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Candidate gene mapping identifies 
genomic variations in the fire 
blight susceptibility genes HIPM 
and DIPM across the Malus 
germplasm
Richard Tegtmeier1,3, Valerio Pompili2,3, Jugpreet Singh1, Diego Micheletti2, 
Katchen Julliany Pereira Silva1, Mickael Malnoy2* & Awais Khan1*

Development of apple (Malus domestica) cultivars resistant to fire blight, a devastating bacterial 
disease caused by Erwinia amylovora, is a priority for apple breeding programs. Towards this goal, the 
inactivation of members of the HIPM and DIPM gene families with a role in fire blight susceptibility 
(S genes) can help achieve sustainable tolerance. We have investigated the genomic diversity of 
HIPM and DIPM genes in Malus germplasm collections and used a candidate gene-based association 
mapping approach to identify SNPs (single nucleotide polymorphisms) with significant associations 
to fire blight susceptibility. A total of 87 unique SNP variants were identified in HIPM and DIPM genes 
across 93 Malus accessions. Thirty SNPs showed significant associations (p < 0.05) with fire blight 
susceptibility traits, while two of these SNPs showed highly significant (p < 0.001) associations across 
two different years. This research has provided knowledge about genetic diversity in fire blight S 
genes in diverse apple accessions and identified candidate HIPM and DIPM alleles that could be used 
to develop apple cultivars with decreased fire blight susceptibility via marker-assisted breeding or 
biotechnological approaches.

Breeding perennial trees and woody crops is a challenge due to their long juvenile periods, slow growth rates, 
and high heterozygosity. A combination of next-generation sequencing and marker-assisted selection (MAS) can 
overcome many of these challenges and reduce the time needed for each selection cycle1–6. Given the economic 
impact, fruit quality and, more recently, disease resistance have been the major focus for apple breeders. The 
introgression of disease resistance into commercially preferred backgrounds is often problematic, given that the 
majority of known major effect resistance loci exist within wild species7. Wild Malus species often have poor fruit 
quality and it can take up to 25–30 years to fully recover fruit quality and eliminate linkage drag of undesirable 
alleles in a Malus domestica background8. Self-incompatibility and high heterozygosity also make breeding out-
side of M. domestica not feasible in many cases9. Thus, within this context, developing sequence-based markers 
and using them in targeted MAS can greatly reduce the length of breeding schemes.

The molecular markers linked with traits can be identified using bi-parental QTL (Quantitative Trait Loci) 
mapping, genome-wide (GWAS) or candidate gene-based association mapping approaches. The GWAS approach 
is based on the use of several thousand markers evenly spaced across the whole genome that can be implemented 
to identify QTLs. Candidate gene-based association mapping uses molecular markers from genes with known 
trait-associated functions from literature to identify the genetic variants that most affect the phenotype. In Malus, 
this approach has been used to define impacts on the depolymerization of pectin and changes in the resulting 
fruit texture of variants in the Md-PG1 gene identified by resequencing10. These gene-based association studies 
highlight the importance of identifying specific markers for trait-specific MAS.
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Fire blight, caused by the gram-negative bacterium Erwinia amylovora, has a devastating economic impact on 
apple, pear, and quince production worldwide6,7,11,12. The limited resistance to fire blight in modern commercial 
apple cultivars has led to increased reliance on antibiotics, growth inhibitors, and crop insurance claims13. In dif-
ferent Malus species, several major and minor effect fire blight resistance QTLs have been identified. For example, 
major resistance QTLs were found in M. robusta, M. floribunda, M. ‘Evereste’, and M. fusca on linkage groups 
3, 12, 12, and 10, respectively14–16. The challenges of conventional apple breeding make these QTLs most useful 
for marker-assisted breeding or genome editing. Studies have also identified minor to moderate-effect fire blight 
resistance loci within M. domestica. For example, QTLs have been identified on ‘Fiesta’, ‘Prima’, and ‘Discovery’ 
on linkage group 7, and in ‘coop16’ and ‘coop17’ on linkage groups 2, 6, and 15, respectively17–19. Due to the 
rapid rate of evolution of E. amylovora, these resistance QTLs, particularly major effect QTLs, can be overcome 
rather quickly20,21. For example, a non-synonymous SNP in the AvrRpt2EA effector gene could overcome major 
fire blight resistance gene FB_MR5, derived from an accession of Malus robusta20,21.

