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ABSTRACT

HKG is the first fully accessible variant database for
Hong Kong Cantonese, constructed from 205 novel
whole-exome sequencing data. There has long been
a research gap in the understanding of the genetic
architecture of southern Chinese subgroups, includ-
ing Hong Kong Cantonese. HKG detected 196 325
high-quality variants with 5.93% being novel, and 25
472 variants were found to be unique in HKG com-
pared to three Chinese populations sampled from
1000 Genomes (CHN). PCA illustrates the unique-
ness of HKG in CHN, and the admixture study es-
timated the ancestral composition of HKG and CHN,
with a gradient change from north to south, consis-
tent with their geological distribution. ClinVar, CIViC
and PharmGKB annotated 599 clinically significant
variants and 360 putative loss-of-function variants,
substantiating our understanding of population char-
acteristics for future medical development. Among
the novel variants, 96.57% were singleton and 6.85%
were of high impact. With a good representation of
Hong Kong Cantonese, we demonstrated better vari-
ant imputation using reference with the addition of
HKG data, thus successfully filling the data gap in
southern Chinese to facilitate the regional and global
development of population genetics.

INTRODUCTION

Hong Kong is a densely populated city in southern China.
Its population dynamics are strongly associated with its
historical background, especially regarding the transition
from a British colony into a Special Administrative Region

(SAR) of China in 1997, so it has a unique migration his-
tory (1). About 90% of the early settlers in Hong Kong are
thought to have originated from Guangdong Province in
southern China (2), and the majority of them were Can-
tonese (3). Cantonese is, however, often loosely defined and
refers mostly to a Yue-speaking Han Chinese sub-group
in the large southern China region. The Yue people also
comprise other subgroups, including Teochew and Hakka,
possibly with different ancestries. However, all of them are
genetically under-represented in current studies and are
vaguely regarded as a mixture of southern Han Chinese (4–
6). Possibly because of the high population complexity, ge-
netic correlations between subgroups can be found only in
a few old studies (6,7). The limited availability of sequenc-
ing data in the southern Han Chinese subgroups, includ-
ing Hong Kong Cantonese, also restricts further investiga-
tion into their genetic specificity and connections with other
Chinese subpopulations. Therefore, the genetic architecture
and composition of the Hong Kong population is still un-
clear, so there is a need to fill the gap of genetic diversity in
Chinese populations.

Several large-scale population genetic studies are
available as good references for East Asian and Chinese
populations. The Genome Aggregation Database (gno-
mAD, https://gnomad.broadinstitute.org/) complements
the world’s largest variant database dbSNP (8), with
variants from Whole-Exome Sequencing (WES) and
Whole-Genome Sequencing (WGS) samples from East
Asia, providing annotations at the super-population level.
The NARD database sampled 1690 WGS data of several
Northeast Asian populations, including samples from
Korea, Japan and China (9). Note that only about 3.4% of
its samples were obtained from Hong Kong in this study,
but not specifically Cantonese. Wang et al. compared
seven genome-wide data sets from 46 recent groups and 166
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ancient groups of East Asians, revealing the evolution of ge-
nomic composition in East Asia (10). The worldwide 1000
Genome Project (1KGP) sampled 388 individuals from
three well-represented Chinese populations, including Han
Chinese in Beijing, southern Han Chinese, and Chinese Dai
in Xishuangbanna (7). The GenomeAsia project analyzed
WGS data of 1,739 individuals from 219 populations and
groups across Eastern and Southern Asia, including China.
Recent large-scale Chinese population studies, including
ChinaMap and Nyuwa, also involved intensive Chinese
sampling (11,12). However, as a representative of southern
China, there are very few large-scale genomic resources
specific to Hong Kong for characterizing the Cantonese
population, which is essential to elucidate its adaptive
changes (13) and promote further medical development
(14). Owing to the increasing need to gather genetic data
for population-wide studies, Yu et al. recently analyzed
the WES data of 1,116 Hong Kong samples and identified
a set of variants for potential pharmacogenetic use in
Hong Kong (15). Most of their variant data, however,
are not publicly available. The government announced
plans to organize a Hong Kong-specific genome institute
(HKGP), but it is still at an early stage of development (15).
Therefore, our Hong Kong (HKG) database was developed
to broaden the availability of freely accessible genomic
resources for Hong Kong Cantonese to facilitate more
effective intra- and inter-population-wide comparative
analyses.

