability for an input post to mention a medication change. To be

processed by the CNN, a post P is split into tokens. Tokens often co-

incide with words or punctuations, but they can be smaller or bigger

elements like “New York,” composed of 2 tokens “New” and

“York.” Each token of P is mapped to a vector of d real numbers,

called a vector embedding. Vector embeddings are usually pre-

trained on large corpora to place nearby the vectors of tokens se-

mantically or syntactically related in the d-dimensional space. All

embeddings representing the tokens of P are concatenated into a

unique matrix and presented to the CNN. The filters convolve over

the matrix of embeddings to score each N-grams (ie, n consecutive

tokens) occurring in the post. These scores express how much the N-

Grams are related to a class. The following max-pooling layer acts

as a threshold, keeping only the N-Grams most relevant for the clas-

sification.32 The vector produced by the max-pooling layer is a

dense representation of the post in a high-dimensional space and

used by the last fully connected layer to predict the class of P. This

last layer encodes the decision boundary, a hyperplane in this high-

dimensional space that separates the representation of the posts

mentioning change from posts that do not.33 Figure 1 illustrates a

decision boundary in a 2-dimension space. The representation of P

is a point in this high-dimensional space and its position relative to

the decision boundary indicates its class. The probability of P to be-

long to that class is simply the distance of the representation of P to

the decision boundary, the closer P is from the decision boundary

the closer its probability is to 0.5.

We used the common architecture for our CNNs. A CNN

accepts a 400x100 matrix as input, where 100 is the number of

tokens of a post to classify, and 400 is the dimension of the embed-

dings representing each token of the post; 100 is a fixed length, right

padded for shorter posts, and right truncated for longer ones. We

chose existing word embeddings, pretrained on 400 million tweets

with word2vec.34 Godin et al limited the size of the embeddings to

400 because larger embeddings were too complex to train effi-

ciently. We assigned vectors randomly initialized for out-of-

vocabulary tokens, fine-tuned during training. We used dropout on

the input and hidden layers of the CNN to avoid overfitting. We

used a RELU activation function for all appropriate layers, except

for the last layer, where we used a Softmax function. We imple-

mented only 1 convolutional layer in our CNN with 400 filters, a

kernel of size 3, and stride 1. We tuned all hyperparameters accord-

ing to their performances on the validation sets, including the num-

ber of filters and the size of the kernel. We preprocessed our posts

with a TweetTokenizer from the Natural Language Toolkit.35 We

removed user name handles from the tweets, reduced elongated

words, and lowercased all posts. Our code is publicly available (at

https://healthlanguageprocessing.org/smm4h-2021/task-3/) and pro-

vides details of all hyperparameters.

Convolutional neural network with active and transfer learning

As a way to improve the training of our CNNs despite the strong im-

balance between the tweets mentioning and not mentioning medica-

tion change in the Twitter Corpus, we used active and transfer

learning. Our experiments involved a large number of hyperpara-

meters chosen based on our prior experience. Their optimization

through grid searches is left as future work.

Active learning denotes a family of supervised learning algo-

rithms36 for training a classifier with a limited number of annotated

examples. In a standard supervised learning algorithm, all available

annotated examples are used to train a classifier. In active learning,

an artificial agent, the learner, is introduced to select, from a pool of

unlabeled examples, which examples should be annotated for train-

ing a classifier—or an ensemble of classifiers. Whereas a passive

learner randomly selects the examples, an active learner has an algo-

rithm to select the most relevant examples. Intuitively, the active

learner focuses on unlabeled examples likely to be incorrectly classi-

fied by its classifier (see Figure 1). Such examples may be located

close to the decision boundary of the classifier, revealing the need to

update the parameters of the classifier’s model (eg, changing the

slope of a linear model) or they may be located in new areas in the

features space, revealing the need to change the classifier’s model it-

self (eg, changing to a nonlinear decision boundary). An active

learner learns a task with fewer examples than a passive learner

since it queries only for examples resulting in useful changes of the

classifier’s model and ignores redundant examples.

