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ABSTRACT
....................................................................................................................................................

Objective The ShARe/CLEF eHealth 2013 Evaluation Lab Task 1 was organized to evaluate the state of the art on the
clinical text in (i) disorder mention identification/recognition based on Unified Medical Language System (UMLS) defini-
tion (Task 1a) and (ii) disorder mention normalization to an ontology (Task 1b). Such a community evaluation has not
been previously executed. Task 1a included a total of 22 system submissions, and Task 1b included 17. Most of the
systems employed a combination of rules and machine learners.
Materials and methods We used a subset of the Shared Annotated Resources (ShARe) corpus of annotated clinical
text—199 clinical notes for training and 99 for testing (roughly 180 K words in total). We provided the community with
the annotated gold standard training documents to build systems to identify and normalize disorder mentions. The sys-
tems were tested on a held-out gold standard test set to measure their performance.
Results For Task 1a, the best-performing system achieved an F1 score of 0.75 (0.80 precision; 0.71 recall). For Task
1b, another system performed best with an accuracy of 0.59.
Discussion Most of the participating systems used a hybrid approach by supplementing machine-learning algorithms
with features generated by rules and gazetteers created from the training data and from external resources.
Conclusions The task of disorder normalization is more challenging than that of identification. The ShARe corpus is
available to the community as a reference standard for future studies.
....................................................................................................................................................

Key words: Natural Language Processing, Disorder Identifciation, Named Entity Recognition, Information Extraction,
Word Sense Disambiguation, Clinical Notes

BACKGROUND AND SIGNIFICANCE
Introduction
The clinical narrative within the electronic medical records
(EMRs) forming a patient’s medical history encapsulates vast
amounts of knowledge. Unlocking this information can benefit
clinical investigators, caregivers, and patients. The natural lan-
guage processing (NLP) community has made advances in the
past couple of decades in helping represent clinical knowl-
edge.1 The fact that language in clinical reports is usually terse
and compressed2,3 complicates its interpretation. Supervised
machine-learning techniques are becoming popular, and vari-
ous corpora annotated with syntactic and semantic information
are emerging through various projects such as the Multi-source
Integrated Platform for Answering Clinical Questions
(MiPACQ),4 Temporal Histories of Your Medical Events
(THYME),5–7 Informatics for Integrating Biology and the Bedside

(i2b2),8,9 Shared Annotated Resources (ShARe),10 and
Strategic Health IT Advanced Research Project: Area 4
(SHARPn).11,12 These resources help advance the development
of novel NLP methods, which in turn enable improved tools for
analyzing clinical narratives.13 Some examples of applications
of these NLP methods are the phenotyping algorithms in
Electronic Medical Records and Genomics (eMERGE),14–17

Pharmacogenomics Research Network (PGRN),18–20 and i2b29

projects, all of which make use of information extracted from
the clinical narrative.

The tradition of shared tasks in the general NLP domain,
such as Computational Natural Language Learning (CoNLL)21

and Semantic Evaluations (SemEval),22 has spread to the bio-
medical literature domain through BioNLP23 shared tasks and
BioCreAtIvE,24 and more recently in the clinical domain through
the i2b2 shared tasks.25 Chapman et al13 highlight the
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importance of these activities for the clinical language process-
ing community. The ShARe/CLEF 2013 eHealth shared task
continued this tradition to accelerate research in this fast-
growing and important domain. The focus of this task was dis-
order mention identification and normalization. A disorder is
defined as a span of text that can be mapped to a concept in
the Systematized Nomenclature of Medicine—Clinical Terms26

(SNOMED CT) terminology and that belongs to the Disorder se-
mantic group as defined by Bodenreider and McCray.27 The
process of normalization involves mapping these disorder men-
tions to the closest equivalent Unified Medical Language
System28 (UMLS) Concept Unique Identifier (CUI) subset
of SNOMED CT. This task differs from the other clinical NLP
challenges—the i2b2 NLP challenges25—because (i) it uses
an ontological definition of disorder (versus a looser and more
subjective definition of problem in i2b2) and (ii) it normalizes
the mention to an ontology, in this case, SNOMED CT as repre-
sented in the UMLS; the normalization task has not been
explored previously in clinical NLP challenges.

This journal extension of the ShARe/CLEF eHealth
workshop29 describes the gold-standard datasets, presents
the task parameters, and provides a detailed analysis of the
participating systems in terms of their methodology and
performance.