In this study, we describe HKG, the first and by far the
largest openly available variant database for Hong Kong
Cantonese, extracted using 205 high-quality whole exome
sequencing data. Exome sequencing can capture the most
informative sections of the entire genome as efficiently as
WGS (16), allowing highly confident annotations and effec-
tive consequence interpretations. We also show the ability
of HKG to better position Hong Kong Cantonese among
other Chinese populations, update the population-specific
information, especially for clinically significant variants,
and improve variant imputation and correlation with local
samples. HKG can potentially be a pioneer in providing a
reference for development in upcoming regional and local
genetics studies.

MATERIALS AND METHODS

Ethics statement

This project was reviewed and approved by the University
of Hong Kong Human Research Ethics Committee (HREC
reference number: EA200067). This was a secondary data
analysis project for sequencing protocol and bioinformat-
ics algorithm development, and informed consent was not
required by the Committee. All procedures were performed
in accordance with relevant guidelines and regulations.

Data acquisition

The paired-end 150bp raw reads used in the current study
are from the Clinical Genetic Service of the Department of
Health of Hong Kong. The samples originated from 205 in-
dividuals in the Hong Kong SAR who self-reported as Can-
tonese. The samples were target captured using SureSelect

Human All Exon V6 (Target Size 60M) of Agilent Tech-
nologies and were sequenced using Illumina NovaSeq 6000
in the Novogene Tianjin Sequencing Center & Clinical Lab
for 200× target depth according to the manufacturer’s in-
structions.

Joint variant calling, recalibration and filtering

Cleaned reads were aligned with BALSA (17) to the
GRCh38 reference release 5 (GCA 000001405.20) with de-
coy hs38d1 (GCA 000786075.2), and then sorted with sam-
tools v1.10 (18). Duplicated reads were marked by Picard
v2.0.1 (19). Variants were first called from individual sam-
ples using the HaplotypeCaller module in GATK v4.1.3.0
(20) and were stored in GVCF format. GenomicsDBImport
and GenotypeGVCFs modules were then used to perform
joint variant calling on all 205 samples.

The GATK Variant Quality Score Recalibration (VQSR)
was used to remove low-quality variants. The SNP VQSR
model was trained using HapMap (21) v3.3 and 1KGP
Omni v2.5 SNP sites, and the INDEL VQSR model was
trained using the Mills et al. (22) 1KGP gold standard
and Axiom Exome Plus indel sites. Sensitivity thresholds of
99.6% and 95.0% were used to filter SNPs and INDELs, re-
spectively. In addition, we filtered out sites using the same
filter criteria used by ExAC (23): (i) InbreedingCoeff (in-
breeding coefficient) <–0.2; (ii) AC (allele count) = 0; (iii)
DP (depth) < 10 or (iv) GQ (Genotype Quality) <20. The
filtration was performed using bcftools (v1.10.2).

Variant annotation

The stats module in bcftools was used to get the vari-
ant statistics. We used bcftools to split multi-allelic records
into multiple bi-allelic records for variant annotation
and conducted annotations of each allele with the Vari-
ant Effect Predictor (VEP) tool (Ensembl GRCh38 re-
lease 100). dbNSFP4.0a was used to get the annota-
tions of dbSNP ID, GnomAD population allele frequency,
ExAC population allele frequency, SIFT, Polyphen2,
MetaSVM, MetaLR, CADD, GERP++, phyloP100way,
phastCons100way, 1KGP population allele frequency, Ex-
ome Variant Server population allele frequency, and Clin-
Var Clinical significance. ClinVar (v2020-07-06) was used
as a custom annotation in VEP to retrieve the pathogenic
variants. We used GATK LiftoverVcf to liftover the CIViC
(v2020-08-07) database from GRCh37 to GRCh38 before
using it to get druggable variants. The LOFTEE (24) plu-
gin of VEP was used to generate the loss-of-function vari-
ant annotations. Scripts from (24) were used to retrieve the
multi-nucleotide variants (MNVs). We used DAVID (http:
//david.abcc.ncifcrf.gov) to perform the enrichment analy-
sis of gene ontology (GO) biological processes and KEGG
pathways.

