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Joint-multiple family linkage analysis predicts within-family
variation better than single-family analysis of the maize
nested association mapping population

F Ogut1, Y Bian1, PJ Bradbury2 and JB Holland1,3

Quantitative trait locus (QTL) mapping has been used to dissect the genetic architecture of complex traits and predict phenotypes
for marker-assisted selection. Many QTL mapping studies in plants have been limited to one biparental family population. Joint
analysis of multiple biparental families offers an alternative approach to QTL mapping with a wider scope of inference. Joint-
multiple population analysis should have higher power to detect QTL shared among multiple families, but may have lower power
to detect rare QTL. We compared prediction ability of single-family and joint-family QTL analysis methods with fivefold cross-
validation for 6 diverse traits using the maize nested association mapping population, which comprises 25 biparental recombinant
inbred families. Joint-family QTL analysis had higher mean prediction abilities than single-family QTL analysis for all traits at most
significance thresholds, and was always better at more stringent significance thresholds. Most robust QTL (detected in 450% of
data samples) were restricted to one family and were often not detected at high frequency by joint-family analysis, implying
substantial genetic heterogeneity among families for complex traits in maize. The superior predictive ability of joint-family QTL
models despite important genetic differences among families suggests that joint-family models capture sufficient smaller effect
QTL that are shared across families to compensate for missing some rare large-effect QTL.
Heredity (2015) 114, 552–563; doi:10.1038/hdy.2014.123; published online 14 January 2015

INTRODUCTION

Quantitative trait locus (QTL) mapping has been exploited to dissect
the genetic architecture of a trait and predict phenotypes for marker-
assisted selection. Most QTL mapping studies in plants have been
based on biparental populations; comparisons of QTL detected in
mapping populations often reveal distinct sets of QTL (Blanc et al.,
2006; Holland, 2007; Sneller et al., 2009). Joint analysis of multiple
families permits evaluation of more QTL across different genetic
backgrounds compared with single-family analysis (Sneller et al.,
2009); the probability that a QTL will be polymorphic in at least
one population is higher across multiple families derived from diverse
parents (Blanc et al., 2006). Joint analysis of multiple related
populations can integrate genetic heterogeneity into QTL models,
simultaneously estimate the effects of more than two alleles per locus
and incorporate the effects of different linkage phases and intensities
of linkage disequilibrium in subpopulations (Rebaï and Goffinet, 2000;
Blanc et al., 2006; Verhoeven et al., 2006; Holland, 2007; Yu et al.,
2008; Sneller et al., 2009). Joint-family analysis has the potential for
greater power of QTL detection, more accurate estimation of QTL
effects, better resolution of QTL positions and more direct insight
about the distribution of functional allelic variation across multiple
families compared with single-family QTL analysis (Rebaï and
Goffinet, 2000; Verhoeven et al., 2006; Blanc et al., 2006; Yu et al.,
2008; Buckler et al., 2009; Coles et al., 2010; Steinhoff et al., 2011;
Würschum, 2012).

The choice of QTL model for analysing multiple families jointly
depends on assumptions about the consistency of QTL effects across
families (Blanc et al., 2006; Würschum et al., 2012). A related issue is
the relative power of joint-family and single-family analysis for
detecting rare QTL (those QTL segregating in only one or a small
proportion of families). Single-family analysis has higher power than
joint-family analysis to detect a rare QTL with large effect (Li et al.,
2011). Thus, joint-family analysis trades off some power to detect rare
QTL for improved capacity to identify and estimate the effects of QTL
shared across families. Therefore, it is of interest to empirically
evaluate the accuracy of joint- and single-family methods across a
range of distinct traits to determine if this tradeoff is worthwhile.
The goal of this study is to compare the characterisation of trait

genetic architecture by joint-multiple family QTL mapping versus
single-family QTL analysis in terms of their accuracy of QTL
identification and effect estimation. We used data from the maize
nested association mapping (NAM) population, which comprises
25 biparental mapping families all sharing a common reference
parent. In this design, a rare QTL is one that segregates in only one
or a few families, whereas a common QTL segregates in many families
because most founders carry a functionally distinct allele than the
reference parent at the QTL. We re-analysed data from six quantitative
traits, representing distinct aspects of growth and development of
maize plants using an updated dense consensus linkage map. Because
these are real data, we do not know the true positions or effects of
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QTL underlying trait variation. Therefore, we compared the predictive
value of QTL models based on the two different mapping methods
using cross-validation. Although genotype value prediction is not the
primary objective of either method, the relative accuracy of their
estimates of QTL effects can be compared on the basis of their
predictive ability in independent test data sets using cross-validation.
We also tested the effect of marker density on the prediction ability of
single-family analysis and evaluated the consistency of QTL detection
among individual families and between single- and joint-family QTL
analysis methods.

