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Crown of thorns starfish (COTS, Acanthaster sp.) are notorious for their destructive con-
sumption of coral that decimates tropical reefs, an attribute unique among tropical
marine invertebrates. Their populations can rapidly increase from 0–1 COTS ha−1 to more
than 10–1000 COTS ha−1 in short order causing a drastic change to benthic communities
and reducing the functional and species diversity of coral reef ecosystems. Population
outbreaks were first identified to be a significant threat to coral reefs in the 1960s. Since
then, they have become one of the leading causes of coral loss along with coral bleach-
ing. Decades of research and significant investment in Australia and elsewhere, particu-
larly Japan, have been directed towards identifying, understanding, and managing the
potential causes of outbreaks and designing population control methods. Despite this,
the drivers of outbreaks remain elusive. What is becoming increasingly clear is that the
success of COTS is tied to their inherent biological traits, especially in early life. Survival
of larval and juvenile COTS is likely to be enhanced by their dietary flexibility and resili-
ence to variable food conditions as well as their phenotypically plastic growth dynamics,
all magnified by the extreme reproductive potential of COTS. These traits enable COTS to
capitalise on anthropogenic disturbances to reef systems as well as endure less favour-
able conditions.

Introduction: the crown of thorns problem
Crown of thorns starfish (COTS, Acanthaster sp.) are endemic to tropical coral reefs. After a plank-
tonic larval phase, they begin their benthic life as herbivores and are best known for their subsequent
corallivorous stage which begins when the juveniles reach a size of >8 mm diameter (Figure 1). The
adults can span up to a metre in diameter, have a flexible, multiarmed body (10–20 arms) and an
eversible stomach that wraps around the coral to consume them [1]. In one year, an individual COTS
is estimated to consume as much as 12 m2 of coral tissue compared with 1.0 m2 yr−1 for the other
corallivorous sea star Culcita novaeguineae [2, 3]. The fast growth and large body size of COTS, rapid
consumption of coral and their dietary flexibility as well as their ability to cover a large spatial extent
of reefs make these sea stars the most destructive coral predator.
Corals are the backbone of tropical reefs. With global warming causing back-to-back bleaching

events and more intense and severe tropical cyclones [4, 5], coral reefs are in peril. This negative tra-
jectory is exacerbated by the mortality caused by COTS outbreaks which increases the time needed for
reefs to recover [6, 7], especially as COTS can consume new coral recruits [8] and selectively feed on
Acropora species that are susceptible to bleaching [9]. If reefs are not able to recover, they can be lost
in a process called a ‘phase shift’ where the ecosystem shifts to a new state, a seascape dominated by
algae, soft corals and sponges covering reef rubble [10]. Reduced coral cover after an outbreak has
ecosystem-wide consequences. The loss of branching corals and the complex three-dimensional
habitat that they create is particularly devastating for associated species that do not have the capacity
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to find alternative habitat, as well as for a diversity of obligate coral feeding species. COTS outbreaks have been
directly linked to declines in damselfish [11], and collapse of butterflyfish populations [12] in parallel with
increased abundance of herbivorous fishes [13, 14]. Additionally, selective feeding on preferred coral species by
COTS can significantly alter coral assemblages on reefs [15, 16].
COTS are best known for their boom-bust population dynamics with extreme fluctuations in adult abundance

followed by population collapse as coral food levels decrease leaving behind an expanse of dead coral [17]. As a
natural boom-and-bust species, outbreaks are likely to be an inherent feature of COTS under natural conditions
and have been occurring for thousands of years [18]. Since the 1960’s, the frequency of outbreaks on the Great
Barrier Reef (GBR) has increased from once in every 50–80 years to occurring at ∼15 year intervals [19, 20].
Why outbreaks have become more frequent is not known but may be linked to anthropogenic perturbation(s)
[21, 22]. Regardless of the causes, the success of this species is underpinned by its highly resilient and oppor-
tunistic nature, particularly of the early life history stages.

Potential drivers of outbreaks
Several hypotheses have been proposed to explain the drivers of population outbreaks. The terrestrial run-off
hypothesis has received the most traction [22]. Initially proposed by Charles Birkland in the 1980s [23], this
hypothesis posits that temporal pulses of enhanced larval survival and settlement are driven by an increase in

Figure 1. The life cycle of a crown of thorns starfish.