Related work
Over the years, the biomedical informatics community has
developed rich terminologies such as Medical Subject
Headings30 (MeSH) and RxNorm.31 The UMLS28 is an attempt
to align existing terminologies with each other. The SNOMED
CT26 terminology is an internationally recognized convention for
clinical documentation and is part of the UMLS. UMLS defines
the terms ‘atom,’ ‘term,’ and ‘concept’ as follows. An atom is
defined as the smallest unit of naming in a source, viz, a spe-
cific string. A concept represents a single meaning and con-
tains all atoms from any source that express that meaning in
any way. A term is a word or collection of words comprising an
expression. Thus, ‘Headache,’ and ‘headaches’ would be two
strings, each with a unique String Unique Identifier (SUI) and a
Atom Unique Identifier (AUI) depending on which terminology
they occur in. These would be part of the same term, with a
unique Lexical (term) Unique Identifier (LUI), whereas the string
‘Hue’ would be a separate term in the same concept repre-
sented with a CUI. Figure1 is an example from the UMLS web-
site which clarifies the four levels of specification—CUI, LUI,
SUI, and AUI. Their identifiers start with the letters C, L, S, and
A, respectively, followed by seven numbers.

Normalizing phrases to standardized terminology is not a
new task. However, until recently, corpora that would allow
gauging of the state of the art of normalization on clinical nar-
rative have not been publicly available, despite its importance
and downstream applications. For example, in ‘Patient diag-
nosed with RA,’ ‘Patient diagnosed with rheumatoid arthritis,’
and ‘Patient diagnosed with atrophic arthritis,’ the terms RA,
rheumatoid arthritis and atrophic arthritis are text spans of type
Disease/Disorder (the entity recognition/identification step); all

of them are mapped to the same CUI (C0003873) (the normali-
zation step). Therefore, processing clinical text to normalize it
against a standard terminology provides a unified representa-
tion over the many textual forms of the same concept. This uni-
fied representation, in turn, can be the lingua franca across
institutions, which can be shared in a similar fashion as in the
eMERGE14–17 and PGRN18–20 phenotyping efforts. However,
ours is the first formal evaluation of the state-of-the-art sys-
tems for entity recognition and normalization of the clinical nar-
rative. This evaluation is the main goal of the presented shared
task and the focus of this manuscript.

Existing systems
Much of the research in biomedical informatics has centered
on named entity recognition and normalization tasks. Although
most methods are rule based, systems have emerged that im-
plement hybrid approaches combining machine learning and
rules. The following are some of these systems:

• MedLEE32—The Medical Language Extraction and Encoding
System (MedLEE) is a rule-based tool for processing clinical
text. It was originally designed to work with radiology re-
ports of the chest and has since been extended to handle
other types of clinical narratives.

• MetaMap33,34—MetaMap is developed by the National
Library of Medicine (NLM) to map scholarly biomedical text
to the UMLS Metathesaurus. It is highly configurable and
uses a knowledge-intensive approach.

• cTAKES35—clinical Text Analysis and Knowledge Extraction
System (cTAKES) is an open source Apache top-level project
for information extraction from clinical narratives. It is a
comprehensive platform for performing many clinical

Figure 1: Unique Identifiers in the Unified Medical
Language System (UMLS) Metathesaurus.
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information extraction tasks in addition to mapping text to
UMLS concepts (eg, syntactic and semantic parsing).

• YTEX36—This system is a series of extension modules on
top of cTAKES that provides a generalizable framework for
mapping clinical phrases to various terminologies, including
UMLS and its terminologies.

• DNorm37—This system uses a machine-learning approach
to compute similarities between mentions and concept
names.

Related corpora
A few projects have focused on annotation of disease mentions
in biomedical text:

• The National Center for Biotechnology Information (NCBI)
disease corpus38—comprises about 6900 disease mentions
from 793 PubMed abstracts.

• Arizona Disease Corpus39 (AZDC)—contains 2784 sen-
tences from the MEDLINE abstracts annotated with dis-
ease names and mapped to UMLS CUIs. It includes about
3228 total disease mentions, with 1202 unique diseases,
mapped to 686 concepts. The corpus comprises about 80 K
tokens.

• i2b2/VA corpus8—comprises discharge summaries from
various hospitals annotated with, among other things, medi-
cal problems as concepts. It includes a total of 394 training
reports, 477 test reports, and 877 de-identified, unlabeled
reports. This corpus does not provide a mapping of men-
tions to any standardized terminology/ontology.

• Corpus for Disease Names and Adverse Effects40 (DNAE)—
includes 400 MEDLINE abstracts generated using the
‘Disease OR Adverse Effect’ query and annotated for dis-
ease mentions mapped to UMLS CUIs, totaling 1428 disease
and 813 adverse effect annotations.

• Multi-source Integrated Platform for Answering Clinical
Questions4 (MiPACQ) corpus—comprises about 130 K
words of clinical narrative from Mayo Clinic, and is anno-
tated with various layers of syntactic and semantic informa-
tion as well as UMLS core semantic types such as Disorder,
Sign or Symptoms, Procedures, Medications, and Labs.