MATERIALS AND METHODS

Data
The development of the maize NAM population was described in detail by
Buckler et al. (2009) and McMullen et al. (2009). Briefly, the maize NAM
population consists of about ~ 5000 recombinant inbred lines (RILs) derived
from crosses between the reference parent inbred line B73 and 25 diverse
inbred lines. For this study, 4421 RILs were used, representing biparental cross
family sizes from 121 to 191 RILs (Supplementary Table S1) remaining after
removing lines with 48% heterozygosity or resulting from pollen contamina-
tion, or with lower quality genotyping-by-sequencing marker data. For this
study, we selected six diverse traits: cob length (Brown et al., 2011), tassel length
(Brown et al., 2011), leaf length (Tian et al., 2011), southern leaf blight (Kump
et al., 2011), days to anthesis (Buckler et al., 2009) and seed oil content (Cook
et al., 2012). Detailed information about field experimental designs, trait
measurements and analysis of phenotype data can be found in the studies by
Kump et al. (2011), Cook et al. (2012) and Hung et al. (2012). Traits were
measured in three to eight environments (Supplementary Table S2). Predicted
mean values of each RIL across environments for each trait were used as
phenotype values for QTL mapping in this study (Supplementary File S1).
We used a consensus genetic linkage map derived from all 25 NAM families

for linkage analysis. A genotyping-by-sequencing protocol (Elshire et al., 2011;
Glaubitz et al., 2014) was used to score single-nucleotide polymorphisms
(SNPs) on 4892 available NAM RILs. Marker values were imputed at 0.2-cM
intervals. Sequence coverage for genotyping-by-sequencing was low (~0.5× ),
resulting in 450% missing data at many sites and detection of only a single
allele at about 80% of heterozygous sites. Therefore, imputation was required to
recover missing data and correctly call heterozygous sites. We used the Full-Sib
Family Haplotype Imputation method described in Swarts et al. (2014). Briefly,
each observed SNP call was numerically recoded as 0 (homozygous for B73
allele), 1 (heterozygous) or 2 (homozygous for non-B73 parent). Then the
Viterbi algorithm (Rabiner, 1989) was applied to the resulting sequence to
identify probable heterozygous loci and genotype calling errors. Sites were then
chosen at 0.2-cM intervals and missing values for each site imputed as 2*
(probability allele came from the non-B73 parent) based on the nearest non-
missing flanking markers. Where both flanking marker alleles came from the
same parent, the imputed value was either 0 or 2. Where the alleles at different
flanking markers came from different parents, the imputed value was
intermediate and based on the relative distance from the two markers. The
resulting data set represents markers phased and imputed to represent identity-
by-descent states at each position relative to each individual family, and thus we
do not have any missing marker data in the imputed data set even if the parents
were not polymorphic at some markers. We used the dense 0.2-cM resolution
linkage map (with 7386 markers) for single-family analysis (Supplementary
Files S2 and S3). We also used a subset of 1478 markers equally spaced 1 cM
apart for single-family analysis and joint-linkage analysis (Supplementary Files
S4 and S5).

Data analysis
Each trait was analysed separately. For both single-family and joint-family
analyses, QTL were detected with step-wise regression using Proc GLMSelect in
SAS version 9.3 (SAS Institute, 2011). In single-family analysis, each of the 25
biparental families was analysed independently using the model y=μ+Xβ+ε,
where y is the n×1 vector of RIL phenotype values, μ is the intercept, X is the
n×m matrix consisting of m vectors of expected numbers of non-B73 alleles

for each RIL at each of the m SNP markers, β is the m×1 vector of QTL allele
effects to be estimated and ε is the n×1 vector of random residuals. Step-wise
regression was used to select the subset of SNP markers significantly associated
with the phenotypes (QTL), and QTL allele effects were estimated simulta-
neously from the final model step.
The model for joint-family analysis was y=μ+τα+Xβ+ε, where y is the n×1

vector of trait values, μ is the intercept, τ is the n×25 incidence matrix for
family mean effects, α is the vector of 25 family effects, X is the n×25m
incidence matrix for marker-population combinations, β is the vector of
25m×1 marker effects, m is the number of markers, n is the number of
observations (RILs) and ε is the n×1 vector of random residuals. The critical
differences between single-family and joint-family models are the inclusion of
family main effects and the nesting of SNP effects within families in the joint-
family analysis. SNP effects were nested in families to reflect the potential for
unique QTL allele effects within each family.
For single-family analysis, each of the four significance thresholds

(P= 0.0001, 0.001, 0.01 and 0.05) were used for markers to enter or exit the
model at each step, whereas three significance thresholds (P= 0.0001, 0.001 and
0.01) were used for joint-family analysis. The original NAM QTL studies
sometimes included the intermated B73×Mo17 (IBM) family (Lee et al., 2002),
resulting in 26 biparental families, however, we excluded the IBM family from
this study and used only the 25 NAM families per se. An exception to this was
that two NAM families (derived from crosses with the sweet corn inbreds
IL14H and P39) were not included in the analysis of seed oil content due to
their extreme kernel phenotypes (Cook et al., 2012).