Interpopulation comparison

1KGP Phase 3 (1KGPp3 20170504) variants were down-
loaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/supporting/GRCh38 positions/. A
Chinese-only dataset was generated by extracting the
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samples labeled CHB, CHS, or CDX (referred to as
1KGP CHN in the following) and excluded variants with
AC = 0. These variants were then merged with HKG by
bcftools (v1.10.2). Variants at positions either without the
‘GRCH37 38 REF STRING MATCH’ tag (25) or not
in the SureSelect Human All Exon V6 bed regions were
filtered out. The R package gdsfmt was used to convert the
datasets into gds format for SNPRelate to use as input for
PCA analysis (26,27).

For admixture analysis, we aggregated the variants in
the HKG exome bed regions, 1KGP CHN, other 1KGP
EAS (i.e. JPT, CHB and KHV), and SAS (GIH, PJL, BEB,
STU and ITU). We used PLINK (v1.90b6.10 64-bit) (28) to
remove the variants with I. missing call frequencies greater
than 0.05, II. with minor allele frequency lower than 0.05,
or III. with Hardy-Weinberg equilibrium exact test P-values
below 0.0001 (–geno 0.05 –maf 0.05 –hwe 0.0001). For each
window of 1000 SNPs, we calculated the Linkage Disequi-
librium (LD) between each pair of SNPs in the window and
filtered those LD >0.2. The filtration was repeated by mov-
ing 100 SNPs forward until all SNPs were scanned (–indep-
pairwise 1000 100 0.2). After the filtrations, ADMIXTURE
v1.3.0 (29) was applied to the rest of the variants, with the
estimated number of subpopulations (k) ranging from 2 to
15. The output of the ADMIXTURE was visualized by
Pophelper v2.3.0 (30).

Enrichment analysis of novel variants

The mapped genes from the high-impact novel variants of
HKG were obtained, as well as the three CHN populations
of 1KGP, namely CHS, CHB, and CDX. DisGeNet (ver-
sion 7.0) data was used to identify the gene-disease associa-
tions. The significant enrichments of those non-overlapped
genes among the four populations in HKG were estimated
by R package ‘phyper’. The overlap between the disease-
gene sets of DisGeNet and the 634 HKG uniquely affected
genes (i.e., those not contained in the mapped genes from
CHN) were used to calculate the P-values of the enrich-
ment. Only enrichments with P < 0.01 and FDR < 0.25
were selected.

Imputation and correlation analysis

To verify the improvement of the imputation accuracy us-
ing the HKG data as a local reference panel in addition
to the 1KGP samples, two imputations on autosomes were
performed: (i) using only the 1KGP samples as the refer-
ence panel (1KGP) and (ii) using both 1KGP and HKG
samples (1KGP + HKG). We randomly divided the 205
HKG samples into two sets, one with 204 samples used as
the reference panel, and the other with one sample used as
the test data. This step was repeated five times to gener-
ate five reference-test pairs for 5-fold cross validation. The
204 samples of each pair were merged with the 1KGP sam-
ples to create the 1KGP + HKG reference panels. Variants
with AC < 3 or (AN – AC) < 3 or with missing genotypes
were excluded. Only biallelic variants were kept for analy-
sis. For each test sample, we obtained the imputable vari-
ant intersection of the 1KGP, 1KGP + HKG, and the In-
finium OmniZhongHua-8 (v1.4) SNP array panel. In each

test sample, we randomly masked 200 variants per auto-
some. The imputation by BEAGLE 4.1(31,32) using the de-
fault setting along with niterations = 10 and ne = 20 000
was performed on each test sample with the two reference
panels (1KGP and 1KGP + HKG). To assess the imputa-
tion quality, the info score for each imputed variant was
calculated. An imputed variant with info score <0.4 (resp.
>0.7) was classified as ‘poor’ (resp. ‘confident’). The change
in info scores after the addition of HKG samples were fur-
ther compared under different HKG MAF ranges. The per-
formance evaluation was also repeated on higher % missing
SNP.