We first evaluated the benefits of active learning alone, on the

WebMD corpus and on the Twitter corpus. We compared 3 standard

learning strategies36 to select the most relevant examples to annotate

from the pool: random sampling as a baseline, uncertainty sampling,

and disagreement sampling with a committee of 5 CNNs randomly ini-

tialized. Uncertainty sampling is the simplest utility function where the

learner selects the examples for which its classifier is the less confident

about the labels it assigned—that is, the probabilities of the predictions

are close to 0.5. In the disagreement sampling, the learner compares

the labels assigned by a committee of classifiers and selects the exam-

ples with which they disagree the most. For both utility functions, we

chose the entropy and the vote entropy to measure the uncertainty of

the classifiers). Our setting was identical for all experiments. We kept

10% of the training set as seed set and placed the remaining examples

in a pool, with their labels hidden from the learner. The steps of the ac-

tive learning algorithm are as follows:

a. Our learner started its initial training on the seed set.

b. The learner queried the labels for 200 new examples from the

pool using its utility function. All examples of our corpus being

prelabeled, we simply released their labels to the learner.
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c. The learner updated the model of its classifier with the 200 new

examples and evaluated its performance on the validation set as well

as on the test set and removed these 200 examples from the pool.

d. The learner iterated steps b., c., and d. until a heuristic reached

its stop condition or no example remained in the pool.

Figure 1 shows the step a. and 2 iterations of steps b., c., and d. The

learner saved its classifier’s models at each iteration c. and selected

the model m at the iteration where it achieved its best performance

on the validation set. We evaluated the learner on the test set using

the model m. The model m may not be the model which obtained

the best performance on the test set, but choosing m guarantees

good performances for real applications. A limitation of this ap-

proach, however, is that to choose m, we need to know the iteration

where m achieves its best performance on the validation set which

requires all examples of the corpus to be annotated. Therefore, we

defined a heuristic relying on patience to approximate this iteration

and decide automatically when to stop the annotation process. For

each classifier, we trained in parallel 5 models as described in Sec-

tion Convolutional neural network with active and transfer learn-

ing. At each step d., if the mean of the F1-scores on the validation

set was the highest recorded, the patience k was reset to 0 and a new

iteration of steps b., c., and d. executed, querying 200 new examples

to be annotated. If the mean of the F1-scores was not the highest

recorded, the patience k was incremented by 1 and compared with

the maximum patience threshold p. If k was inferior to p, a new iter-

ation of steps b., c., and d. was executed; otherwise, the training

stopped and the models which achieved the highest F1-scores

recorded in the previous iterations were evaluated on the test sets.

The patience p is a hyperparameter to define. We computed our heu-

ristic on the mean F1-scores of 5 classifiers to reduce the fluctuations

in the neural networks’ performance.

Transfer learning is a heuristic to improve the performance of a

supervised classifier.26 With transfer learning, a classifier solves a

new task by reusing in its inference the knowledge it acquired when

solving a similar task. In the case of a neural network classifier, the

knowledge is instantiated by the weights of the network.

We evaluated the benefits of transfer learning by implementing a

passive learner using a single CNN. We started by training our clas-

sifier on all training examples of the WebMD corpus—the source

corpus—to learn the linguistic patterns indicating a change in the

medication treatment. We transferred its knowledge by continuing

the training of the classifier with all training examples from the

Twitter corpus—the target corpus. We evaluated our classifier on

the test set of the Twitter corpus. To confirm that any increase of

performance was due to the transfer and not simply due to the addi-

tional examples from the source corpus, we trained the classifier on

all training examples of the source and target examples combined

and randomly presented to the CNN, and evaluated the CNN on

the test set of the Twitter corpus. We also measured the loss when

our classifier did not have past knowledge—that is, when the CNN

was only trained and evaluated on the target corpus. Considering

the similarity between the source and the target corpora, we checked

the performance of a CNN first trained on the training source cor-

pus and, with no additional training step on the training set of the

target corpus, evaluated on the test set of the target corpus.

Transfer and Active Learning were used in combination and

evaluated with the same settings as for evaluating transfer learning,

with 1 difference: we used an active learner with all examples anno-

tated during the training phases of the classifier on the source and/or

target corpora.

All classifiers and learners evaluated during our experiments are

summarized in Table 2.

Evaluation

We trained and evaluated our classifiers/learners 5 times and

reported the means of their precision, recall, and F1 scores to reduce

the differences caused by their stochastic optimizations. True Posi-

tives (TP) are posts that mention a change in treatment and are

detected by a classifier. False Negatives (FN) are posts that mention

a change in treatment but are not detected by a classifier. False Posi-

tives (FP) are posts that do not mention a change in treatment but

are detected by a classifier. The Precision is the fraction of posts cor-

Figure 1: Two iterations of the active learning algorithm. All Tweets in the blue zones delimited by the decision boundaries are labeled as positive by a CNN clas-

sifier, tweets in the red zone are labeled as negative. The decision boundaries defined by the models of the classifier are updated at each iteration to include

newly labeled positive tweets. (Note: we reduced the dimensions of the vectors to two dimensions for representation purpose)
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rectly classified as positive among all posts classified as positive: TP/

(TPþFP). The Recall is the fraction of posts mentioning a change

successfully retrieved: TP/(TPþFN). The F1 score is the harmonic

mean of the precision and recall; it summarizes the overall perfor-

mance of the classifier.