MATERIALS AND METHODS
In this section, we describe the dataset and the gold standard,
which are the bases for the evaluation conducted within the
CLEF/ShARe 2013 shared task.

Data
The ShARe corpus comprises annotations over de-identified
clinical reports from a US intensive care EMR repository (V 2.5
of the Multiparameter Intelligent Monitoring in Intensive Care
(MIMIC) II database).41 The corpus used for the CLEF/ShARe
2013 shared task consists of 298 discharge summaries, elec-
trocardiograms, echocardiograms, and radiology reports, cov-
ering a total of about 180 K words. All shared-task participants

were required to register, accept a Data Use Agreement (DUA),
and obtain a US human subjects training certificate.

Gold standard
Two professional coders (a healthcare professional who has
been trained to analyze clinical records and assign standard
codes using a classification system) trained for this task anno-
tated each clinical note in a double-blind manner, followed by
adjudication. The quality of the annotations was assessed
through inter-annotator agreement (IAA). Details of the IAA are
presented later in table 2.

The following are the salient aspects of the guidelines used
to annotate the data. The ShARe project guidelines relevant
to Task 1 are available at: https://physionet.org/works/
ShAReCLEFeHealth2013/files/Task1ShAReGuidelines2013.pdf
and https://sites.google.com/site/shareclefehealth/data. The
first site is password protected and requires users to obtain a
DUA because it also contains the data used for the evaluation.

• Annotations represent the most specific disorder span. For
example, small bowel obstruction is preferred over bowel
obstruction.

• A disorder mention is a concept in the SNOMED CT portion
of the Disorder semantic group.

• Negation and temporal modifiers are not considered part of
the disorder mention span.

• All disorder mentions are annotated—even the ones related
to a person other than the patient.

• Mentions of disorders that are coreferential/anaphoric are
also annotated.

The following are a few examples of disorder mentions from
the data.

• (E1) The patient was found to have left lower extremity
DVT.

Here, lower extremity DVT is marked as the disorder. It
corresponds to CUI C0340708 (preferred term: Deep vein
thrombosis of lower limb). The span DVT can be mapped to
CUI C0149871 (preferred term: Deep Vein Thrombosis), but
this mapping would be incorrect because it is part of a more
specific disorder in the sentence, namely, lower extremity
DVT.

• (E2) A tumor was found in the left ovary.

Here tumor. . .ovary is annotated as a disorder with a dis-
contiguous mention.

• (E3) The patient was admitted with low blood pressure.

Some disorders do not have a representation to a CUI as
part of the SNOMED CT within the UMLS. However, if the
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annotators deemed them as important, they annotated them as
CUI-less mentions. Here, low blood pressure is a finding that
is normalized as a CUI-less disorder.

We constructed the annotation guidelines to require that the
disorder be a reasonable synonym of the lexical description of
a SNOMED CT disorder. In a few instances, the disorders are
abbreviated or shortened in the clinical note. One example is
w/r/r, which is an abbreviation for the concepts wheezing (CUI
C0043144), rales (CUI C0034642), and ronchi (CUI
C0035508). This abbreviation is also sometimes written as
r/w/r and r/r/w. Another is gsw for ‘gunshot wound’ and tachy
for ‘tachycardia.’

The final gold standard comprises 11 167 disorder men-
tions split into training and test sets (table 1), which were
made available to the participating teams. The fraction of dis-
contiguous mentions is substantial at about 11%, which is sig-
nificant considering the fact that discontiguous mentions have
almost never been part of the annotation schema in most open
domain corpora. Only a few of the corpora in the biomedical lit-
erature domain exhibit this phenomenon. About 30% of the
mentions are CUI-less; that is, they lack a representation in the
SNOMED CT portion of the UMLS. One reason is the fact that
we do not annotate the UMLS semantic group findings with a
CUI, because this semantic group was found to be a noisy,
catch-all category, and attempts to consistently annotate
against it did not succeed in our preliminary studies. Another
reason for CUI-less annotations is that many terms in clinical
text still are not represented in standard vocabularies.

Inter-annotator agreement
Table2 shows the IAA statistics for the data. For the disorders
we measure, the agreement in terms of the F1 score as tradi-
tional agreement measures such as Cohen’s j and
Krippendorf’s a are not applicable for measuring agreement for
entity mention annotation. We computed agreements between
the two annotators as well as between each annotator and the
final adjudicated gold standard. The latter is to give a sense of
the fraction of corrections made in the adjudication process.
The strict criterion considers two mentions correct if they agree

in terms of the class and the exact string, whereas the relaxed
criterion considers overlapping strings of the same class as
correct. The reason for checking the class is as follows.
Although we only use the disorder mention in this task, the cor-
pus has been annotated with some other UMLS types as well
and therefore, in some instances, the second annotator assigns
a different UMLS type to the same character span in the text.
If exact boundaries are not taken into account, the IAA agree-
ment score is in the mid-90s.