Susceptibility (S) genes can provide a broad-spectrum and more durable alternative to narrow-spectrum and 
pathogen-specific resistance genes to develop cultivars with reduced disease susceptibility. Resistance genes typi-
cally recognize specific pathogen-encoded avirulence (Avr) proteins to induce the resistance reponse. Whereas, 
S genes facilitate host recognition and compatibility by encoding negative regulators of immune signaling, as 
well as providing for successful pathogen penetration, establishment and proliferation, therefore, reducing their 
activity can lead to a more resistant plant22. The use of susceptibility genes in breeding biotic stressors has been 
relatively limited. X5, Xa13, and eIF4G in rice as well as eIF4E in barley, pepper, melon, pea, and lettuce are a few 
S genes that have been targets of breeding efforts23–32. Susceptibility genes are well suited for genome editing, as 
targeted knockouts via CRISPR/Cas9 or TALENs can subtract the genetic contribution of S genes, decreasing 
the disease susceptibility of the plant. A knockout of the grapefruit S gene CsLOB via CRISPR/Cas9 resulted in 
reduced infection by the citrus canker pathogen (Xanthomonas citri ssp.) compared to the wild type (Duncan 
grapefruit; Citrus × paradisi)33. For Malus, two susceptibility genes, HIPM and DIPMs (DIPM1-4) have been 
identified as key regulators of establishment and proliferation of E. amylovora34,35. HIPM (HrpN-interacting 
protein from Malus) interacts with the primary class of effector proteins (HrpN) in E. amylovora that initiate 
infection, the production of reactive oxygen species, and the induction of hypersensitive response in the host36–38. 
HIPM is a transmembrane protein of 60 amino acids and was demonstrated to be expressed constitutively in 
apple tissues, particularly in flowers, the most critical tissue for E. amylovora infection36. The reduction in expres-
sion via RNAi of HIPM in the cultivar ‘Galaxy’ resulted in decreased fire blight susceptibility in the transgenic 
plants35,38. Similarly, DIPMs (DspA/E-interacting proteins from Malus) are apple proteins encoded by a family 
of four genes (DIPM1-4, with length of 666, 676, 665 and 682 amino acids, respectively) and are a close match 
to transmembrane leucine-rich repeat receptor-like kinase sequences in other organisms39. DIPMs are expressed 
in young shoots and their transcript level increases upon E. amylovora infection, except for DIPM139. Moreover, 
using yeast two-hybrid and pull-down assays, Meng and colleagues39 demonstrated that the kinase domains 
of DIPM1, 2, and 4 interact physically and specifically with the E. amylovora effector protein DspA/E. On the 
contrary, DIPM3 is not subjected to this interaction. Within this framework, the same authors preliminarily 
concluded that DIPMs may act as susceptibility factors during the apple-E. amylovora interaction. Recently, it 
was shown that the inactivation of MdDIPMs via RNAi or CRISPR/Cas9 in the commercial cultivars ‘Gala’ and 
‘Golden Delicious’ altered the disease phenotypes of the edited plants and reduced their susceptibility levels 
to E. amylovora strain Ea27334,40, thus effectively confirming the involvement of DIPMs in apple susceptibility.

This study identifies putative non-functional alleles of HIPM and DIPM genes from publicly available apple 
genomes, investigates the genomic diversity of HIPM and DIPM genes in Malus germplasm collections, evaluates 
a diverse set of Malus accessions for fire blight resistance in the greenhouse, and uses a candidate gene-based 
association mapping approach to identify SNPs (Single nucleotide polymorphisms) in these genes showing 
significant association with fire blight susceptibility phenotypes.

Materials and methods
Plant material.  A total of 238 apple accessions, from four different sources, were included in this study 
(Supplementary Table S1). Collection 1 had a total of 145 Malus accessions with whole-genome resequencing 
data. These are from three different sources, the majority from M. domestica, M. sieversii, and M. sylvestris that 
were previously sequenced41, 67 accessions that were sequenced separately42, and eight further accessions of 
M. sieversii and M. sylvestris sequenced in this study (unpublished data). Collection 2 had 93 accessions from 
26 Malus species that were selected from the US National Malus Collection (Geneva, NY, USA) based on fire 
blight resistance ratings available at Germplasm Resources Information Network (GRIN) (www.ars-grin.gov), 
70 of which overlap with collection 1. Information regarding the accessions, including Plant Introduction (PI) 
number, name, species, origin, ploidy level and fire blight resistance ratings (available at GRIN) are reported in 
Supplementary Table S1.

The apple accessions from collection 2 were evaluated for fire blight resistance and susceptibility in a con-
trolled greenhouse experiment. Three replicates of each accession were grafted via whip and tongue by inter-
locking corresponding cuts in the scion wood and ¼ inch ‘M.7’ rootstocks and potted in D40 large Deepots 
(Stuewe and Sons, Tangent, OR) in Sungrow #8/Fafard #2 (Sungrow Horticulture Agawam, MA) soil mix. The 
plants were grown in a greenhouse at a temperature between 21 and 24 °C with 12 h supplemental light and were 
watered and fertilized as needed.

Genomic sequence and primers for HIPM and DIPM genes.  The HIPM and DIPM gene sequences 
were detected in the ‘Golden Delicious’ double-haploid apple genome (GDDH13 v1.1)43 using a blast search with 
previously reported sequences36,39. The detected gene sequences were used as templates to design ~ 150 base pair 

http://www.ars-grin.gov
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amplicons to cover entire gene sequences using a custom python script (available at https​://bitbu​cket.org/miche​
lettd​/ampse​q-prime​r-desig​n). The primers were designed using Primer3 (https​://prime​r3.ut.ee, version 4.1.0) to 
amplify 150 ± 10 bp of fragments of the coding sequences from HIPMs and DIPMs. Besides the use of default 
parameters, all the primers were blast-searched against the GDDH13 v1.143 reference genome to exclude puta-
tive repeat regions. The known SNPs were masked in the target regions to avoid annealing problems. On average, 
five primer pairs were selected for each gene in order to amplify gene fragments at intervals of approximately 
300–600 base pairs via AmpSeq genotyping (see below) (Supplementary Table S2).