Cross-validation
Before conducting cross-validation, a baseline analysis for each trait was
performed by first conducting step-wise regression on the full data set to
estimate the proportion of phenotypic variation associated with QTL models.
Next, the predictive ability of single-family and joint-family methods based on
step-wise regression model was evaluated via fivefold cross-validation. Cross-
validation sampling was stratified by biparental family, so that in each cross-
validation fold, ~ 80% of the RILs within each family were selected for inclusion
in the training data set, with the remaining 20% allocated to the validation data
set. Each of the five cross-validation folds was disjoint, such that each line was
included in exactly four training sets and one validation set. For a given training
data set, QTL models were selected for each family separately via step-wise
regression for single-family analysis, whereas for joint-family methods a single-
QTL model was selected for the entire training data set. For each training data
set, QTL model selection was conducted using each significance threshold for
each method. Thus, for each training data set, we created 100 single-family
QTL models (25 families × 4 thresholds) and 3 joint-family QTL models (1 for
each of the 3 thresholds). We recorded the proportion of variation explained by
the QTL model within each training data set (R2-value). Prediction abilities for
each model created for a given training data set were evaluated by predicting
the phenotype of each of the 20% of RILs in the validation data set using
estimated QTL effects and SNP genotypes at QTL included in the model.
Observed phenotypes for those lines were regressed on the QTL model-based
prediction values, and the prediction ability (R2

a value) was recorded for each
cross-validation (Supplementary Files S6 and S7). To enable direct comparison
of prediction abilities from single-family and joint-family analyses, we evaluated
prediction ability within each family separately using both single-family and
joint-family QTL prediction models.
The entire process of cross-validation, including sampling, QTL model

selection and evaluation of prediction ability was replicated 50 times for single-
family analysis and 10 times for joint-family analysis. The mean prediction
ability for each combination of trait, QTL modelling procedure and significance
threshold was evaluated as the mean coefficient of determination (Ra

2) from
regression of predicted RIL values on observed RIL values within each single-
family validation data set. Since each replication of the process involved five
folds of training and validation data sets, we performed a total of 50
replicates × 5 folds per replicate × (25 families × 5 traits+23 families × 1 trait
(oil content)) × 4 significance thresholds= 148 000 single-family analyses and a
total of 10 replicates × 5 folds per replicate × 6 traits× 3 significance thresh-
olds= 900 joint-family analyses.
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Detection and removal of collinear markers
Due to high correlation among nearby markers in the dense linkage maps used
here, automated model selection can select groups of markers with high
collinearity. Therefore, we conducted an additional analysis to automate
detection of collinear marker sets selected by step-wise regression, delete nearly
redundant collinear markers and refit reduced models. Markers were detected
as involved in a collinearity if they had inflated s.e. (greater than the mean of
the distribution of s.e.) and were within 5 cM of another marker in the selected
model (Supplementary Figure S1). The mean of the s.e. of the QTL effects in
the selected model was calculated for each combination of analysis method,
trait, significance threshold, replicate and fold. After detection of collinear
marker groups, only the marker entering the model first among that group
was retained in the final reduced model. Within-family prediction abilities were
re-calculated for the reduced models.

Repeatability of QTL from single-family and joint-family methods
To evaluate the concordance between QTL selected with high frequency in
single-family and joint-family analyses, we first computed the resample model
inclusion probabilities (RMIP) for each marker within each combination of
trait, marker and analysis method at a single common significance threshold
(α= 0.01; Supplementary Figure S2). RMIP measures the proportion of training
data set samples in which a particular SNP was selected in the final regression
model. RMIPs of each SNP across 250 replicate-folds for each family using the
single-family QTL analysis method or across 50 replicate-folds for the joint-
family method were computed for each trait. The results for each trait were
then summarised as the sum of RMIP values for all markers within 10-cM
windows within each chromosome. Genomic windows with RMIP sum values
⩾ 0.1 or RMIP sum values ⩾ 0.5 were declared as well-supported QTL intervals
at two different levels of significance. We then computed the total number of
well-supported QTL intervals across all single-family analyses, and compared
their overlap with well-supported QTL intervals from joint-family analysis for
the same trait and RMIP sum threshold level.
The concordance between single-family and joint-family methods for QTL

detection for each trait was also assessed by computing the correlation
coefficient of RMIP values from single-family and joint-family QTL analyses
methods at each SNP without imposing any RMIP threshold. In addition, we
estimated correlations between methods on the basis of RMIP sum values for
10-cM bins. The comparisons between RMIP values of single- and joint-family
analyses at a common test-wise P-value threshold have different overall type I
error rates, since each marker was tested 25 times across the single-family
analyses. Therefore, we also performed comparisons of RMIP values for joint-
family analysis conducted with P= 0.01 threshold and single-family analysis
conducted with P= 0.0001, since it was the threshold evaluated closest to the
Bonferroni-corrected P-value of 0.01/25.
The correspondence between similarity of a family’s single-family model to

the joint-family model and the within-family prediction ability was measured
by estimating the correlation between the pairwise RMIP correlation at
α= 0.0001 across 10-cM bins and the within-family validation Ra

2 for single-
or joint-family models. We estimated the correlation between this similarity
measure and the predictive ability within each family from the two QTL
modelling procedures.