For normalization to CUIs, we used accuracy to assess
agreement. This was so that we could compare it with the
same criteria used for evaluating system performance. For the
relaxed criterion, all overlapping disorder spans with the same
CUI were considered correct. For the strict criterion, only disor-
der spans with identical spans and the same CUI were consid-
ered correct.

Novelty of the ShARe corpus
As source text and annotation scheme, the ShARe corpus is
closest to the i2b2/VA 2010 and MiPACQ corpora. Some

Table 1: Distribution of disorder mentions across the training and test set according to the two crite-
ria—whether they map to a Concept Unique Identifier (CUI) and whether they are contiguous

Training Test

Total disorder mentions 5816 5351

CUI-less mentions 1639 (28.2%) 1750 (32.7%)

CUI-ed mentions 4177 (71.8%) 3601 (67.3%)

Contiguous mentions 5165 (88.8%) 4912 (91.8%)

Discontiguous mentions 651 (11.2%) 439 (8.2%)

Table 2: Inter-annotator (A1 and A2) and gold
standard (GS) agreement as F1 score for the
disorder mentions and their normalization to
the Unified Medical Language System
Concept Unique Identifier (UMLS CUI)

Disorder CUI

Relaxed Strict Relaxed Strict

F1 F1 Accuracy Accuracy

A1–A2 0.909 0.769 0.776 0.846

A1–GS 0.968 0.932 0.954 0.973

A2–GS 0.937 0.826 0.806 0.863
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notable differences exist: (i) in the i2b2 corpus, modifiers such
as determiners are included in the mention span; (ii) the i2b2
corpus does not contain discontiguous mentions; (iii) the i2b2
corpus does not provide UMLS semantic typing and normaliza-
tion to a CUI; and (iv) the MiPACQ corpus does provide UMLS
semantic typing but not normalization to a CUI. The i2b2 train-
ing corpus contains about 18 550 concepts. The MiPACQ cor-
pus includes about 4206 (14.74% of mentions in the corpus)
disorder mentions.

Some other corpora containing annotations of disorder
mentions are the NCBI, DNAE, and AZDC corpora. However,
they use the scholarly literature from Medline and PubMed as
the source text. In addition to marking the disease mentions,
the NCBI corpus also categorizes them into four subcategories.
The AZDC corpus annotates overlapping disease mentions in
case of coordination but does not map discontiguous spans.
For example, it annotates the phrase Duchenne and Becker
muscular dystrophy as two separate but overlapping disease
mentions—Duchenne and Becker muscular dystrophy and
Becker muscular dystrophy. The same phrase is marked in
whole as a Composite Mention in the NCBI corpus, whereas in
the ShARe corpus, it is marked as overlapping discontiguous
spans—Duchenne. . .muscular dystrophy and Becker mus-
cular dystrophy.

STUDY DESIGN
Task description
The ShARe corpus presents a novel opportunity to evaluate
performance on the tasks of identification of disorder mentions
and normalization to a standardized vocabulary. The 2013
ShARe/CLEF Evaluation Lab42 was composed of two parts:

• Task 1a—Identification of the text spans in the document
that represent disease mentions.

• Task 1b—Mapping the mention to the appropriate SNOMED
CT CUI in the UMLS (optional task).

In Tasks 1a and 1b, each participating team was permitted
to upload the outputs of up to two systems. Teams were al-
lowed to use additional annotations in their systems; systems
that used annotations outside of those provided were evaluated
separately. We provided the participants with a training set
with gold standard annotations. The participants had approxi-
mately 2 months from the date the training data were released
(February 15, 2013) to the date the test results had to be up-
loaded (April 24, 2013). The website to the ShARe/CLEF lab is
located at https://sites.google.com/site/shareclefehealth/

Evaluation
We used the following evaluation criteria:

• Task 1a—Correctness in identification of the character
spans of disorders.

The system performance was evaluated against the gold
standard using the F1 score of the precision and recall values.

There were two variations: (i) strict and (ii) relaxed. In the strict
case, a span is counted as correct if it is identical to the gold
standard span. In the relaxed case, a span overlapping the gold
standard span is also considered correct. The formulae for
computing these metrics are as follows:

where Dtp is the number of true positives disorder mentions,
Dfp is the number of false positive disorder mentions, and Dfn is
the number of false negative disorder mentions.

• Task 1b—Correctness in mapping disorders to SNOMED CT
codes.