Genomic DNA extraction and AmpSeq genotyping.  Total genomic DNA from Malus accessions of 
Collection 2 (Supplementary Table S1) was extracted from young fresh leaves using the Wizard Genomic DNA 
Purification Kit (Promega, USA), according to the manufacturer’s instructions. The concentration of extracted 
DNA was analyzed with a NanoDrop Spectrophotometer (Thermo Fisher Scientific, Gand Island, NY, USA) and 
the quality of DNA samples was assessed by running a 0.8% agarose gel at 80 V for 1.5 h. Genomic DNA was 
amplified with the previously designed and selected primer pairs (Supplementary Table S2) to amplify amplicon 
pools, which were sequenced on the Illumina MiSeq Platform (Illumina, San Diego, CA, USA), according to the 
AmpSeq protocol at the Genomics Platform Facility of Cornell University (Ithaca, NY, USA)44.

Sequence analysis and variant detection.  The sequences from AmpSeq run were demultiplexed using 
the barcode sequences. The raw sequences from 93 AmpSeq (Collection 2) were quality assessed using fastqc 
tool (https​://www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​c/) and reads were trimmed and filtered to 
remove sequencing barcodes and low-quality bases using Trimmomatic software with the parameters: Trail-
ing 20, Leading 20, SlidingWindow 4:15, AvgQual 20, MinLen 2545. For the remaining 145 accessions, whole-
genome sequencing data were available, and the reads were filtered for quality as described above. The remaining 
high-quality reads were aligned against the GDDH13 v1.143 genome with burrows-wheeler aligner (BWA) with 
default parameters. PCR duplicate reads were removed with Picard tools43.

Variants were identified using the HaplotypeCaller function of the Genome Analysis Toolkit (GATK version 
4.1) using default parameters to detect SNPs and short Indels across the HIPM and DIPM gene sequences. The 
final SNP dataset was partitioned into three different datasets for (1) 145 Malus samples (Collections 1), (2) 93 
AmpSeq samples (Collection 2), and (3) sum of the two collections. The variants were further filtered using a 
mean read depth threshold > 3. The variants were annotated using the coding and protein sequences of HIPM 
and DIPM genes from the GDDH13 v1.143 genome. In addition, the gene annotations were obtained from the 
GDDH13 v1.143 genome to annotate variants using the ANNOVAR program46.

Assessment of genomic diversity.  The genomic diversity across HIPM and DIPM gene sequences was 
determined by calculating nucleotide diversity (π) and fixation index (Fst) statistics across the three SNP data-
sets with the program VCFtools47. In addition, the population genetic structure was determined by performing 
principal component analysis (PCA) of the genetic variants with Tassel v5 software48.

Fire blight inoculation and data collection.  The fire blight inoculation of grafted plants was performed 
with highly virulent strains of E. amylovora (E2002a, Ea273, and E4001a)49 to evaluate varying levels of resist-
ance and susceptibility. In 2018, the population was screened with a 1:1:1 ratio of E2002a, Ea273, and E4001a 
at a concentration of 1 × 109 CFU/ml. In 2019, the only Ea273 strain was used at the same concentration as the 
prior year. The preparation of the inoculum consisted of plating the E. amylovora strain on King’s Medium B 
Base culture media, incubated at 27 °C for 2 days. Visible bacterial colonies were then scraped and added to 1× 
Phosphate Buffered Saline (PBS, pH 7.4) solution to halt growth of the bacteria. The bacterial suspension was 
quantified with a Smart Spec Plus Spectrophotometer (BioRad Hercules, CA) based on the optical density at 
600 nm and diluted accordingly with 1× PBS to a concentration of 1 × 109 CFU/ml. The inoculation was done 
by cutting the youngest leaf on the newest grown shoot with sterilized scissors dipped in the inoculum. During 
the early infection period, the temperature and humidity of the greenhouse was raised to 25–27 °C and 75–80%, 
respectively. After 12 days in 2018 and 8 days in 2019, the data of the fire blight infection was collected by meas-
uring the leaf length (LL; cm) from the scissor cut to the end of leaf blade, leaf necrosis length (LN; cm) from 
the scissor cut to the visible lesion on the leaf, shoot length (SL; cm) of the current year’s growth from the node 
of the inoculated leaf and shoot necrosis length (SN; cm), the visible necrosis in the current year’s growth from 
the node of the inoculated leaf.