RESULTS

Effect of number of markers on the prediction ability (Ra
2)

Previous NAM joint-family QTL analyses relied on a linkage map
based on 1106 SNP markers with some gaps of up to 15 cM
(McMullen et al., 2009). A denser linkage map based on genotypes
obtained from genotyping-by-sequencing (Elshire et al., 2011) of the
NAM RILs with SNPs located every 0.2 cM (7386 SNPs total) was
recently created. Computational memory limitations prevented our
use of this dense map for most of the joint-family linkage analyses, so
we conducted most analyses for this study using a map with one
marker every 1 cM selected from the denser map. To determine if
QTL prediction ability was limited by use of the 1-cM resolution map
versus the 0.2-cM resolution map, we compared single-family analysis

using the two maps with fivefold cross-validation. There was no
significant difference in mean prediction abilities for single-family
analysis between 1-cM and 0.2-cM resolution maps (Supplementary
Figure S3). Predictive ability of single-family analysis was optimal at
the marker selection threshold of P= 0.01 for both map densities
(Supplementary Figure S3). Since prediction ability decreased at
P= 0.05 threshold for single-family analysis, we did not consider this
threshold in further analyses.
To check the effect of the higher density linkage map on joint-

linkage analysis, we also conducted one fivefold cross-validation
analysis of joint-linkage mapping of CL with the 0.2 cM resolution
map. Predictive ability of the joint-family model was the same as with
the 1 cM map for P= 0.0001 and 0.001 thresholds (r2= 0.22 in all
cases), but was worse for the denser map at P= 0.01 (r2= 0.16
compared with r2= 0.19 for the 1 cM map). Therefore, resolution of
the 1-cM linkage map did not limit predictive ability of joint-linkage
analysis.

Prediction abilities (Ra
2) of joint-family and single-family QTL

analysis methods
The number of QTL selected in final models varied among traits and
increased with higher P-value thresholds (Figure 1). For all traits and
significance thresholds, joint-family prediction models had more QTL
than single-family prediction models (Figure 1). Furthermore, since
each QTL fit in the joint-analysis model involved estimating 25 allele
effect estimates (or 23 allele effects for oil), the total number of
parameters estimated in joint-family models was always much greater
than for any one single-family model.
The mean prediction abilities within families were estimated from

single-family and joint-family methods by cross-validation for all traits
and for three significance levels (P= 0.0001, 0.001 and 0.01) using the
1-cM resolution map (Figure 2). In most cases, joint-family analysis
had higher mean prediction abilities than single-family QTL analysis.
The joint-family method had the highest mean prediction abilities at
α= 0.0001, ranging from 0.22± 0.02 for CL to 0.38± 0.02 for SLB. As
the stringency of the significance level decreased to α= 0.01, however,
the mean prediction ability of the joint-family method decreased
slightly. In contrast, the response of single-family prediction ability to

Figure 1 Mean number of markers selected in the prediction models
obtained from single-family and joint-family QTL analyses methods for all
traits and three significance levels.
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relaxing the QTL significance threshold was the reverse, reaching its
optimum at α= 0.01. Even at the α= 0.01 threshold, however,
joint-family QTL analysis provided similar or slightly better
mean prediction abilities than single-family analysis for all traits
(Figure 2).
Differences in prediction abilities between joint-family and single-

family QTL analyses methods varied among families (Supplementary
Figures S4 and S5). Even at P-value thresholds where joint-family
analysis was substantially better on average than single-family analysis,
it was sometimes observed that single-family analysis was better for
one or a few families (Supplementary Figures S4 and S5). Prediction
abilities from joint-family analysis were higher than from single-family
analysis for nearly all families and traits at α= 0.0001, but were better

in only about half of the families at α= 0.01 for some traits
(Supplementary Figure S4).

Within- and across-family mean prediction abilities (Ra
2) from

joint-family method
Joint-family analysis permits the prediction of RIL values for multiple
families from a common model; we compared mean prediction
abilities within and across families for six traits at three significance
levels (P= 0.0001, 0.001 and 0.01). The mean prediction abilities
within and across families were highest when α= 0.0001 and decreased
as α increased (Figure 3). Prediction ability computed across families
was always higher (in some cases twice as high) than within families
(Figure 3; Supplementary Table S4).

Figure 2 Mean prediction abilities (Ra
2±1 s.e.) within families for joint-family (JF) and single-family (SF) QTL analyses for each of the six traits and three

P-value thresholds for inclusion of markers in step-wise regression models.

Joint-multiple family and single-family QTL analysis
F Ogut et al

555

Heredity



Variance (R2) explained by single-family and joint-family methods
The optimism (Bleeker et al., 2003) of within-family predictive ability
in the training data sets was substantial, as shown by the discrepancy
between mean within-family R2 in the training sets compared with the
prediction ability (Ra

2) measured in validation data sets for both
single-family and joint-family methods and for every combination of
trait and significance thresholds (Figure 4). The difference between
variation associated with models in training and validation data sets
increased for both single- and joint-family methods as QTL signifi-
cance thresholds were relaxed. For example, the difference between
mean R2 values in training and validation data sets for oil content
increased from 14% (single-family method) or 27% (joint-family
method) at α= 0.0001 to 43% (single family) or 54% (joint family) at
α= 0.01 (Figure 4).