We used accuracy as the performance measure for Task
1b. The reason we chose accuracy was in order to analyze the
performance at each of the two stages separately and not let
the performance in Task 1a potentially eclipse the performance
at the normalization stage. It was defined as follows:

where Dtp is the number of true positive disorder mentions with
identical spans as in the gold standard, Ncorrect isthe number of
correctly normalized disorder mentions, and Tg is the total
number of disorder mentions in the gold standard.

The relaxed accuracy only measures the ability to normalize
correct spans. Therefore, obtaining very high values for this
measure is possible by simply dropping any mention with a
low confidence span. We performed non-parametric statistical
significance tests through random shuffling.43

RESULTS
A total of 22 teams competed in Task 1a, and 16 of them also
participated in Task 1b. We received working notes from 15
teams describing the methods behind the systems. This task
was used as a course project at West Virginia University (WVU).
Six students submitted separate runs but wrote a single work-
ing note describing the details. More information on the teams
can be found in the task overview paper.42

System performance for Tasks 1a and 1b is detailed in
tables 3 and 4, respectively. Two different systems performed
best across the two subtasks. The best system for Task 1a
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Table 3: Evaluation for Task 1a

System ({ID}.{run}) Strict Relaxed

P R F1 P R F1

No additional annotations

(UTHealthCCB.A).2 0.800 0.706 0.750* 0.925 0.827 0.873

(UTHealthCCB.A).1 0.831 0.663 0.737* 0.954 0.774 0.854

NCBI.1 0.768 0.654 0.707* 0.910 0.796 0.849

NCBI.2 0.757 0.658 0.704* 0.904 0.805 0.852

CLEAR.2 0.764 0.624 0.687* 0.929 0.759 0.836

(Mayo.A).1 0.800 0.573 0.668* 0.936 0.680 0.787

(UCDCSI.A).1 0.745 0.587 0.656 0.922 0.758 0.832

CLEAR.1 0.755 0.573 0.651* 0.937 0.705 0.804

(Mayo.B).1 0.697 0.574 0.629* 0.939 0.766 0.844

CORAL.2 0.796 0.487 0.604 0.909 0.554 0.688

HealthLanguageLABS.1 0.686 0.539 0.604* 0.912 0.701 0.793

LIMSI.2 0.814 0.473 0.598* 0.964 0.563 0.711

LIMSI.1 0.805 0.466 0.590 0.962 0.560 0.708

(AEHRC.A).2 0.613 0.566 0.589* 0.886 0.785 0.833

(WVU.DGþ VJ).1 0.614 0.505 0.554* 0.885 0.731 0.801

(WVU.SSþ VJ).1 0.575 0.496 0.533 0.848 0.741 0.791

CORAL.1 0.584 0.446 0.505 0.942 0.601 0.734

NIL-UCM.2 0.617 0.426 0.504 0.809 0.558 0.660

KPSCMI.2 0.494 0.512 0.503* 0.680 0.687 0.684

NIL-UCM.1 0.621 0.416 0.498 0.812 0.543 0.651

KPSCMI.1 0.462 0.523 0.491* 0.651 0.712 0.680

(AEHRC.A).1 0.699 0.212 0.325* 0.903 0.275 0.422

(WVU.AJþ VJ).1 0.230 0.318 0.267* 0.788 0.814 0.801

UCDCSI.2 0.268 0.175 0.212* 0.512 0.339 0.408

SNUBME.2 0.191 0.137 0.160* 0.381 0.271 0.317

SNUBME.1 0.302 0.026 0.047 0.504 0.043 0.079

(WVU.FPþ VJ).1 0.024 0.446 0.046 0.088 0.997 0.161

Additional annotations

(UCSC.CWþ RA).2 0.732 0.621 0.672 0.883 0.742 0.806

(UCSC.CWþ RA).1 0.730 0.615 0.668* 0.887 0.739 0.806

RelAgent.2 0.651 0.494 0.562* 0.901 0.686 0.779

RelAgent.1 0.649 0.450 0.532 0.913 0.636 0.750

(WVU.ALþ VJ).1 0.492 0.558 0.523* 0.740 0.840 0.787

(THCIB.A).1 0.445 0.551 0.492* 0.720 0.713 0.716

(WVU.RKþ VJ.1 0.397 0.465 0.428 0.717 0.814 0.762

In the Strict F1 score column, * indicates the F1 of the system was significantly better than the one immediately below (random shuffling,
p<0.01). The .1 and .2 suffixes represent run number 1 and 2, respectively.

P, precision; R, recall.
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(UTHealthCCB.A) had an F1 score of 0.75 (0.80 precision, 0.71
recall); the best system for Task 1b (NCBI.2) had an accuracy
of 0.59.