(A) an unfertilised egg, (B) the eight-cell stage, (C) a blastula, (D) a gastrula with the archenteron, (E) a feeding bipinnaria with

fully developed digestive tract (photo Dr Jonathan Allen) (F), a brachiolaria with anterior arms used for benthic settlement

(photo Dr. Paulina Selvakumaraswamy) (G) a newly settled juvenile, (H) the older herbivorous stage juvenile and, finally, (I) the

corallivorous stage.
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their phytoplankton food in blooms generated by eutrophic terrestrial runoff following high rainfall [19, 23, 24].
Outbreaks in isolated atolls and reefs far from a coastline not exposed to anthropogenic runoff are suggested to
be caused by nutrient input from bird guano or upwelling that result in increased phytoplankton to support
COTS larvae [24, 25]. It would be of interest compare these different bloom scenarios and their influence on
COTS populations.
Decreased abundance of COTS predators is also likely to contribute to population outbreaks. The predator

removal hypothesis was originally suggested by Endean in the 1960s [26] and has been gaining support over
the past 15 years. Extensive harvesting of the giant triton snail (Charonia tritonis) in the 1960s [27] and later
fishes [28, 29] that prey on COTS has been followed by outbreaks occurring at shorter time intervals [19].
Protected (no-take) GBR marine park areas have lower numbers of COTS and less frequent outbreaks com-
pared with fished areas [29, 30]. In models of coral reef dynamics, no-take areas are less susceptible to out-
breaks [31]. COTS with sublethal injuries are also more frequent in areas closed to fishing [32, 33]. The
predator removal hypothesis is also supported by the morphological and behavioural adaptions of COTS that
are likely to have evolved to counter predation including their cryptic colouration, their cover of venomous
spines [34], toxic eggs [35], the avoidance responses of larvae and adults to predator cues [36, 37] and their
ability to curl into a spiny ball when disturbed to protect their soft ventral tissue [38, 39]. Reefs with a more
intact fish guild, more large predatory fishes and resilient trophic dynamics have higher ecosystem health and
would be expected to have a greater resistance to COTS outbreaks [40].
While links between outbreaks and these proposed mechanisms are often tenuous and have been a subject of

debate [22, 41, 42], they are used to inform COTS management strategies [43]. It is likely that both enhanced
larval survival and predator removal contribute to COTS success. Additionally, post-settlement processes [44–46]
and prevailing oceanic currents [42] can lead to rapid population growth in a single spawning year or the accu-
mulation of sea stars over multiple spawning years [22, 47, 48]. The early life history stages of broadcast spawning
marine invertebrates are vulnerable population mortality bottlenecks [49, 50]. The disproportionate success of
early life history stages is a feature of echinoderms that have boom-and-bust population dynamics [17]. Thus, the
biology of the larval and juvenile stage of COTS is critical to our understanding of the outbreak phenomenon.

Why are COTS so successful?
Reproduction in COTS involves synchronous spawning in summer (December–January in the GBR) [51, 52].
COTS are highly fecund, releasing up to 100 million eggs per individual female suggesting that outbreaks can
be seeded even at low population densities [53]. Although they are dioecious, there is evidence of hermaphro-
ditism indicating potential for self-fertilisation [54]. Aggregation by adults during spawning [55] would increase
the chances of syngamy and promote genetic diversity [56, 57]. The eggs of COTS at ∼220 mm diameter are
unusually large for a sea star with planktotrophic development [58]. Larger eggs benefit fertilisation by provid-
ing a larger target size for sperm [59]. These eggs also have a comparatively higher nutritional content for off-
spring that may increase the facultative feeding period of the larvae during which an exogenous food source
(i.e. phytoplankton) is not needed [60]. This reduces the dependency of the very early vulnerable larval stage
compared with species that have smaller eggs [61, 62].
The extreme fecundity of COTS together with dense adult populations can generate plumes of larvae in the

plankton [63]. Larvae are proposed to be retained near natal reefs by prevailing oceanic conditions [42]. In the
Northern GBR this is suggested to occur between Cairns and Townsville in an area known as the ‘initiation
box’ of COTS outbreaks [22]. Over their 2–3 week planktonic larval duration, COTS larvae are also likely to
disperse widely in currents between reefs and seed COTS populations far from the source reef. This is indicated
by the detection of COTS environmental-DNA across a 350 km expanse of the GBR after spawning, regardless
of proximity to adult populations [63]. Notably, population genetics show that outbreaks in isolated islands
(Hawaii and Moorea) and archipelagos across the central Pacific are independent of each other with low larval
exchange across open ocean [64].
With respect to their feeding biology, COTS larvae are highly plastic, reflecting the phenotypic plasticity trait