Validation
Using our classifier, we collected a large corpus of tweets mention-

ing a change of medication treatment and manually analyzed the

tweets to determine whether users were nonadherent to their pre-

scriptions and the reason why, if given. This was a preliminary in-

vestigation to evaluate the speed and accuracy of our classifier on a

large set of tweets and to find if tweets that indicate a change of

medication could lead to a finding of nonadherent behaviors and

their reasons. The actual study of nonadherence at the population

level using Twitter is left as future work since it will require a sys-

tematic collection of tweets for a chosen class of medications and

the development of new models to detect nonadherence.

We collected 1 936 820 tweets from January 2019 to April

2020. We queried the stream of Twitter using the official applica-

tion programming interface to retrieve tweets mentioning drug

names, or their variants, from a predefined list of 1322 drugs. The

1322 drugs were randomly selected from the RxNorm database

(https://www.nlm.nih.gov/research/umls/rxnorm/docs/rxnormfiles.

html, accessed January 28, 2021). We applied our best classifier (see

Section Benefits of transfer learning) on these 1.9 million tweets and

detected 5811 tweets with a probability to mention a change of

medication equal to or higher than 0.95. From these 5811, we man-

ually analyzed a subset of 3010 tweets, randomly selected. One an-

notator first confirmed the decision of our classifier—the tweet

mentioned a medication treatment change—and then looked for the

reasons of this change in the timeline of the user, up to 10 tweets

posted before and after the tweet mentioning the change as previ-

ously done in.11 If the tweet was a part of a discussion, the annota-

tor also looked for the reasons into the discussion thread. We

determined nonadherence if it was stated, or could be inferred, from

the tweet that the user changed or stopped taking the medication

without consulting their provider. For example, in the tweet, “took

Prozac for a while, took myself off it didn’t like the side effects from

it,” the user is clearly stating that they made the decision (“took my-

self off it”) rather than their doctor, thus it was labeled as nonadher-

ence. Our senior annotator (KO) categorized the reasons for

nonadherence and our experts in pharmacoepidemiology (SH and

RG) validated a subset of them.

RESULTS

Automatic detection of medication change
We detail our results in Table 3. The drop of performance for all

classifiers when applied on our Twitter corpus stands out. Whereas

the learner with a committee of CNNs—the best learner on both

corpora—achieved a high score on the WebMD corpus (82.8% F1-

Table 2. Classifiers and learners summary

System Description Experiment

RegEx Classifier using hand-crafted regular expressions RE_WebMD—Expressions crafted on WebMD training set;

evaluated on WebMD test set

RE_Twitter—Expressions crafted on Twitter training set;

evaluated on Twitter test set

Random Passive learner using a single CNN and random sampling RA_WebMD—Trained on WebMD training set; evaluated

on WebMD test set

RA_Twitter—Trained on Twitter training set; evaluated on

Twitter test set

RA_Transfer—Trained on WebMD training set, with/with-

out update on Twitter training set; evaluated on Twitter

test set

RA_WþT—Trained on WebMD and Twitter training sets

combined; evaluated on Twitter test set

Uncertainty Active learner using a single CNN and uncertainty sampling UN_WebMD – Trained on WebMD training set; evaluated

on WebMD test set

UN_Twitter—Trained on Twitter training set; evaluated on

Twitter test set

UN_Transfer—Trained on WebMD training set, with/with-

out update on Twitter training set; evaluated on Twitter

test set

UN_WþT—Trained on WebMD and Twitter training sets

combined; evaluated on Twitter test set

Committee Active learner using a committee of 5 CNNs and disagree-

ment sampling

CO_WebMD—Trained on WebMD training set; evaluated

on WebMD test set

CO_Twitter—Trained on Twitter training set; evaluated on

Twitter test set

CO_Transfer—Trained on WebMD training set, with/with-

out update on Twitter training set; evaluated on Twitter

test set

CO_WþT—Trained on WebMD and Twitter training sets

combined; evaluated on Twitter test set
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score), its performance dropped from 82.8% to 50.4% F1-score on