Detection and deletion of collinear markers
Prediction abilities of single-family and joint-family QTL analyses
slightly increased after detection and deletion of collinear markers
from the QTL models for all traits, with the greatest improvement
occurring for the least stringent P-value thresholds (Supplementary
Table S3). Joint-family QTL analysis still provided higher within-
family prediction abilities than single-family QTL analysis across traits
after removal of collinear markers (Supplementary Table S3).

Repeatability of QTL within and across families
To test if consistency of detection of a QTL across families is related to
the probability of the QTL being selected in the joint-family model, we
compared the positions of QTL selected within each single-family
analysis to QTL positions selected by joint-family analysis. For each
SNP, we computed the proportion of analyses in which the SNP was
selected for inclusion in a final QTL model (RMIP; results for days to
anthesis are presented in Figure 5, results for other traits are presented
in Supplementary Figure S6). To simplify comparisons and account
for the fact that different but tightly linked SNPs can be selected to
represent a common QTL in different data samples, we also made
comparisons on the basis of 10-cM linkage map bins by summing
RMIP values across all markers within each bin.
To focus on the most robust QTL detected with each method and

to facilitate visual display of genomic bin RMIP values across families

and methods, we compared 10-cM genome windows with sum RMIP
values of at least 50% at a common P-value threshold of α= 0.01. The
number of robust QTL intervals (sum RMIP values at least 50%)
detected in at least one family with single-family analysis ranged
from 22 (TL) to 42 (LL) (Table 1; Figure 6). Most robust QTL
identified by single-family analysis were detected in only one family
(Figures 5 and 6). The number of these family-specific QTL intervals
ranged from 13 (TL) to 36 (LL) across families, and the mean number
of families in which a QTL interval was detected using single-family
analysis ranged from 1.3 (CL) to 3.1 (SLB) (Figure 6). More QTL were
shared among families for DA, SLB and TL than other traits. The
joint-family method detected from 7 (CL) to 14 (SLB) robust QTL
(Table 1). The concordance of robust QTL selected between single-
family and joint-family methods was generally limited, but highly
variable among traits (Figure 6). For example, 25 robust QTL were
detected in at least 1 family for CL using single-family analysis, 3 of
which were detected in 41 family (Figure 6). Of the seven robust CL
QTL detected with joint linkage, five overlapped with robust single-
family QTL (Table 1; Figure 6). In contrast, 36 robust single-family
QTL were identified for oil, but only 4 of these overlapped with the 10
robust joint-family QTL (Table 1; Figure 6).
Comparison of robust QTL detected by single- and joint-family

methods relied on imposing an arbitrary threshold to define a ‘robust’
QTL. Visual inspection of histograms of the number of models in
which each QTL was included (Figure 5 and Supplementary Figure S6)
suggests that many of the most robust QTL (RMIP⩾ 50%) were rare,
being detected in few families. By relaxing the threshold of QTL
declaration to a 10-cM window with minimum sum RMIP of 10%, we
observed better concordance between single-family and joint-family
QTL compared with the 0.5 RMIP threshold (Table 1).
To make comparisons between the sets of markers included in

different analyses without imposing any RMIP threshold, we also
estimated the correlation coefficients of RMIP values for each marker
individually and for each sum RMIP values in 10-cM bins between
single- and joint-family methods at α= 0.01 (Table 2). The con-
cordances between RMIP values of individual markers in single-family
and joint-family methods were moderate and ranged from 0.45 to 0.53
across traits (Table 2). At the resolution of 10-cM bins, consistencies
between single-family and joint-family methods were higher, ranging
from 0.64 to 0.77 (Table 2).
RMIP comparisons between single- and joint-family models at a

common P-value threshold are confounded with a higher global type I
error rate for single-family models, since each marker is tested 25
times independently among the single-family models. Therefore, we
also made the comparisons of QTL model RMIP profile similarity
between joint-family models with markers selected at P= 0.01 and
single-family models with markers selected at P= 0.0001, similar to
the Bonferroni-corrected type I error rate of P= 0.01/25. This
adjustment reduced the correlation between single- and joint-family
RMIP values (Table 2) because it resulted in a much higher
proportion of QTL positions unique to the joint-family analysis,
although it reduced the proportion of QTL unique to single-family
analyses (Table 1).
Germplasm grouping of the families had little discernible

relationship to within-family prediction ability, with the exception of
flowering time (DA) and disease resistance (SLB), for which the
tropical-derived families tended to have higher prediction ability
(Supplementary Figure S5).