The best-performing system by Tang et al44 combined
several resources: (i) systems—MetaMap, cTAKES; (ii) rich
features—Brown word clusters,45 terms from UMLS;

(iii) algorithms: Conditional Random Fields (CRF) and structured
Support Vector Machines (SVM), SVMhmm, term frequency-in-
verse document frequency (tf-idf); and (iv) feature representa-
tion—the most complicated version of the Inside-Outside-
Begin (IOB) representation (see 1d in the Discussion section).

Most of the participating systems employed hybrid
approaches by supplementing features to a machine-learning
algorithm, applying rules and gazetteers extracted from the
training data, and using other resources. Only three of the 14
systems were completely rule based. A total of 10 out of the
14 systems incorporated either Apache cTAKES or MetaMap in
their methods. Of these, four used both in conjunction and two
used them in disjunction. Of the 14 systems, seven used only
cTAKES and eight used only MetaMap. Online tables 1 and 2 in
the appendix summarize the participating teams and the tasks
for which they submitted outputs, along with the various strate-
gies for the selection of classifiers, feature sets, and represen-
tations. Columns 3 and 4 list the individual runs that were
submitted and what subtask they represent. Online table 3 in
the appendix lists all the participants along with the number of
runs they submitted for each subtask of Task 1.

DISCUSSION
At first sight, the best results of Task 1a (0.750) seem inferior
(by about 0.10 absolute F1 score) to the best reported in the
open domain and also some reported in the i2b2 2010 shared
task.8 In the case of the open domain, prior art has been re-
ported predominantly on newswire, and as such it is not di-
rectly comparable. More recent creations of more diverse
corpora have indicated that overall, named entity recognition
performance can vary considerably depending on the source of
the text.46 The comparison with the i2b2 2010 shared task cor-
pus is also not straightforward, because the ShARe corpus is
based on the UMLS as opposed to a more relaxed definition in
the i2b2 corpus. The annotation of discontiguous arguments in
the ShARe corpus further explains this discrepancy.

The participation by Xia and Zhong47 involved building a
baseline using cTAKES and MetaMap individually as well as in
combination. The authors found the latter approach is better
than the former, so each system seems to solve different as-
pects of the problem. Of the three rule-based systems, Fan
et al48 used a system based on OpenNLP and employed post-
processing to identify discontiguous spans; for the normaliza-
tion task, the authors utilized a simple list of frequency-ranked
CUIs from the training set. Ramanan et al49 built on a system
called Cocoa, which originally contained 30 rules. It was aug-
mented with 70 acronyms and abbreviations and 15 phrases
from the training data. The third rule-based system, that of
Wang and Akella,50 applied some post-processing rules gener-
ated from the frequency of occurrences of patterns in the train-
ing data, augmented with regular expressions to handle
discontiguous spans. They also created a blacklist of rules to
remove the false positives predicted by MetaMap.

Of the machine-learning systems, the most popular classi-
fiers were CRF and SVMs. They typically involved an IOB-style
tagger applied to Task 1a. Two systems, which were also the

Table 4: Evaluation for Task 1b

System ({ID}.{run}) Strict Relaxed

Accuracy Accuracy

No additional annotations

NCBI.2 0.589* 0.895

NCBI.1 0.587* 0.897

(Mayo.A).2 0.546* 0.860

(UTHealthCCB.A).1 0.514* 0.728

(UTHealthCCB.A).2 0.506 0.717

(Mayo.A).1 0.502* 0.870

KPSCMI.1 0.443* 0.865

CLEAR.2 0.440* 0.704

CORAL.2 0.439* 0.902

CORAL.1 0.410* 0.921

CLEAR.1 0.409* 0.713

NIL-UCM.2 0.362 0.850

NIL-UCM.1 0.362* 0.871

(AEHRC.A).2 0.313* 0.552

(WVU.SSþ VJ).1 0.309 0.622

(UCDCSI.B).1 0.299* 0.509

(WVU.DGþ VJ).1 0.241 0.477

(AEHRC.A).1 0.199* 0.939

(WVU.AJþ VJ).1 0.142 0.448

(WVU.FPþ VJ).1 0.112* 0.252

(UCDCSI.B).2 0.006 0.035

Additional annotations

(UCSC.CWþ RA).2 0.545* 0.878

(UCSC.CWþ RA).1 0.540* 0.879

(THCIB.A).1 0.470* 0.853

(WVU.ALþ VJ).1 0.349* 0.625

(WVU.RKþ VJ).1 0.247 0.531

In the Strict Accuracy column, * indicates the accuracy of the sys-
tem was significantly better than the one immediately below (random
shuffling, p<0.01). The .1 and .2 suffixes represent run number 1 and
2, respectively.
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two top performing systems—by Leaman et al51 and Tang
et al44—used some form of term frequency-inverse document
frequency (tf-idf)-based similarity.