the Twitter corpus. This drop is likely due to the difference of genre

between our 2 corpora.37 When analyzing our data, we noticed

that when users are reviewing drugs in WebMD, they only discuss

their experiences and rarely diverge. WebMD reviews are also

longer than tweets, providing more context. As shown by the

high recall of RE_WebMD (90.3%), we can express few generic and

reliable patterns on this corpus to detect medication change (eg,

the phrase “side effect” most often indicates a change. When users

are posting on Twitter, they discuss other subjects than their medica-

tion experience. Such generic patterns become unreliable. To im-

prove their precision, we needed to integrate more constraints

to model the surrounding context in tweets, and consequently, to

keep a high recall, multiplying close variation of the patterns. Such

adaptation of the patterns remains challenging for both humans and

classifiers.38

Reducing annotation effort with active learning
In our evaluation in Section Automatic detection of medication

change, we reported the performances of our classifiers with the best

models on the validation sets. However, the best models on the vali-

dation sets were known because all examples in our corpora were

annotated. In this section, we measure the reduction of the annota-

tion effort possible with active learning. We report in Figure 2 the

average performances on the test sets of our 2 corpora of our 3

learners when trained on various subsets of the training examples.

We marked with black circles the performance of our classifiers

when trained with active learning and stopped using our heuristic.

The active learners reached their best performances plateau earlier

than the baseline passive learner on both corpora, and active learn-

ing did not cause a significant drop in performance compared to

learning on all examples available. On the WebMD corpus, with a

patience k¼10, the UN_WebMD was stopped after being trained

on 37% of the training examples and achieved performance close to

optimal on the test set with 82% F1-score. The CO_WebMD was

stopped too early, 7 iterations before reaching a good plateau of per-

formance, and achieved 81.8% F1-score trained with only 31.2% of

the training data available. Both scores are close to 82.2% F1-score,

the score achieved by RA_WebMD when trained on all training

examples. On the Twitter corpus, we observed a similar pattern

with a patience k¼3. UN_Twitter was stopped late, after being

trained with 64.3% of the training examples, but on the plateau of

optimal performance. CO_Twitter was again stopped too early,

trained with 33.7% of the training examples. UN_Twitter achieved

44.6% F1-score on the test set, a score higher than the score

achieved by RA_Twitter when trained on all examples with 38.7%

F1-score.

Benefits of transfer learning

We achieved our best score on the Twitter corpus (50.4% F1-score)

with CO_Transfer, an active learner using a committee of CNNs

and transfer learning. Because users express their change of medica-

tion with the same linguistic patterns in social media, our learner

could learn the patterns from the WebMD corpus, a larger and more

balanced corpus, and performed more efficiently the task on the

Twitter corpus. The transfer allowed an increase of 10 F1-score

points for the committee CO_Transfer (50.4% F1-score) compared

to the baseline learner RA_Twitter (40.4% F1-score). A require-

ment, however, is to adjust the reliability of each pattern on the tar-

get corpus through additional training iterations on a small sample

of examples from the target corpus. Without adapting its classifiers’

models, there was no evidence our learner gained anything from the

transfer as shown by the experience CO_Transfer in Table 3. Note

that the additional examples provided during the transfer learning

are an important factor of improvement, as shown by the difference

between RA_Twitter (40.4% F1-score) and RA_WþT (46.7% F1-

score), but it is not the only factor. The order in which the training

examples are presented to the classifier during the transfer with ac-

tive learning is also a key factor for improvement and counts for 3.7

F1-score points (50.4–46.7).

Table 3. Binary classification of medication change in WebMD and Twitter posts. (Precision, recall and F1 scores are given in percentage;

classifiers trained by an active learner are marked with italic fonts)

Corpus: WebMD

System Precision Recall F1

RE_WebMD—RegEx 68.3 90.3 77.8

RA_WebMD –Random 78.7 85.9 82.1

UN_WebMD—Uncertainty 81.4 83.1 82.2

CO_WebMD—Committee 80.2 85.7 82.8

Corpus: Twitter

System Precision Recall F1

No Transfer RE_Twitter—RegEx 45.3 41.4 43.2

RA_Twitter—Random 50.8 34.1 40.4

RA_WþT—Random 46.8 47.1 46.7

UN_Twitter—Uncertainty 39.3 56.2 45.5

UN_WþT—Uncertainty 44.2 51.2 46.9

CO_Twitter—Committee 51.7 34.7 41.3

CO_WþT—Committee 52.2 37.8 43.7

Transfer with and without

update on target corpus

RA_Transfer—Random 53.6/38.7 40.9/45.5 46.2/41.3

UN_Transfer—Uncertainty 46.5/26.4 52.4/51.6 48.4/34.9

CO_Transfer—Committee 56.2/30.7 45.8/52.5 50.4/38.7
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Analysis of medication nonadherence reported on