Figure 3 Within-and across-family mean prediction abilities (Ra
2±1 s.e.) for

six traits and three P-value thresholds for inclusion of markers in joint-family
regression models.
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DISCUSSION

Previous empirical QTL mapping studies have demonstrated that joint-
family mapping methods are generally better than single-family map-
ping in terms of the number of QTL detected, the likelihood statistics
for QTL, the precision of QTL position estimates and the proportion of
variation accounted for by the QTL (Blanc et al., 2006; Coles et al.,
2010; Steinhoff et al., 2011). However, since the true QTL positions and
effects are unknown in empirical studies, these studies could not
independently validate the superiority of joint-family analyses. Simula-
tion studies (for example, the study by Li et al. (2011)) permit
comparison of models for their accuracy to detect true QTL positions
and effects, but they are also limited by the difficulty in modelling ‘true’

genetic architectures that reflect reality (Myles et al., 2009; Wimmer
et al., 2013). Cross-validation approaches using empirical data offer an
alternative approach that can also be useful to compare models based
on their ability to predict genotypic values of individuals or lines that
were not included in the selection and estimation of QTL parameter
estimates (Utz et al., 2000; Schön et al., 2004).
Previous reports of trait variation accounted for by joint-family

linkage models in the maize NAM population (Buckler et al., 2009;
Kump et al., 2011; Tian et al., 2011; Hung, Shannon, et al., 2012) were
‘optimistic’ (Bleeker et al., 2003), being biased upward by estimating
the variation accounted by the model with the same data used to
estimate the QTL model parameters (Figure 4; Schön et al., 2004).

Figure 4 Within-family mean R2 from training data and Ra
2 from validation sets obtained from joint-family (JF) and single-family (SF) QTL analyses for each

of six traits and three P-value thresholds for inclusion of markers in models. SF(T) is the mean model R2 for single-family analysis in training data sets, SF(V)
is the mean Ra

2 for single-family analysis in validation sets, JF(T) is the mean model R2 for joint-family analysis in training data sets and JF(V) is the mean
Ra

2 for joint-family analysis in validation sets.
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Figure 5 The concordance between markers selected in multiple regression models by single-family and joint-family (JF) methods for days to anthesis. The
resample model inclusion probabilities (RMIP) from repeated data samples at α=0.01are shown for each marker on each of the 10 chromosomes of maize
(one marker per cM) for each single-family (indicated by the non-B73 founder) or by joint-family (JF) analysis. Markers with RMIPo0.1 are in black, markers
selected with RMIP between 0.1 and 0.5 are in turquoise and markers selected with RMIP⩾0.5 are in dark blue.

Table 1 The concordance between robust QTL detected by SF and JF methods calculated as the sum of RMIP from repeated data samples

across all markers within each 10-cM genome window and trait

Trait Sum RMIP⩾0.1 Sum RMIP⩾0.5

SF only QTL JF only QTL QTL detected with both methods SF only QTL JF only QTL QTL detected with both methods

CL 55 2 77 20 2 5

DA 48 1 96 25 3 6

SLB 45 4 89 16 3 11

LL 52 1 88 35 1 7

TL 49 3 85 17 6 5

Oil 46 2 82 32 6 4

Similar global type I error rates (JF α=0.01, SF α=0.0001)
CL 11 41 38 5 3 4

DA 15 53 44 9 2 7

SLB 8 41 52 6 5 9

LL 20 38 51 13 2 6

TL 8 41 47 8 10 1

Oil 8 43 41 8 8 2

Abbreviations: JF, joint family; QTL, quantitative trait locus; RMIP, resample model inclusion probabilities; SF, single family.
Comparisons are made between models selected with equal test-wise type I error rates (α=0.01) or with similar global type I error rates based on a Bonferroni correction for multiple testing across
single families (α=0.01 for JF; α=0.0001~0.01/25 for SF). Two sum RMIP value thresholds were compared with declare robust QTL: windows with minimum sum RMIP of 0.1 or 0.5. SF only QTL:
the number of robust QTL intervals detected in at least one family only with the single-family method. JF only QTL: the number of robust QTL intervals detected only with the joint-family method.
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In addition, since NAM comprises 25 distinct biparental families, the
joint-linkage models account for among-family differences with a
population main effect, which alone often accounts for a substantial
portion of the observed variation (Supplementary Table S4; Figure 3).
The cross-validation ability of genotype predictions across families is
highly influenced by the population main effect estimates, which alone
have prediction abilities of 21–69% across families (Supplementary
Table S4).

Single-family and joint-family analyses had distinct optimum
thresholds for selecting markers in prediction models. Prediction
ability of single-family models improved with less stringent thresholds
and were optimal at P= 0.01, but then declined when the threshold
was relaxed further to P= 0.05 (Figure 2; Supplementary Figure S3),
whereas joint-family models were optimal at P= 0.0001 (Figure 2).
The higher stringency threshold optimum for joint-family analysis
compared with single-family analysis is congruent with a simulation of