To assess the performance of HKG for correlation anal-
ysis using local samples, 58 whole genome sequencing
Hong Kong individuals from the Northeast Asian Ref-
erence Database (NARD;(9)) and 532 pharmaceutical-
related variants from Yu et al. (15) were used. The NARD
dataset (NARD MAF.hg38.vcf.gz) were downloaded from
https://nard.macrogen.com/, and 17 224 variants having AC
larger than 1 in its Hong Kong samples were considered.
The 532 variants from Yu et al. were liftover from GRCh37
to GRCh38 using GATK LiftoverVcf. Variant intersection
was obtained using bcftools isec. Variant allele frequency
regression and calculation of Cook’s distances were per-
formed using the statsmodels module in Python.

RESULTS

Discovery of variants using the WES of 205 Hong Kong Can-
tonese individuals

Deep whole exome sequencing obtained data from
∼38 Mbp targeted positions (92.24% exomic, 4.29%
intronic, 3.47% others such as intragenic positions). The
average on-target mean depth was ∼159× (96–277× per
sample), with 85% of target regions covered by on average
of at least 52× (24–101×) and an average of 64% (40–85%
per sample) covered by at least 100×. An in-house pipeline
was used to process and interpret the WES data (Supple-
mentary Figure S1, also see Materials and Methods). We
found 196,325 high-quality variants (83.99% of all called
variants), including 186 466 SNPs, 3709 insertions and
6150 deletions, after intensive quality filtering. On average,
26 221.6 variants were called per sampled individual.
The transition/transversion ratio (Ti/Tv) was 2.89 for all
bi-allelic variants that passed quality control. Breaking
down by minor allele frequency (MAF), the Ti/Tv ratio
for variants with MAF >5% and MAF ≤5% were 2.93
and 2.87 respectively. All variants were categorized based
on their AC in HKG (Figure 1A). Compared with the
worldwide distribution available in gnomAD among the
HKG targeted region, both showed approximately half of
the variants as singletons (AC = 1). We found that HKG
had more common variants (i.e. MAF > 1%).

Using the Variant Effect Predictor (VEP) of Ensembl,
the identified variants were annotated with different con-
sequences. Five main public databases (dbSNP151, 1000
Genomes, ESP6500, ExAC, gnomAD) were used to classify
each HKG variant as either known (annotated in at least
one database) or otherwise novel. 93.85% of known HKG
variants were annotated in at least two databases; 88.54%
of HKG singleton variants and 98.87% of HKG doubleton

https://nard.macrogen.com/
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Figure 1. Variant compositions of HKG samples. (A) Comparison of variants in HKG and gnomAD under different allele counts. (B) Number of variants as
a function of the number of individuals. (C) Percentage of novel variants and known variants according to MAF categories. Singleton, AC = 1; doubleton,
AC = 2; rare, AC > 2 and MAF ≤ 0.01; common, MAF > 0.01 and MAF ≤ 0.05; and very common, MAF > 0.05. (D) Percentage singletons of different
variant types and impacts.
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variants were known (Figure 1B). The relative contribution
of annotations from each database is: 36.18% dbSNP151,
33.93% gnomAD, 13.72% ExAC, 10.03% 1KGP and 6.14%
ESP6500. There were 11 659 novel HKG variants, with over
96.57% of them being singletons. Since the variants were
confidently identified using GATK joint variant calling, the
singleton variants were likely true variants rather than er-
rors. The large proportion of novel singleton variants in-
dicates that our analysis using high-depth WES data was
highly sensitive. But the number of singletons detected in-
creased with the addition of samples (Figure 1C) suggested
that the sampling is not saturated.