One salient characteristic of the 2013 CLEF/ShARe task was
the presence of discontiguous mentions. The following are the
various discontinuous mention representations and/or tech-
niques used by the participating systems, from simple to more
complex:

• 1.Rule-based post-processing using stop-words, intermedi-
ate words from training data, and so on, using the standard
IOB or more complex variations. This technique used four
main approaches as illustrated in table 5:
a. IO representation—the simplest of the representation,

which uses only two classes: one for indicating the word
is inside an annotation span and the other used to indi-
cate otherwise.

b. IOB/IOE representation—a more standard form of repre-
sentation with B, E, I, and O representing Begin, End,
Inside, and Outside classes, respectively. IOB2/IOE2 is a
slightly different version of this representation, where B
and E are used for marking all begin or end tokens
rather than just those that immediately follow or precede
another class. The name IOB1 sometimes refers to the
IOB representation.

c. BEISTO representation—a slightly modified version of
IOB/IOE in which single tokens are tagged with an S,
and tokens between two discontiguous spans are
tagged with a T.

d. A set of B, I, O, DB, DI, HB, HI tags—none of the above
three representations explicitly models discontiguous ar-
guments that share the same head word. This modifica-
tion uses the standard IOB tags for contiguous disorder
mentions, but for discontiguous mentions, it adds four
more tags. These tags are variations of the B and I tags,
with either a D or an H prefix. H indicates that the word
or word sequence is the shared head, and D indicates
otherwise. This approach was the most comprehensive
one for this task and was implemented by the best-per-
forming system.

• 2.Training classifiers for ‘discontiguous’ relations by Patrick
et al.52 This strategy has an underlying assumption of only
one discontiguous mention (without a shared head) in a
sentence.

• 3.Incorporating information from semantic role labels and
relation classifiers as in Gung.53 Here the discontiguous
mentions are split into separate mentions, and then once
the IOB tagging is complete, the discontiguous cases are
identified based on information from semantic role labeling
and other relations (eg, LocationOf).
Systems that did not encode explicitly discontiguous spans

tried to recover them using some post processing. All except
the Tang et al system ignored the discontiguous spans with
shared heads, because they are a very small fraction of the
data. Machine-learning systems that do not particularly apply a
formulation for discontiguous spans do not seem to perform
much differently than the ones with heuristic post-processing.
Gung found that utilizing a classifier-based approach to recover
discontiguous spans with LibSVM and features representing re-
lation information from cTAKES4 and semantic role information
from ClearNLP,54 gave a 2–3 points absolute improvement on
the F1 scores. Choosing the right input encoding for the learn-
ing algorithms can be difficult, and one could apply techniques
such as hill climbing. The utilization of error-correcting codes55

has also been shown to improve performance. None of the sys-
tems in this shared task resorted to either technique. For a
more thorough analysis of the encodings, the reader is referred
to Loper.56

Another interesting observation by Leaman et al51 was that
allowing the annotators to select a discontiguous span that
best represents the most specific disease/disorder has possibly
had the effect of lowering the amount of term variance in the
ShARe corpus with respect to that observed in the NCBI

Table 5: Instantiations of the four Inside-
Outside-Begin encoding variations for three
sentences

IO IOB IOB2 BIESTO B, I, O, DB,
DI, HB, HI

The O O O O O

aortic I I B B DB

root I I I I DI

and O O O O O

ascending O O O B DB

aorta O O O I DI

are O O O T O

moderately O O O T O

dilated I I B E HB

. O O O O O

The O O O O O

left I I B B DB

atrium I I I I DI

is O O O T O

moderately O O O T O

dilated I I B E DB

. O O O O O

No O O O O O

pain I I B S B

. O O O O O

The words that are part of the disorder mention are in bold along
with the respective encodings.
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disease corpus. So although discontiguous spans tend to in-
crease the task complexity, they seem to capture the phenom-
ena more precisely.

MetaMap has shown very high precision but low recall,
which is one reason the normalization accuracy is in the 90s
for the relaxed case for some systems incorporating it. A com-
bination of MetaMap with CRF or SVM tagging, or disease men-
tions output by cTAKES improves recall without a significant
drop in precision, making the combination work much better.
As expected, rule-based systems using relatively similar re-
sources tend to have more variation among their results. For
example, the reason for an 8-point difference between the per-
formance of the Zuccon et al57 system and the Xia and Zhong
system in the relaxed case, which both employed MetaMap, is
unclear. The inclusion of simple nouns when the annotators ex-
pected a compound noun significantly reduced YTEX precision.
As a result, YTEX performed poorly relative to MetaMap on the
strict task. On the other hand, MetaMap tended to include addi-
tional text (mostly prepositions and modifiers) that the gold
standard did not.