Statistical analysis of fire blight data.  Analysis of fire blight data was performed in R Version 3.6.250. 
The datasets from each year were analyzed to remove any outliers. In 2019, plants with only old lignified leaves 
available for infection were noted and filtered out from further analysis. The remaining data were filtered for the 
genotypes with data for at least three replications. The leaf length (LL), leaf necrosis length (LN), shoot length 
(SL), and shoot necrosis length (SN), evaluated as above, were used to calculate percent leaf lesion length (PLLL), 
percent shoot lesion length (PSLL), and percent total distance (PTD) as follows;

PSLL is described as percent shoot necrosis (PSN) or percent lesion length (PLL) in previous literature18,51. 
For each genotype, the mean and standard deviation of all the replications were calculated for 2018 and 2019, 

PLLL = (LN/LL) ∗ 100

PSLL = (SN/SL) ∗ 100

PTD = ((LN+ SN)/(LL+ SL)) ∗ 100

https://bitbucket.org/michelettd/ampseq-primer-design
https://bitbucket.org/michelettd/ampseq-primer-design
https://primer3.ut.ee
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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separately. For the traits PLLL, PSLL, and PTD, a two-way analysis of variance (ANOVA) was performed to test 
for significant differences in phenotype across genotypes. To assess the homogeneity of the variances across 
the 2 years of data and disease traits within accessions, a non-parametric Fligner–Killeen test was conducted 
on the PLLL, PSLL, and PTD traits. In addition to the genotypic effects, the ANOVA model also accounted for 
the length of the inoculated leaf as covariates as well as the interaction effect between the individual genotype 
and the leaf length. The disease phenotype for each year was clustered to coerce accessions into classes of resist-
ances using the partition k-means clustering approach. To perform clustering, the infection data for the traits 
PLLL and PTD of each genotype was scaled to a distribution mean of zero and a standard deviation of one via 
a Z-score normalization. Euclidean cluster distances were calculated using the ‘k-means’ package in R Version 
3.6.2 based on the algorithm of Hartigan and Wong (1979). The number of clusters was determined using the 
‘NbClust’ package in R Version 3.6.2 based on 30 unique indices that determine the optimal number of clusters 
representing a dataset50,52.

Association between fire blight susceptibility and genomic variations.  The fire blight phenotype 
data and the corresponding SNP genotypic data was used to conduct iterative marker-trait associations. The 
SNP genotype file was phased with Beagle v5.153 and converted from the IUPAC ambiguity codes to a dominant 
genetic model, where ‘1’ represents the homozygous SNP states and ‘0’ represents the heterozygous sites. Each 
vector of genotype states for each marker was matched against the phenotype data for PLLL, PSLL, and PTD 
to perform iterative independent Kruskal–Wallis H-Tests with a custom loop created in R version 3.6.150. The 
output provided p values for each SNP marker across all three traits and each year of data collection to identify 
significantly associated SNPs. Highly reliable marker-trait associations were determined through the criteria of 
high statistical significance with p < 0.001, their detection in multiple years and significance in leaf and shoot 
susceptibility. The fire blight susceptibility values of SNPs satisfying these criteria were plotted to observe the 
effect the genotype state has on specific traits. To find patterns across wild and domesticated Malus species, the 
proportion and frequency of species that possessed each selected SNP state was analyzed. The LD relationship of 
each pairwise marker combination was calculated in order to assess the relation of selected SNPs to the neigh-
boring markers. This was performed first with the PLINK v1.90b6 genomic software to generate .ped and .info 
file format54. The files were imported in the Haploview v4.2 software to visualize marker relationships and find 
haploblocks55.

Results
Genetic diversity in homologs of HIPM and DIPM.  Nine homologs of HIPM and DIPM genes were 
identified in the GDDH13 apple genome sequence43 with sequence length ranging from 1.4 to 3.7 kilobases 
(Table 1). These genes were present across 8 chromosomes in the apple genome. Two duplicated gene copies were 
present for DIPM2, DIPM3, DIPM4, and HIPM1, whereas DIPM1 had a single copy present in the GDDH13 
genome. It appeared that two copies of DIPM2 located on Chr13 likely evolved through tandem duplication 
events due to their close proximity. The duplicated copies from remaining HIPM and DIPM genes were distrib-
uted across different chromosomes that might have occurred through whole-genome duplication events.

To assess the genetic diversity across DIPM and HIPM genes, we used publicly available whole-genome 
sequences from 145 diverse Malus accessions (collection 1). A total of 677 SNP variants were identified across 
these genes. The least variable gene was DIPM4a with 18 variants while the highest, 189 variants, were found 
in HIPM1a (Table 1). Nucleotide diversity (π) varied from 6.02 × 10–03 to 2.66 × 10–03 for DIPM4a and DIPM2a, 
respectively, with an average π of 1.38 × 10–02. The gene annotation analysis identified 65 total variants as non-
synonymous mutations that can lead to amino acid changes in a protein. There were also 3 frameshift and 2 
non-frameshift Indels present in HIPM1a, DIPM3a, and DIPM4b genes. Furthermore, inference of population 
genetic structure using principal component analysis (PCA) with 677 SNP variants did not reveal any distinct 
clusters across the 145 Malus accessions (Supplementary Figure S5A,B). Altogether, these results demonstrated 
the high level of genomic diversity present in the DIPM and HIPM genes in apples.