High-impact variants are defined as potentially altering
the protein structure, and therefore affecting functional-
ity. HKG variants were grouped into four categories by
their function impact on a transcript or coding genes in de-
creasing severity: (i) HIGH, including stop-gain or stop-loss
variants, frameshift variants, splice donor or acceptor vari-
ants and initiator codon variants, (ii) MODERATE, (iii)
LOW and (iv) MODIFIER (Table 1). The variants (SNPs
or INDELs) of higher impact were more likely to be single-
ton than those of lower impact (Figure 1D). A large number
of variants were missense (42.46%), synonymous (31.32%)
or intron (8.81%) variants. However, there were relatively
few missense mutations at high MAF: at MAF >1%, the
distribution became 15.26% missense, 23.99% synonymous,
23.50% intron. On the other hand, deleterious mutations,
such as frameshift, gain of stop codon, and splice site vari-
ants, were mostly singletons. INDELs were generally less
common as they are likely to cause deleterious frameshift,
so many more singletons were found as SNP in the HKG ex-
ome data (Figure 1D). There was a lower proportion of IN-
DEL singletons with LOW and MODIFIER impact (15%
and 28% resp. in INDEL; 45% and 43% resp. in SNP; details
in Table 1) as well.

A multi-nucleotide variant (MNV) is a combination of
multiple variants coexisting in the same codon on the
same haplotype. There were 800 MNVs that occurred in
at least two individuals, and 254 of them were caused by
two consecutive nucleotide changes. Since exome regions
have higher GC content than other regions (33) and CpG
sites have higher mutation rates (34), we observed an ex-
pected high percentage (36.81%) of MNVs related to tran-
sitions at CpG sites (Supplementary Figure S2). We found
658 (82.25%) MNVs that might alter the protein in a dif-
ferent way than considering two single variants separately
(35). The alteration of consequence is listed in Supplemen-
tary Table S1. 48.88% of the MNVs were missense vari-
ants. All nonsense single variants found in MNV pairs
were rescued in HKG, so they were no longer causing
protein truncation or disease. Rescued nonsense MNVs
were involved in disease-related genes COL9A2, SYNE2
and DNAH11 (36). COL9A2 is associated with autosomal
dominant Multiple Epiphyseal Dysplasia 2, and SYNE2
is related to autosomal dominant Emery-Dreifuss muscu-
lar dystrophy 5. DNAH11 is associated with autosomal re-
cessive primary ciliary dyskinesia-7. Severely affected con-
sequences, such as ‘gained nonsense’ and ‘rescued non-
sense’ MNVs, were found in various genes. Among the
gained nonsense MNVs, one of the affected genes was
HLA-DRB1, which is related to rheumatoid arthritis. The

variants chr6:32584314G > T and chr6:32584315A > T in
HLA-DRB1 were originally classified as separate missense
variants, while their MNVs was identified as a nonsense mu-
tation (i.e., changing the Phenylalanine to a stop codon).
This MNV was heterozygous in 4 HKG samples, affecting
only one copy of the gene. We found two other heterozygous
nonsense MNVs in HLA-DRB5 (chr6:32522110GA > TT)
and SLC30A8 (chr8:117172544CG > TA), in 4 and
12 individuals respectively. We found a stop-loss MNV
chr14:105907227TT > CC in IGHD2-8 shared by 33 indi-
viduals, and none of them are homozygous. IGHD2-8 is one
of the IG D (diversity chain immunoglobulin gene) that un-
dergoes somatic recombination before transcription. Dur-
ing somatic recombination (37), a pair of IG D and IG J
genes (joining chain immunoglobulin gene) are joined to-
gether by randomly deleting the DNA between them. Af-
ter somatic recombination, somatic hypermutations in the
mRNA can also increase immunoglobulin diversity. The
random somatic recombination and somatic hypermuta-
tions could dilute the impact of this MNV by deleting or
changing the sequence that contains the MNV. The vari-
ant chr11:71816849CG > TA on ZNF705E was homozy-
gous, found in 12 individuals, which might introduce an
early truncation to the protein. It was also located at the
last exon of the gene with only one transcript, and therefore
might have functional implications.