Twitter
Our manual analysis of the subset of 3010 tweets, detected by our

best classifier as very likely to mention a medication change, con-

firmed our preliminary results published in11: users post about their

medication nonadherence on Twitter and were likely to explain their

reasons in the tweets assessed (including previous and subsequent

tweets). From these 3010 tweets, 1956 were True Positive (ie, tweets

mentioning a medication change). Among these 1956 tweets, 19.2%

(375/1956) were explicitly mentioning nonadherence with the rea-

sons explained in the tweets themselves (68%, 255/375) or their

contexts (9.1%, 34/375). In this example, “i was taking my adderall

less than prescribed to save money, [. . .]”, the nonadherence reason

was categorized as Access Issue due to cost. Out of 375, only 22.9%

(86/375) did not have a reason indicated in their context.

Table 4 summarizes the classes of stated reasons for nonadher-

ence. Adverse drug reaction was the most common reason men-

tioned for being nonadherent, with 19.2% (72/375) of our tweets.

Misuse and abuse were the second reason with 17.8% (67/375).

This reason could be over-represented in our sample because 57.9%

(217/375) of the tweets mentioning nonadherence are mentioning

mixed amphetamine salts Adderall, a drug abused for its stimulant

properties. Access issues to the drugs caused, for example, by their

costs or problems with insurances and refill issues, were also a major

concern to patients and counted for the third reason of nonadher-

ence with 12.8% (48/375), before unintentional nonadherence of

users, only 6.4% (24/375).

DISCUSSION

In this study, our objective was to automatically detect tweets men-

tioning changes in medication treatment and manually analyze their

context to assess whether the reasons of the changes were given and

whether we could determine if they were advised by a physician or

not.

Transfer and active learning appear to be efficient heuristics to

help train classifiers on extremely imbalanced corpora. Compared

to a traditional supervised learning approach, we were able to in-

crease the performance of our learner by 9.1 points in F1-score by

combining both heuristics. These positive results were obtained on 1

task and need to be confirmed. We intend to repeat our experiments

on the adverse drug event detection and drug detection tasks de-

scribed in23,39.

Figure 2: Classifiers’ performance on WebMD and Twitter corpora test sets with increasing training data. (Black circles indicate the percentage of training exam-

ples analyzed by the classifiers when achieving their best performance on validation sets given our stopping heuristic. We set patience k ¼ 10 on the WebMD cor-

pus and patience k ¼ 3 on the Twitter corpus.)
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We made 2 experimental choices to facilitate the validation of

transfer and active learning for training a classifier on an imbalance

corpus. We made these choices to greatly reduce the computation

time during our experiments, knowing that we may have limited our

performance. We chose a well-established neural network architec-

ture for our classifiers and well-known utility functions for our ac-

tive learners, whereas better alternatives already exist. Such an

alternative could be a dense representation of the entire posts using

ELMo or BERT neural networks.40 With this representation, it also

becomes possible to express new utility functions. When neural net-

works encode the posts, they encode their semantics and place simi-

lar posts close to each other in a multidimensional space and posts

with different meanings far away. Such representation could help an

active learner to explore unlabeled data by clustering posts express-

ing the same meaning despite lexical and syntactical variations.31,41

We leave as future work the use of dense representation of the posts

and the design of new utility functions exploiting this representation

to improve the performance of our classifier.

In this study, we hypothesized that the linguistic patterns

expressing medication change in social media are similar across dif-

ferent drug classes. We focused our efforts on developing a general

learner by training it on corpora composed of posts mentioning any

medication. To our knowledge, no prior work exists that targets

medication change mentions in social media. However, in general,

epidemiological studies in pharmacovigilance include only a particu-

lar class of drugs (rather than a random collection of them) to dis-

cover unknown reasons for nonadherence. The transfer learning

approach presented in this study can be used on a new corpus of

tweets mentioning a specific drug class of interest by simply retrain-

ing our classifier on this new corpus as it was done in this study for

the general collection of drugs. Future work in this direction will

benchmark the performance of the classifier per medication class

(for example, for statins or antihypertensives).