Table 1.   Homologs of DIPM and HIPM genes, corresponding gene ids, chromosomes and their physical 
positions in Golden Delicious Double Haploid (GDDH13 v1.1)43 genome as well as number of SNPs (single 
nucleotide polymorphisms) and nucleotide diversity (π) across 93 Malus accessions.

Gene Gene ID Chromosome Start End No. of variants Nucleotide diversity (π)

DIPM1 MD02G1176600 Chr02 15,605,153 15,607,879 12 6.5 × 10–03

DIPM2a MD13G1036800 Chr13 2,551,144 2,553,537 16 8.3 × 10–03

DIPM2b MD13G1036200 Chr13 2,610,101 2,612,879 7 1.4 × 10–02

DIPM3a MD15G1078000 Chr15 5,321,766 5,324,423 7 7.3 × 10–03

DIPM3b MDP0000303744 Chr08 7,982,367 7,985,608 12 8.3 × 10–03

DIPM4a MD12G1097300 Chr12 15,275,167 15,277,450 6 4.5 × 10–03

DIPM4b MD14G1094000 Chr14 14,030,127 14,033,841 15 6.5 × 10–03

HIPM1a MD00G1089500 Chr00 18,485,999 18,489,638 8 1.8 × 10–02

HIPM1b MD03G1224700 Chr03 31,042,480 31,043,838 4 6.7 × 10–03
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The lack of phenotypic information for accessions in this dataset hindered the possibility of making an asso-
ciation analysis between SNP markers and fire blight susceptibility. Thus, amplicon sequencing was employed to 
amplify and assess the genetic diversity in the HIPM and DIPM genes in 93 selected apple accessions (collection 
2; Supplementary Table S1)44. The latter analysis identified a total of 87 SNP variants across 9 DIPM and HIPM 
genes ranging from 4 (HIPM1b) to 16 (DIPM2a) (Table 1). The average π was 7.96 × 10–03 in 9 genes that varied 
from 4.5 × 1003 (DIPM4a) to 1.8 × 1002 (HIPM1a). Moreover, annotation of gene sequences revealed that 19 SNP 
mutations lead to changes in amino acid sequences of proteins in the DIPM gene homologs. At least one amino 
acid-changing mutation was identified in each of the DIPM genes. For instance, a single nucleotide change from 
“G” to “A” (position = 379) in DIPM4a can change the amino acid glycine to serine (Supplementary Table S2). 
Similarly, three different SNP mutations in the DIPM4b gene can change amino acid sequence from valine to 
aspartic acid, phenylalanine to leucine, and lysine to arginine. We further used the DIPM-HIPM SNP dataset to 
infer population genetic structure across 93 diverse Malus accessions from Collection 21 using PCA. Two acces-
sions were removed from the analysis because they had more than 50% missing data. PCA identified three groups 
in the 93 Malus accessions. A set of 7 accessions including GMAL 2590, GMAL 2366, GMAL 1527.f1, GMAL 
3052.g1, ‘Prince George’, and ‘Glabrata’ showed close grouping along PC1 values less than − 3.0 (Supplementary 
Figure S5B). Another set of 9 GMAL and “Kola’’ accessions form a dispersed group with PC1 values between 
− 1.0 and − 2.0 (Supplementary Figure S5B). Finally, the third and largest group consisted of 77 accessions with 
highly diverse genetic backgrounds (Supplementary Figure S5B; Supplementary Table S1).

Comparative variant analysis between collection 1 and collection 2 indicated higher genomic variation and 
amino acid-changing mutations across HIPM/DIPM genes from 145 accessions, probably due to near complete 
coverage of these gene sequences in the GDDH13 apple genome. However, thirteen annotated variants were 
shared between 145 NCBI and 93 AmpSeq samples, out of which only 2 on the gene “MD08G1095100” were 
nonsynonymous (Table 1).

Variation in fire blight susceptibility across diverse Malus accessions.  Fire blight susceptibility in 
93 Malus accessions was summarized as percentage of total infection as well as infection in the leaf and shoot 
(Supplementary Figure S2). The distributions of the leaf lengths and shoot lengths were normal across all acces-
sions. The percent leaf lesion length (PLLL) was bimodal, centered around the extremes of the severity scale, the 
percent shoot lesion length (PSLL) was right skewed, and total lesion length measured as percent total distance 
(PTD) was also right skewed (Supplementary Figure S1). In 2018, the mean SL, LL, PSLL, PLLL, and PTD were 
16.3 cm, 4.8 cm, 6.1%, 39.4%, and 12.1%, respectively. In 2019, the mean SL, LL, PSLL, PLLL, and PTD were 
18.6 cm, 4.1 cm, 6.8%, 50.4%, and 13.7%, respectively. On the more resistant side of that range, there is a mix of 
accessions from M. baccata, and M. fusca as well as a few domesticated accessions such as ‘Koidu Rennett’. The 
highly susceptible accessions in the population included mostly M. domestica accessions such as ‘Idared’. The 
non-parametric Fligner-Killeen test for non-normal traits showed that the PLLL and PTD had homogenous 
variances across the accessions in the study (p value 2018/2019; PLLL: 0.8922, 0.1576, PTD: 0.1874, 0.5331). 
Overall, a wide range of responses to fire blight infection with varying levels of standard deviation were found 
across replicates for PLLL, PSLL, and PTD (Supplementary Figure S2A–C). Less susceptible accessions had rela-
tively small standard deviations that increased as the values for PLLL and PTD increased consistently in both 
years (Supplementary Figure S2A,C).