Population comparison of HKG variants

The 1KGP project contains the largest amount of publicly
available Chinese (CHN) population genetic data, including
southern Han Chinese (CHS), Beijing Han Chinese (CHB)
and Dai minority in southwestern China (CDX). Other re-
cently developed Chinese databases (11,12) do not provide
the full variant list for batch download, so they were not in-
cluded for HKG comparison. There were 128,470 variants
recorded among the four populations. There were 25,472
variants uniquely found in HKG compared with CHN, and
4,366 shared variants with 5-fold differences in MAF in at
least one CHN. The CHS has the highest number of shared
variants with HKG (81 658 shared variants), while CHB
has the largest number of unique variants shared with HKG
(7673 variants) (Figure 2A). All four populations had a sim-
ilar percentage of singletons. Our PCA analysis suggests a
unique composition of HKG among CHN, even compared
with the closely related CHS, although there was no clear
separation boundary among CHB, CHS and HKG (Figure
2B). This suggests that the genetic relatedness of CHN and
HKG has been correlated with their geographic location. In
addition, as expected, we confirmed that HKG was part of
the East Asian (EAS) population by PCA (Supplementary
Figure S3).

To investigate the ancestral population structure of HKG,
we performed an ADMIXTURE analysis of CHN, HKG,
five EAS populations, and six South Asian populations
using 1,159,511 autosomal markers. The lowest cross-
validation error was achieved when the number of hypo-
thetical ancestral components was set to 5 (K = 5), as
shown in Figure 2C with full illustration in Supplemen-
tary Figure S4. With two hypothetical ancestral compo-
nents (K = 2), the results did not show a big difference be-
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Figure 2. Comparison of variants among HKG and other populations. (A) Venn diagram of variants in HKG and three Chinese populations of 1KGP
CHS, CHB and CDX. CHB: Han Chinese in Beijing, China; CHS: southern Han Chinese; CDX: Chinese Dai in Xishuangbanna, China. (B) PCA of
HKG and CHS, CHB and CDX. (C) ADMIXTURE analysis of HKG samples with East Asian and South Asian samples in 1KGP (K ranges from 2 to
7). Number of ancestries K = 5 best fits the model. Different colors represent different ancestry components. JPT: Japanese in Tokyo, Japan; KHV: Kinh
in Ho Chi Minh City, Vietnam; GIH: Gujarati Indian from Houston, Texas; PJL: Punjabi from Lahore, Pakistan; BEB: Bengali from Bangladesh; STU:
Sri Lankan Tamil from the UK; ITU: Indian Telugu from the UK.
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tween HKG and CHN, but HKG also captured a few in-
dividuals with completely different major ancestral com-
ponents than the rest of HKG. These outliers consistently
(from K = 2 to K = 15) showed a similar composition to
other East Asian populations, such as Punjabi of Pakistan,
and Bengali of Bangladesh, which were common minorities
in Hong Kong for generations (https://www.bycensus2016.
gov.hk/en/Snapshot-10.html, Point 2). K = 5 showed a clear
separation of the populations, with three ancestral compo-
nents dominated in HKG and CHN (in Vietnam as well).
Two of the major ancestral components gradually changed
in proportion from the northern to southern Chinese sub-
populations. The dominant ancestral populations in the
northern Chinese (purple) were progressively diluted to-
wards the south, whereas the proportion of the minor an-
cestral population in the northern Chinese (red) gradually
increased towards the southern Chinese. The compositions
of these two major components also showed differences be-
tween the closely related CHS and HKG, suggesting devi-
ation in the ancestry of Hong Kong Cantonese from CHS.
Further separation from K = 7 onwards becomes ambigu-
ous, suggesting a simple ancestral population in China,
which agrees with other Chinese population studies (11,12).

The application of exome data for Identical-by-Descent
(IBD) analysis is likely to cause bias in the size and num-
ber of IBD segments detected due to many uncovered posi-
tions. In this study, we conducted the IBD analysis with in-
tensive post-filters to characterize the population of HKG,
only for comparing to the other CHN populations (meth-
ods and results in Supplementary Note and Supplementary
Table S2). The result suggests that HKG is not as isolated
as the CDX and has a lower population mixture than the
CHB. Again, the interpretation of exome-based IBD results
should be done cautiously. We expect a more reliable IBD
study will be conducted when whole genome sequencing of
more Hong Kong individuals are available from projects
such as the Hong Kong Genome Project.