Figure 6 The concordance between robust QTL detected by single-family (SF) and joint-family (JF) methods at the resolution of 10-cM windows for each
trait. Resample model inclusion probabilities (RMIP) from repeated data samples at α=0.01were summed for all markers within a window. Only robust
genome bins with sum RMIP values of at least 0.5 are displayed in colour. Vertical lines intersect robust QTL windows detected by JF to help compare JF
with SF results. Venn diagrams for each trait indicate the total number of robust QTL windows detected with either or both SF or JF analyses. The number of
robust QTL detected in only one family by SF analysis (Nfamily-specific QTL) and the mean number of families in which each of these robust QTL were detected
by single-family analysis (Nfam=SFQTL) are also displayed for each trait. A, oil content; B, days to anthesis; C, southern leaf blight; D, leaf length; E, tassel length;
F, cob length.
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QTL-based selection (Blanc et al., 2008). The drop-off of predictive
ability in single-family analysis between P= 0.01 and 0.05 thresholds
contrasts with results of previous simulations of QTL-based selection
(Hospital et al., 1997; Bernardo and Charcosset, 2006), however. In
those previous studies, the optimal thresholds for single-family QTL-
based prediction were often much higher, for example, P= 0.40
(Bernardo and Charcosset, 2006). One likely cause of the higher
optimal thresholds for inclusion of markers in the prediction model
observed in this study was the higher marker density. For example,
Hospital et al. (1997),Bernardo and Charcosset (2006) and Blanc et al.
(2008) simulated marker densities from one marker per 5–50 cM,
compared with one marker per cM in this study. With more markers
available for selection, the possibility of highly collinear markers being

selected in the prediction models is greater. Results from our
collinearity reduction procedure indicate that collinearity was not a
major problem at stringent P-value thresholds, but clearly caused
overfitting of models at the most relaxed threshold (Supplementary
Table S3).
The highly parameterized nature of joint-linkage models also

rendered them susceptible to overfitting, even though the combined
data set was much larger than typical biparental QTL studies. The
number of parameters estimated in joint-linkage models was some-
times very large, with many QTL detected and 25 allele effects
estimated per QTL. For example, the mean number of markers fit
in joint-family models at the P= 0.01 threshold was 460 for some
traits (Figure 1), resulting in 60× 25= 1500 allele effect parameter

Figure 6 Continued.
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estimates. For this reason, the higher stringency in the range of
thresholds tested improved the predictive ability of the joint-linkage
models. Further increases in the QTL detection stringency would be
counterproductive, however, as joint-linkage models seem to gain
predictive power over single-family models by including larger
numbers of QTL.
Diverse models have been used to relate marker variation to trait

variation in multiple family mapping studies. Würschum (2012)
reviewed these models and noted a primary distinction between
models that estimate the marker allele effect across families based
on identity by state (association analysis models), and those that
estimate a marker allele effect based on identity-by-descent (linkage
analysis models). In this study, we tested only linkage analysis models,

but linkage and association analyses are complementary and can be
combined in the analysis of the maize NAM population (Kump et al.,
2011; Tian et al., 2011).
Among identity-by-descent linkage analysis models, there is another

major division between models that assume consistent effects of IBD
QTL alleles across families (‘connected models’) and those that allow
IBD QTL allele effects to vary across families (‘disconnected models’;
Rebaï and Goffinet, 2000; Blanc et al., 2006). The optimal IBD linkage
model for multiple family analysis appears to vary among studies and
traits; disconnected models are superior when QTL allele effects vary
considerably across families, possibly due to epistatic interactions with
the family genetic background (Blanc et al., 2006; Coles et al., 2010;
Steinhoff et al., 2011, 2012). The precise form of connected or

Figure 6 Continued.
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disconnected models used for linkage analysis depends on the mating
design used to construct inter-related mapping families, and previous
multiple family mapping studies have investigated a wide range of
mating schemes (Wu and Jannink, 2004; Blanc et al., 2006; Verhoeven
et al., 2006; Coles et al., 2010; Steinhoff et al., 2011). The maize NAM
population is a reference mating design (in which all biparental
families have a common parent), which represents one extreme of
multiple family designs. In the reference design, there is no distinction
between connected and disconnected models because although the
reference allele can be modelled as consistent (‘connected’) across
families, the effect of the other founder allele in each family is unique
and cannot be tested for variation across families. The reference design
offers an important practical benefit of improving the adaptation of
diverse mapping families, permitting the value of QTL alleles from
unadapted germplasm sources to be compared in reasonably adapted
genetic backgrounds. The reference design also enables efficient
sampling of allelic diversity for a fixed number of populations (equal
to the allelic sampling of the single round robin design and better than
diallels), but may have reduced power of detecting connected QTL
allele effects compared with other designs. The results of this study
suggest that joint-family analysis of the maize NAM design may be
underpowered to detect strong but rare QTL; compensating for this is
its ability to detect more commonly segregating but smaller effect
QTL. Further, these results indicate value in conducting and compar-
ing both single- and joint-family analyses of maize NAM to identify
both common and rare QTL. The most commonly segregating robust
QTL we observed across all traits were detected in four to six
individual families (Figure 6). An oil content QTL on chromosome
6 was detected in 450% of training sets for four single families and
for joint analysis (Figure 5 and Supplementary Figure S6); we believe
this QTL represents the large effect of the DGAT gene (Cook et al.,
2012). Two flowering time (DA) QTL with RMIP450% were
detected in four families and in joint analysis (Figures 5 and 6). The