With the manual annotation of our corpora, we found that

within tweets mentioning a drug name, 1.84% are explicit mentions

of nonadherence (Given that in our Twitter corpus, 9.6% of the

tweets mention a change in medication treatment, we can assume

that 185,934 tweets in the 1.9 million tweets are mentioning a

change in medication. Since we found that, among tweets mention-

ing a change in medication treatment, 19.2% are explicitly nonad-

herence, we conclude that 35,699 (185 934*0.192) tweets are

explicit mention of nonadherence, that is 1.84% (35 699/1 936 820)

of the tweets in our initial 1.9 million tweets). This percentage,

1.84%, must be interpreted with regard to the size of the data gener-

ated on Twitter. The corpus of 1.9 million used for the validation of

our approach was a sample of a larger database of 25 million tweets

collected from August 2017 to April 2021. This database should

therefore contain around 466 060 (25 329 350*0.0184) explicit

mentions of nonadherence. Yet, even 25 million is a relatively small

number of tweets, since we collected tweets based on only 1322

drug names and their variants, and used the free standard Twitter

streaming API, which returns a low percentage of the total number

of tweets mentioning those drug names posted in real time. Accord-

ing to Morstatter et al,42 the API returns only from 1% up to 43.5%

Table 4. Reasons of nonadherence discovered in a sample of tweets mentioning drugs. Statements are unedited for spelling, punctuation,

or format

Nonadherence Reason Description/Example PERCENT

(COUNT)

Adverse Drug Reaction Experienced/fear of adverse drug reaction 19.2 (72)

“I hate avapro after a few doses I got a sore throat that lead to nonstop coughing. I stopped

taking it two days ago. [. . .]”

Misuse/Abuse Indication that the medication was being abused/misused 17.8 (67)

“[. . .] when I abused adderall now and then for a while [. . .]”

Access issues Unable to get medication (cost, insurance, refill issues, etc.) 12.8 (48)

“I stopped taking my Lamotrigine and took. myself off quetiapine bc I no longer wanted to

pay for them[. . .]”

Beliefs Various beliefs (not needed, being overmedicated, harmful, etc.) 11.2 (42)

“Yes big pharma is the reason I stopped taking my Xanex and other meds”

Unintentional Nonadherence seems unintentional (forgotten, error dosage, etc.) 6.4 (24)

“I didn’t take my Adderall for a while because I lost my bottle and today was my first day

back on it a [. . .]”

Parent’s decision Parent took child off medication 2.4 (9)

“my dad’s taking me off of my vyvanse prescription without my doctors advise and self-

undiagnosing me even though he only took me off meds bc of my side effects from letting

me have weekends off”

Efficacy Not effective or higher dosage needed 2.3 (8)

“When the pain med stopped working, I stopped going They gave me no other treatments.

Was wasting my time!”

Stigma Patient felt a stigma being on medication 1.3 (5)

“The doctor treated me like a drug addict, [. . .] I discontinued the med because of the

shame”

Other Did not fit into any of above categories 3.7 (14)

“[. . .] He has been neglecting caring for himself since finding out he couldn’t get on the

transplant list. He stopped taking his diuretic. [. . .]”

Not available Reason not found in tweet context 22.9 (86)

“I stopped taking ramipril on my own terms weeks ago.”

Total 100 (375)
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of the total tweets posted, depending on the traffic on Twitter. We

believe the systematic use of Twitter data to be a promising comple-

ment to evidence-based efforts to understand medication nonadher-

ence. Collecting tweets is cost-effective, does not represent a burden

on the participants, is available in real time, and is abundant. Tweets

are unmediated (not subject to researchers’ biases), and they may

provide additional contexts to understand the patients through their

discussions, timelines, or even direct contact.

CONCLUSION

In this study, we presented an ensemble of CNNs to detect tweets

mentioning changes in medication treatment. Using transfer and ac-

tive learning, we achieved 0.50 F1-score, a score high enough to col-

lect a large number of tweets of interest and manually analyze their

context to determine if users were nonadherent to their prescrip-

tions. We conclude that Twitter users do state their nonadherence to

medication treatments and are likely to explain their reasons in their

timelines, suggesting that Twitter data, systematically collected and

automatically analyzed, could supplement current efforts in identify-

ing patient-stated reasons for nonadherence. A major challenge

remains to fully automate the detection of nonadherence and their

reasons for larger studies.
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