well known for echinoderm larvae [65, 66]. The larvae can adjust their morphology with respect to food levels.
In low food conditions, COTS larvae increase the size of their feeding structures (ciliated bands) to increase
food capture [67]. This observation, together with the results of in situ experiments showing that COTS larvae
can develop well in naturally low nutrient reef conditions [68, 69], prompted the larval-resilience hypoth-
esis [67]. High survival of COTS larvae has been reported in low to moderate chlorophyll-a concentrations
(0.5–5 mg L−1) as a proxy of phytoplankton food levels in the environment [19, 70, 71]. Values within this
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range (0.6–1.0 μg L−1) are common in coastal waters of the GBR and in areas susceptible to outbreaks during
the wet season when COTS larvae are in the plankton [24, 72]. The larvae also have a flexible diet including
dissolved organic matter [73, 74] as well as potentially having phototrophic bacterial symbionts [75]. Larval
plasticity is likely to increase survivorship in variable food conditions and allow them to quickly avail of
enhanced food levels and flourish in favourable conditions.
As for many echinoderms [76, 77], COTS are able to reproduce asexually by larval cloning [78]. Cloning,

along with the possibility for self-fertilization, has been detected in genetic analyses of COTS populations in
Japan and the GBR and in models of these data [79–81]. The bipinnaria larval stage of COTS (Figure 1E)
clone through bisection of the body into anterior and posterior portions which then regenerate to make a com-
plete, fully functional larva within days of separation (Figure 2). Cloning has been suggested to increase in
optimal nutrient conditions (1.7 μg chl-a L−1) compared with low nutrient conditions (0.17 μg chl-a L−1)[78].
Cloning also occurs in brachiolaria larvae (Figure 1D) by budding a new larva from the posterior end as seen
in field caught larvae (see budding larvae in Figure 3 [82]). It is not yet known if a single larvae can clone mul-
tiple times. For other sea star species, it has been suggested that some larvae may be perpetual cloners and
remain in the plankton as ‘eternal’ larvae for extended periods of time and disperse widely without settling [83].
This ability may amplify their population numbers, increase their planktonic larval duration and dispersal as
well as reduce their visibility to predators such as planktivorous fish [28].
Settling larvae select a suitable substrate in the reef matrix with a preference for crustose coralline algae

(CCA). Larvae have also been found to be attracted to conspecific cues and the distribution of larvae around
reefs in models and patterns of larval settlement across the GBR suggest that COTS larvae may be attracted to
areas with adult populations thereby increasing population replenishment [2, 36, 84]. Additionally, well-fed
larvae can settle spontaneously on biofilms in the absence of a coralline algal cue [72]. The potential for plasti-
city in settlement behaviour at the competent larval stage is typical of echinoderms [85, 86] and may increase
the distribution of newly settled COTS in the reef infrastructure.
Two days after settlement, COTS larvae metamorphose into five-armed algae-eating juveniles, 0.3–0.7 mm in

diameter [87, 88] (Figure 1G). As the juveniles grow, they add arms and spines (Figure 1H). Herbivorous

Figure 2. Cloning crown of thorns starfish larvae.

Partially regenerated head (A) and body (C) clone and the regenerated larvae (B and D) after four days. Scale bar = 200 mm.
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juveniles are able to float in water tension, a possible and unprecedented avenue for dispersal during the
benthic stage [89]. In nature, juveniles are most commonly found on CCA, their known settlement substrate
and food source [90–92], as well as articulated and other growth forms of coralline algae [93]. Juvenile growth
is diet-dependent with faster growth on CCA compared with articulated coralline algae (eg. Amphiroa sp.) [89],
likely due to differences in digestibility and nutritional quality [94]. Although their growth was minimal over
10 months (1–3 mm diameter), juveniles can also survive on biofilm, a potentially ubiquitous food source in
marine environments [89]. Once offered CCA, these juveniles resume their growth, attesting to their ability to
withstand low food levels [89]. The dietary flexibility of juvenile COTS reduces their vulnerability to food
scarcity when traversing the reef rubble matrix in search of coral (50 m on Suva reef, Fiji) [90].
Juveniles emerge from the rubble to start preying on coral as early as 4–6 months of age (8–18 mm diameter)