Leaman et al51 used the 2012AB version of UMLS and ob-
tained the best normalization performance. In addition, the
boundary revision approach as a feedback from the normaliza-
tion system (DNorm) helped their performance. Tokens were
added or removed from the left and added to the right (not re-
moved, because doing so tends to delete head words) only if
the score improves over a certain threshold. For the MetaMap
baseline, the authors fed sentence chunks to MetaMap and re-
ceived back various terms and their normalized CUIs. These
terms were then post-processed and larger overlapping terms
were selected. Sometimes MetaMap provides multiple CUIs for
the same term, for example, ‘heart failure.’ In such cases, the
word sense disambiguation tool built into MetaMap was used
to select the best match. On a development subset using just
MetaMap, the authors obtained a strict F1 score of 0.44,
whereas DNorm, with boundary revisions, obtained a score of
0.66—an increase of almost 22 points.

Liu et al58 performed an experiment with features based on
semantic vectors trained on the Mayo Clinic corpus versus
others trained on the MIMIC corpus. Surprisingly, the first ap-
proach achieved better performance.

Recently, YTEX has improved on the cTAKES dictionary
lookup algorithm by adding a sense disambiguation component
that allows the most appropriate concept mapping given the
context. It uses the adapted Lesk algorithm59 to compute se-
mantic similarity over a context window, whereas MetaMap im-
plements a series of weighted heuristics to select the
appropriate candidate. Osborne et al60 compare the two sys-
tems in their submissions. With MetaMap, they report a score
of 0.42, which is similar to that of Leaman et al,51 but on the
entire training set.

The 2013 CLEF/ShARe task was a class final project at
WVU, and various students teamed to put systems together.
They submitted a total of four runs, which span a wide range
of performance. These systems used CRF classifiers from the
FACTORIE toolkit.61,62 All these systems were outlined in a

single overview paper. Given the compressed nature of the de-
scription, it is not possible to speculate why their performance
spans over such a wide range.

Given the variety of systems and approaches, a thorough er-
ror analysis was out of the scope of this paper. Instead, we
present a synthesis of the main types of errors. The following
are the frequent categories of errors for Task 1a:

1. False negatives—The recall for these systems is signifi-
cantly lower than their precision in both the strict and re-
laxed settings. The difference ranges from 0.10 to 0.18 and
is roughly the same across the two evaluation criteria. The
fact that 1287 out of a total of 5815 disorder instances in
the test data are not seen in the training data partly
explains the impact on recall (eg, ‘hyperpigmentation,’
‘elevated alkaline phosphatase,’ ‘cystic collection’).

2. Boundary identification—The other significant contributor
to errors was the exact disorder boundary identification.
The fact that the F1 measure for the relaxed scores is about
0.11–0.15 points shows that identifying the exact bound-
aries has an impact on the score. These also include cases
of discontiguous disorders in which only one of the spans
was identified correctly.

Because Task 1b is directly dependent on the performance
on Task 1a, the above errors directly affect its performance.
When boundaries were not correctly identified, the likelihood of
mapping to a different (more or less specific) CUI increased
(eg, discovering DVT instead of lower extremity DVT prompted
a wrong CUI mapping).

Interestingly, the higher-performing systems are also the
ones with the most intricate set of features and multiple layers
of possibly stacked learners. The question arises whether one
needs such complex machinery to solve this problem, or
whether the excess machinery generates models that overfit
the corpus.

In order to get a better idea of the performance ceiling, we
had permitted systems to submit runs where they were al-
lowed to use additional data. A few systems ran tasks using
additional data. Not all these additional data could be classified
as being from external sources. For example, RelAgent used a
custom-made dictionary of abbreviations from the training data
that we had provided. THCIB considered the use of MetaMap
and cTAKES as use of external data.

CONCLUSION
We presented the results from the 2013 CLEF/ShARe shared
task on disorder entity identification and normalization. The
task evaluated the state of the art of this critical component not
previously evaluated on clinical narrative. We observed the use
of many interesting variations of existing and novel resources
among the system submissions. The majority of the participat-
ing systems applied a hybrid machine-learning and rule-based
combination. Unfortunately, not all participants submitted
working notes, but most of the top-performing systems did
submit them, and we could analyze their performance in more
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detail. Named entity tagging in the clinical domain is a hard
task, and the presence of discontiguous spans was a challeng-
ing addition to the task. We witnessed the development of
some novel approaches—especially the novel variations of the
transformation-based learning approaches. Although the dis-
contiguous spans make the span identification task harder,
they also seem to allow for a better normalization.
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