chromosome 8 QTL represents a region that contains the known
flowering time loci Vgt1 and Zcn8 (Salvi et al., 2007; Buckler et al.,
2009; Hung, Shannon, et al., 2012) and the chromosome 10 QTL
represents the effect of the major photoperiod gene ZmCCT (Hung,
Shannon, et al., 2012; Yang et al., 2013). The robust chromosome 3
SLB QTL in the genome bin between 40 and 50 cM was detected in six
individual families but not in joint-linkage analysis (Figure 5 and
Supplementary Figure S6). However, robust QTL were detected in
each adjacent 10-cM window in two to three families and in joint-
linkage analysis. Initial mapping studies of this region detected a single
QTL, but higher resolution analysis using the intermated B73×Mo17
population identified two distinct QTL in that family that were
apparently fused into a single-QTL signal within smaller, lower
resolution RIL families (Balint-Kurti et al., 2007). It seems likely that
the QTL detected in the 40–50-cM window in many families is in fact
an intermediate position that absorbs most of the effects of two or
more linked QTL, and that the joint-family analysis was able to
separate these effects due to its larger population size and sampling of
more recombinations in this region (Li et al., 2011).
The existence of many rare QTL in the diverse founders sampled for

NAM should minimise the effectiveness of joint-linkage analysis in
this population compared with other possible mating designs that
would provide higher replication of rare founder QTL. The joint-
linkage model would fit 25 allele effects, only 1 of which should be
significant to capture the effect of a single-rare QTL. Thus, it would
seem difficult for the joint-family analysis to capture a large number of
rare QTL effects in a single model; in this situation single-family
analysis should be better able to capture rare allele effects and provide
better prediction ability. Nevertheless, we observed that even in this
non-optimal situation, joint-family analysis almost always outper-
formed single-family analysis in terms of prediction ability at a
common threshold (Figure 2). This apparent contradiction could
occur because of the allelic effect series at QTL observed in joint-
linkage results. The allelic series implies that a locus tends to either
have no significant effect across all families (no QTL) or has effects in
multiple families, even if the effects are distinct. Joint-family analysis
will have an advantage in cases where QTL positions are shared across
families by increasing the power to include the QTL positions in the
prediction model. The consistency of QTL positions across families
can be inferred from the high overall correlations between sum RMIP
values of genome windows (Table 2) despite the limited congruence of
robust QTL effects (Figure 6).
Single-family analysis used in combination with joint-family analy-

sis may help identify rare QTL that may be of biological interest and
targets for follow-up genetic analyses. The two analysis approaches
should be considered complementary. As an example, M37W carries
its most robust QTL for days to anthesis at 5 cM on chromosome 9
(RMIP= 0.80), but this position is selected in o4% of models for
other single families or for joint linkage (Figure 5). Thus, joint linkage
has low power, but analysis of the B73×M37W family alone has high
power to detect this rare QTL. In contrast a QTL was detected at
60 cM on chromosome 9 at RMIP40.10 in six single-family models,
but joint-family analysis detected this QTL in 38% of models, more
than in any single family (Figure 5), demonstrating the power of joint
linkage to detect shared QTL with higher power than single-family
analysis. An alternative strategy would be to implement a more
parsimonious joint-linkage analysis that selects only specific QTL
alleles (and constrains unselected allele effects to zero) rather than
fitting effects of all alleles at every QTL in the model. Such an
approach might capture the complementary strengths of single- and
joint-family analyses in a single model. Further research will be

Table 2 Pearson correlation coefficients (r) of RMIP values between

single-family and joint-family QTL analyses applied to random 80%

data subsamples of the full data set

Correlation (r) between RMIP values from single-family versus joint-family analysis

Trait RMIP per marker Sum RMIP per 10-cM bin

Equal test-wise type I error rates (JF α=0.01, SF α=0.01)
CL 0.49 0.77

DA 0.50 0.72

SLB 0.51 0.67

LL 0.45 0.64

TL 0.48 0.74

Oil 0.53 0.67

Similar global type I error rates (JF α=0.01, SF α=0.0001)
CL 0.38 0.62

DA 0.43 0.61

SLB 0.42 0.51

LL 0.29 0.47

TL 0.21 0.50

Oil 0.42 0.51

Abbreviations: JF, joint family; QTL, quantitative trait locus; RMIP, resample model inclusion
probabilities; SF, single family; SNP, single-nucleotide polymorphism.
Comparisons are made between models selected with equal test-wise type I error rates
(α=0.01) or with similar global type I error rates based on a Bonferroni correction for multiple
testing across single families (α=0.01 for JF; α=0.0001~0.01/25 for SF). RMIPs were
calculated for each SNP separately and also as sums over markers within 10-cM genome bins.
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required to develop this method and compare it to the joint-linkage
model used in this study. Finally, model averaging procedures could
be used to combine results from single- and joint-family QTL analysis
for genotype prediction, but as interest turns towards prediction and
away from understanding the underlying genetics of trait variation
genomic selection procedures would be the appropriate baseline
comparison (Guo et al., 2012; Wimmer et al., 2013). Indeed,
Lehermeier et al. (2014) demonstrated that joint analysis of related
families with genomic prediction models can improve predictions over
family-specific genomic prediction models.
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