[44, 95]. Corallivorous juveniles and adults consume a range of coral species as well as filamentous and foliose
algae when coral is scarce, further demonstrating the dietary resilience of COTS [16, 96]. As they grow, their
visual spatial resolution used to recognise suitable coral reef habitat and food increases [97]. During the first 40
days of the diet switch to coral, juveniles may be damaged or killed by coral tentacles [95, 98]. Injured juveniles
are able to regenerate lost tissue, as typical of echinoderms [99, 100], with a predicted recovery time for damaged
arms of ∼3.5 months [98]. Despite coral stings, the juveniles persevere in their quest for coral prey although some
revert to CCA during the regeneration-recovery period. Despite the potential fitness cost of sublethal injuries
[101], 90% of juveniles in field surveys had arm damage showing their ability to survive [102].
The ability of juvenile COTS to exhibit rapid growth compared with other sympatric sea stars is likely to

increase recruitment into adult populations and lead to the sudden appearance of outbreaks [1]. In a series of
laboratory studies, algae-eating juvenile COTS reached a diameter of 4.5 mm in ∼90 days, ∼2.8- and 1.5-fold
faster than those of Linckia laevigata (surface grazer) and Culcita novaeguineae (corallivore), respectively
[88, 103, 104]. Once they transition to coral, the growth of COTS accelerates until they reach reproductive
maturity (>2 years, 200 mm diameter) [95, 105]. The comparatively fast growth rate of COTS may be due to
somatic growth that does not involve production of an energetically costly heavily calcified body wall as seen in
most tropical sea stars [106]. Additionally, the disproportionately large size of their eversible stomach relative
to their body diameter enhances food intake (COTS: 50%, L. laevigata: 8%, C. noveaguineae: 40%) [107, 108].
As juveniles become less susceptible to lethal predation with growth [46, 109, 110], the rapid growth of COTS
is likely to increase post-settlement survival. This size-related refuge from predators is reflected in the change
to foraging more openly during the day from cryptic, nocturnal foraging as juveniles [111, 112].

Figure 3. Herbivorous crown of thorns starfish aged ∼1 year (left) and 6.5 years (right).

Scale bar = 10 mm.
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If coral is not readily available, juveniles can pause their growth at ∼18 mm diameter and have the potential to
survive on a diet of algae for years (Figure 3). This extended herbivorous phase has been observed in the labora-
tory setting [44, 105, 113] and modelled to occur in the field [114]. In the laboratory, a prolonged herbivorous
phase of six year had no impact on their continued growth on a coral diet [44]. While smaller COTS are likely to
have increased risk of predation [109], juveniles <10–20 mm diameter have also been found at least one year after
settlement in the GBR [115]. The capacity of COTS to have an indeterminate herbivorous juvenile stage prompted
the juveniles-in-waiting hypothesis, positing that juveniles can accumulate in the reef rubble over spawning years
before seeding an outbreak of adults [44]. An extended juvenile stage is not uncommon among predatory sea star
populations in nature and has been found for Asterias rubens with juveniles pausing growth as they wait for
increased food abundance and reduced competition from adults [116, 117] and Marthasterias glacialis with juve-
niles that remained in their nursery habitat over six years [118]. As well as diet-dependent growth and sublethal
injuries from coral stings, a number of factors may influence the timing of the herbivory-corallivory ontogenetic
switch in COTS including the proximity of coral to the nursery habitat [90], low coral abundance due to a
cyclone or bleaching, or competition from adults, and predation pressure.

Crown of thorns starfish will remain a concern and burden
COTS are one of the most extensively studied sea stars and remain an ongoing research priority in many trop-
ical regions [22, 25, 81, 119–121]. Identifying the key traits and highly adaptive biology of COTS across life
stages such as their recently recognised phenotypic plasticity is crucial to understand the outbreak phenom-
enon. COTS appear to be an extreme expression of the plasticity characteristic of echinoderms within a single
species. Thus, it is unlikely that outbreaks can be prevented, but perhaps can be curbed if the factors that influ-
ence their survival are better understood and addressed (Figure 4).

Figure 4. Processes and traits that are likely to have a positive (+) or negative (−) effect on the success of crown of

thorns starfish.