The variation in PLLL, PSLL, and PTD during 2018 and 2019 was mainly determined by the genotypes 
(Table 2). For example, the ANOVA results showed that genotypic effects significantly influence fire blight 
susceptibility levels consistently for both leaf lesion (PLLL), shoot lesion (PSLL) and total lesion length in both 
years (Table 2). The k-mean clustering analysis of phenotypes showed larger ellipses for the susceptible class 
compared to the resistant class (Supplementary Figure S3). The clustering of genotypes based on the PLLL and 
PTD values identified three fire blight infection severity groups: susceptible, moderate, and resistant. The increase 
in fire blight severity of the susceptible group compared to the resistant group was 66.7% for PLLL and 27.2% 
for PTD in 2018. In 2019, the increase in fire blight severity of the susceptible group compared to the resistant 
group was 79.3% for PLLL and 36.3% for PTD.

Association between fire blight susceptibility and SNPs in HIPM and DIPM.  The Kruskal–Wal-
lis H-test performed in R Version 3.6.250 identified 30 unique SNP markers that showed significant association 
to fire blight susceptibility at p < 0.05, 2 of which showed high significance at p < 0.001 (Fig. 1; Supplementary 

Table 2.   A summary of fire blight data collected in a controlled greenhouse during 2018 and 2019 for 93 
Malus accessions. The summarized data shows mean, standard deviation (SD), and analysis of variance 
(ANOVA) p value for fire blight susceptibility evaluations. Whereas p < 0.001: ***.

Trait

2018 2019

Mean p value Mean p value

Leaf length (cm) 4.8 ± 1.5 6.99e−05 *** 4.1 ± 1.6 8.14e−06***

Shoot length (cm) 16.3 ± 6.2 0.000164 *** 18.6 ± 7.8 1.52e−04 ***

Percent leaf lesion length (%) 39.4 ± 37.7 7.39e−05 *** 50.4 ± 40.9 < 2e−16***

Percent shoot lesion length (%) 6.1 ± 17.0 0.188 6.88 ± 17.5 0.0871

Percent total (disease) distance (%) 12.1 ± 18.3 0.0674 13.75 ± 18.7 1.69e−05***
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Table S3). There are 6 SNPs out of 30 significant SNPs that result into non-synonymous amino acid changes in 
HIPM and DIPM gene homologs. In addition, SNP markers showing significant associations with PTD and PLLL 
were identified in both 2018 and 2019. A SNP marker, S13_2611083, showed a significant association (p < 0.05) 
with PLLL, PTD in 2018 and PSLL in 2019 (p value = 0.046, 0.005, 0.017). A high level of significance (p < 0.001) 
was found for PLLL and PTD in 2019 (p value = 6.76e−05,1.66e−04) (Supplementary Table S3). This marker was 
present in the DIPM2b gene on chromosome 13. Another SNP marker S14_14033636, on the DIPM4b gene 
region on chromosome 14, showed significant association (p < 0.001) with all three traits in 2019 (Fig. 1).

According to haplotype analysis, the SNPs significantly associated with fire blight susceptibility were in low 
linkage disequilibrium (LD) with flanking markers (Supplementary Figure S4A,B). Boxplots of the homozygous 
and heterozygous genotypes at these SNP states showed clear phenotypic differences in their susceptibility levels 
(Fig. 2). The heterozygous state for S13_2611083 SNP marker had higher rates of fire blight severity and conferred 
1.8 and 2.6-fold increases in susceptibility in 2018 for PLLL, and PTD, respectively (Fig. 2A). The homozygous 
allele state of S14_14033636 SNP marker was associated with higher fire blight susceptibility and showed 5.4, 
2.5, and 3.7-fold increases in susceptibility in 2019 for PSLL, PLLL, and PTD, respectively (Fig. 2B). In 2019 
for the same marker, there were 2.5, 2.2, and 2.6 fold increases in susceptibility for PSLL, PLLL, and PTD from 
changing the homozygous SNP to the heterozygous.

We further observed additive allelic effects on the fire blight susceptibility from the most significant SNPs 
across HIPM and DIPM genes. For example, accessions possessing alleles linked with reduced susceptibility from 
both S13_2611083 and S14_14033636 markers showed an additive phenotypic response of significantly less fire 
blight susceptibility for PLLL (p value = 2018: 0.011, 2019: 0.0084) and PTD (p value = 2018: 0.019, 2019: 0.0011) 
and vice-versa (Fig. 3). The differences for PSLL were only significant in 2019 between the most susceptible class 
‘A + K’ and the two less susceptible classes ‘R + K’, and ‘R + G’ (p value = 0.007,0.02; respectively) (Fig. 3).