Symbols sourced from Integration and Application Network, University of Maryland Center for Environmental Science (https://

ian.umces.edu/media-library/).
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Over the past 10 years, substantial financial investment has been made into COTS control by the Australian
Government with AUD$44.9 million in 2012 and AUD$57.8 million in 2018 directed towards research, water
quality management and killing COTS [122]. Of this, AUD$21.7 million in 2012 and AUD$23.2 million in 2018
have been invested into manual culling programs [123]. Since the 1950s, widely implemented programs across the
Indo-Pacific have removed over 18 million COTS [43, 122]. In Australia, the lethal injection method is now used
to increase the efficiency of COTS removal (Figure 5). Without a means to eradicate the causes of outbreaks,
culling is the only tool available to directly lower COTS densities and reduce coral loss during an active outbreak,
particularly for priority reefs used by the tourism industry [20, 30, 57]. These programs can benefit from early
detection of COTS and warning systems of outbreaks through predictive modelling of at-risk reefs [20], targeted
collections of juveniles [115] and enhanced surveillance which, in Australia, involves SCUBA and manta tows
surveys undertaken by COTS control teams [124, 125]. Recent development of environmental DNA can also be
used to detect the presence of adult starfish in the water surrounding outbreaking reefs [126, 127].
Identifying proactive measures to prevent or minimise outbreaks would be the most effective way of protect-

ing coral reefs and increasing the success of coral restoration programs. Larval success may be curtailed by a
reduction in agricultural runoff and thereby a reduction in phytoplankton food levels [128], although the link
between runoff and outbreaks remains equivocal. Stronger evidence is emerging on the importance of COTS pre-
dators in reducing outbreaks [29, 31, 40, 122]. Additionally, reef degradation from anthropogenic activities may
increase the susceptibility of reefs to outbreaks. The degree of degradation has been positively correlated with
COTS abundance in chronic outbreak populations in Japan [129]. Destructive and unmanaged fishing practises,
pollution, sedimentation and erosion from marine and terrestrial development and unregulated tourism reduce
the functional and species diversity of coral reefs [129, 130]. Coral loss reduces habitat for fishes that prey on
the benthic stage of COTS as well as planktivorous fishes that, alongside coral polyps themselves, create a ‘wall

Figure 5. Crown of thorns starfish culling by lethal injection, Great Barrier Reef, Australia.

Photo: Matthew Curnock.
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of mouths’ that prey on COTS larvae [28, 88, 131] and can substantially reduce the quantity of zooplankton
entering a reef [132]. Furthermore, increased rubble habitat in damaged areas may promote the settlement and
survival of early juvenile COTS [2].
The threat of COTS may be further exacerbated by climate change, which is by far the biggest threat to coral

reefs. In contrast with the sensitivity of corals to ocean warming, COTS larvae and the herbivorous and coralli-
vorous juvenile stages have enhanced growth in warmer temperatures [133–137]. The juveniles are also robust
to ocean acidification [133, 134]. However, larval development is negatively impacted by higher temperatures
(above +2°C) and in combination with reduced pH [135, 136]. Adults acclimated to climate change conditions
(+2°C, −0.35 pH), produce smaller eggs although with little impact on fertilisation success [121]. The impact of
parental acclimation on offspring development of COTS is not known and has been shown to be species-
specific with both positive and negative effects across echinoderms [138]. Furthermore, coral consumption by
COTS may increase as the ocean warms and during heatwaves as their metabolism increases with temperature
up to 31°C (+2°C) [133, 139]. COTS outbreaks and the increased intensity of heatwaves, cyclones and coral
bleaching cause widespread coral damage [4]. However, coral loss also reduces the availability of coral prey for
COTS. Without coral, COTS outbreaks will not occur.

Summary
• Outbreaks of COTS are an ongoing threat to an already imperilled Great Barrier Reef and

other tropical reefs throughout the Indo-Pacific.

• The extreme success of this species is likely to be a combination of its highly resilient and
opportunistic traits and anthropogenic activities that advantage COTS.

• While killing COTS is the only option available to management in the effort to reduce coral
loss, this approach is unlikely to prevent future outbreaks due to the inherent biology and high
fecundity of COTS.

• Taking a precautionary and proactive approach to COTS management by understanding and
addressing the factors that are likely to increase COTS survival will benefit coral reef ecosys-
tem health.

• Regardless of addressing the causes of COTS outbreaks, immediate action against climate
change is crucial to curb the global decline in coral reefs.
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