The distribution of marker alleles across Malus species showed that the allelic states linked with higher 
susceptibility levels were mostly present in M. domestica accessions (Fig. 4A,B). In 2018, the average increase 
of susceptibility in domesticated accessions as opposed to wild accessions were 2.13, 6.12, and 5.22% for PLLL, 
PSLL, and PTD, respectively. In 2019, the average increases of susceptibility in domesticated accessions were 
13.67, 6.68, and 5.5% for PLLL, PSLL, and PTD, respectively. SNP alleles with reduced levels of susceptibility 
mainly occurred in wild Malus species, whereas the proportion of higher susceptibility SNPs were found in M. 
domestica (Fig. 4A,B).

Figure 1.   Manhattan plots showing SNP markers significantly associated with fire blight susceptibility traits 
in 93 Malus accessions. Candidate gene association analysis was done using Kruskal Wallis H-Test for fire 
blight susceptibility data collected during 2018 and 2019. The x-axis represents the gene IDs and corresponding 
markers on HIPM/DIPM genes. The y-axis shows the − log10 (p values) of marker-trait associations for fire 
blight severity traits; PSLL (percent shoot lesion length), PLLL (percent leaf lesion length), and PTD (percent 
total distance). The PSLL, PLLL, and PTD traits are displayed as a circle, triangle, and square, respectively. Two 
red lines parallel to the x-axis indicate varying levels of alpha significance (alpha = 0.05, bottom; alpha = 0.001, 
top). Increased value of the − log10 (p value) indicates a higher level of significance for the marker-trait 
association. The left and right panels are derived from data collected in 2018 and 2019, respectively. The color of 
dot in each symbol corresponds to the line under SNP label.
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Discussion
Genomic and genetic characterization of the S genes, which are responsible for successful pathogen infection, is 
a logical approach to achieve sustainable disease tolerance in improved cultivars56,57. Natural genetic variation 
in these genes can be tapped to develop cultivars with decreased fire blight susceptibility, a major goal of apple 
germplasm improvement efforts worldwide. The susceptibility genes, HIPMs and DIPMs, have been identified to 
regulate susceptibility and improved tolerance against fire blight in commercial apple cultivars35,38,40,58. We have 
found a great number of genomic variations in the 9 HIPM and DIPM genes across 145 diverse Malus acces-
sions. We also found 30 SNPs with significant (p < 0.05) associations to fire blight susceptibility, two of which 
had strong associations in two consecutive years of fire blight infection. A majority of the marker allelic states 
related to higher levels of susceptibility in these trait-associated markers were found in M. domestica, which is 
consistent with the current understanding that domesticated cultivars are generally susceptible to fire blight7. 
A higher proportion of species with the less susceptible allele were seen in wild species, with a shift to 50:50 in 
Malus hybrids. This is a possible indication of an inheritance pattern where a new mutation is introduced in a 
population and the more susceptible alleles are maintained and proliferated by selection during apple domestica-
tion. These susceptibility alleles were likely maintained in the domesticated germplasm due to fewer instances 
of cross-hybridization with wild apple species, to avoid unnecessary linkage drag of undesirable traits affecting 
fruit quality in apple cultivars.

The SNP marker S13_2611083 on DIPM2b showed significant association (p < 0.05) with PLLL and PTD in 
2018 and (p < 0.001) in 2019. Robustness and stability of this SNP marker across two years makes it a reliable 
marker to screen for fire blight susceptibility and for use in marker-assisted breeding. Similarly, the strong asso-
ciation (p < 0.001) of SNP marker S14_14033636 on the DIPM4b gene with PLLL and PTD indicates its potential 
use in marker-assisted selection to decrease fire blight susceptibility. The latter finding is consistent with previous 
work in which knocking out the MdDIPM4 gene via CRISPR/Cas9 led to a 50% reduction in fire blight symp-
toms on notoriously susceptible ‘Gala’ and ‘Golden Delicious’ cultivars40. These results also highlight utilization 
of candidate-gene based association studies to rapidly identify molecular markers linked to traits of interest for 
progeny and parent selection in breeding programs59. Breeding from a perspective of susceptibility rather than 
resistance can help resolve issues in tree fruit crops where linkage drag and cross incompatibility between Malus 
species and cultivated apples makes introgression of resistance alleles not feasible or very time consuming in 
many cases11. Hence, S-gene breeding opens the opportunity for breeders to more effectively improve fire blight 
resiliency of high value apple cultivars while not compromising on critical consumer focused traits.

Our results suggest that additive effects from multiple small effect loci in HIPM and DIPM genes contribute 
towards overall variation observed in disease susceptibility of domesticated apples. For example, combinations 
of positive alleles of S13_2611083 and S14_14033636 SNPs from two different loci have a stronger effect on fire 
blight susceptibility measures (i.e., PLLL and PTD). This is in contrast with the effect of major resistances con-
tributed by wild apple germplasm, where a single gene or locus determined the fire blight resistance response 
without interacting with other loci in the genome16,60–62. The breakdown of single gene resistance/s by novel fire 
blight strains is highly likely, as shown for the breakdown of Robusta 5 (MR5) fire blight resistance by a deletion 
in the avrRpt2 effector of Ea1189 E. amylovora strain20. Similarly, different strains of E. amylovora have been 

Figure 2.   Boxplots of fire blight susceptibility at homozygous and heterozygous states of significantly associated 
SNP markers (A) S13_2611083 and (B) S14_14033636, respectively. The y-axis represents phenotypic values for 
percent leaf lesion length (PLLL), percent shoot lesion length (PSLL), and percent total distance (PTD). The “G” 
and “A” represent homozygous, and “K” and “R” represent heterozygous genotypic states for S13_2611083 and 
S14_14033636, respectively, on the x-axis. The table indicates allele frequency of homozygous and heterozygous 
SNP states across studied genotypes.
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identified as virulent and avirulent on apple cultivars engineered for MR5 resistance21. These studies indicate 
that introgression of single gene resistances into commercial germplasm lie at a risk of breakdown by rapidly 
evolving pathogen strains. Emergence of a virulent strain for the particular resistance gene poses significant 
threat to breeding and selection efforts based on few major genes. Alternatively, additive alleles from different 
pathways can help achieve durable reduced susceptibility in a cultivar. For instance, selection of appropriate 
allelic combinations from HIPM/DIPM genes can lower successful pathogen infection, leading to reduced fire 
blight susceptibility. The root system can also influence fire blight susceptibility levels through co-regulated gene 
expression patterns and system-level interactions between carbohydrate and defense pathways63. Therefore, 
allelic combinations for the optimal root system can be used to breed rootstocks to further reduce fire blight 
susceptibility of grafted scions. These results depict a few examples related to disease susceptibility regulation, 
but apparently there are still several unexplored routes associated with disease susceptibility in the domesticated 
apples. Nonetheless, the presence of additive gene action from multiple pathways that are associated with disease 
susceptibility can make it harder for new pathogens to completely overcome the reduced disease susceptibility, 
which could be feasible to improve disease tolerance in apple breeding programs56.

The results presented in this study also represent strain-specific differences in host plant responses to fire 
blight as observed in the identification of different significant SNPs between 2018 and 2019. A mixture of three 
strains (Ea273, E4001a, E2002a) was used in 2018 while only E2002a was used in 2019 to inoculate the plants. 
The pure inoculum of the highly virulent E2002a strain generally showed higher disease incidence in 2019 for 
PLLL and PTD (Figure S2). In the mixed inoculum of 2018 infections, E2002a was present in lower concentra-
tions and probably had more competition for host resources with Ea273 and E4001a. Furthermore, E2002a is a 
native North American strain, first discovered in Ontario, Canada off the “Jonathan” cultivar64,65. This strain likely 
had higher co-evolutionary compatibility with the North American domesticated accessions in this study. The 
chances of host–pathogen compatibility are mainly determined by the profile of effector proteins in individual E. 
amylovora strains that are responsible for fire blight pathogenicity and triggering of the hypersensitive response in 

Figure 3.   Pairwise Kruskal–Wallis H-tests to measure the additive effects of S13_2611083 and S14_14033636 
significant SNP (single nucleotide polymorphism) markers in years (A) 2018, and (B) 2019. The x-axis 
represents one of the four possible combinations of homozygous and heterozygous genotype states from 
markers S13_2611083 (G or K) and S14_14033636 (A or R). The y-axis represents the fire blight susceptibility 
response in accessions carrying specific allele combinations. Fire blight susceptibility was measured as PLLL 
(percent leaf lesion length), PSLL (percent shoot lesion length), and PTD (percent total distance). The numbers 
on top of brackets for each subplot represent the p value of significance for pairwise comparison of each allelic 
combination for a specific trait and year.
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Figure 4.   Horizontal barplots showing the frequency and proportion of Malus species that possess more fire blight 
susceptible heterozygous ‘K’ or ‘A’ or the less susceptible homozygous ‘G’ or ‘R’ SNP genotype at SNP marker (A) 
S13_2661083 and (B) S14_14033636, respectively. The y-axis indicates the 14 Malus species with either of the two SNP 
genotypes. The frequency is defined by the number of occurrences of a SNP across all the genotypes. The proportion is 
calculated by the frequency of a SNP divided by the total number of SNP, multiplied by 100.
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Malus6,66. However, the strains used in this study exhibit high genome similarity49 and their considerably different 
phenotypic and genetic responses in host plants can lay out further investigations of Malus-Erwinia interactions.

In summary, a great genomic diversity was found in HIPM and DIPM genes in a wide set of Malus accessions 
and a candidate gene-based approach identified markers that were strongly associated with fire blight susceptibil-
ity. The validation of these markers could provide opportunities to use them in MAS to breed apple cultivars with 
reduced fire blight susceptibility. Moreover, characterization of S-genes can provide an alternative to improve fire 
blight resistance, either by breeding or genome-editing to avoid unnecessary risks associated with compromised 
fruit quality and breakdown of major resistance genes from wild Malus species.
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