HKG-specific clinical annotations

A total of 96 795 variants (49.3% of all high-quality HKG
variants) identified in at least two HKG individuals were
classified as high-confidence variants, 31.26% of which were
rare variants (MAF < 1%). To evaluate the potential contri-
bution of HKG variants for biomedical use, we investigated
189 variants with pathogenicity, 410 druggable variants, and
360 LoF variants in greater detail.

Among the 189 ClinVar pathogenic variants found in
HKG, only seven were reported in existing studies with
Hong Kong samples (9,15). There were 169 annotated
pathogenic rare variants (MAF ≤ 1% in HKG and world-
wide) located in 141 genes. The details of these annotated
pathogenic variants and their annotations are listed in Sup-
plementary Table S3. Among the 20 annotated pathogenic
variants which were common (MAF > 1%) in HKG, were
reported as pathogenic by other Chinese population stud-
ies in ClinVar. The pathogenicity of these variants among
Hong Kong Cantonese should therefore be further evalu-
ated. Among the rest, nine pathogenic variants were found
to have much higher AF (>5 times higher) in HKG com-
pared to the worldwide records, and 13 were also found

to be common variants in gnomAD of other EAS samples
(Supplementary Table S4). Also, 12 common variants were
annotated pathogenic with reference only to Western and
East Asian populations studies, so they lack support from
Chinese data. Thus, it is reasonable to conjecture that these
high MAF variants are not pathogenic in HKG.

In total, 410 pharmaceutical-related high-confidence
variants were annotated in CIViC and PharmGKB
databases, providing a possible guide for drug use. Only
four of them were also reported in a recent pharmacoge-
netics study (15). Among the 24 CIViC variants in HKG,
22 are common variants (MAF > 1%), so they are more
likely to be drug effective in the population. We also found
that some of these variants had significantly different MAF
between the Chinese and non-Chinese populations. These
variants might affect drug usage and treatment plans. For
example, the variant rs1799782, which is related to Lung
Non-small Cell Carcinoma and can increase the response
rate of chemotherapy (38), has a much higher MAF in HKG
(30.50%) and gnomAD EAS (30.52%) than in the world-
wide distribution (9.46%).

There were 401 HKG variants with PharmGKB anno-
tations, six of which were not found in gnomAD but were
common in HKG (MAF > 1%). Two of these variants,
rs6318 and rs3758581, had an extremely high MAF of over
95%. The G allele of variant rs6318 accounted for 98.5% in
HKG, which could be associated with an increased likeli-
hood of drug-related weight gain based on three different
human studies (39–41). Another variant, rs3758581, had
95.1% MAF, which is associated with drug response of flu-
oxetine, fluvoxamine, and voriconazole based on three in
vitro studies (42–44).

Other than database annotations, we found 1276 LoF
variants that occurred in at least two HKG samples using
the LOFTEE annotation in VEP, 878 of which were re-
moved due to low confidence. Three variants were marked
as false positives because the alternative allele was the an-
cestral state (33). Common variants (MAF > 0.5) in gno-
mAD were regarded as errors in the reference (33) and
were not analyzed. Therefore, we found 306 highly reliable
LoF variants on 301 genes in HKG; 68.5% of the vari-
ants were SNPs and 31.9% INDELs; 175 variants were rare
(MAF ≤ 1%) and 185 were common (MAF > 1%). How-
ever, there was not significantly enriched GO term, KEGG
pathway or disease association being found.

Analyses of novel variants in HKG

By comparing five promising databases – dbSNP, gno-
mAD, 1KGP, ExAC and ESP6500––we obtained 11 659
novel variants (10 641 SNPs/366 insertions/652 deletions)
after stringent filtering. Out of these novel variants, we
identified 26 common variants (MAF > 5%), 88 low-
frequency variants (MAF = 1–5%), and 54 rare variants
(MAF < 1%). More than 96% of the novel variants were
singletons (i.e. AC = 1), which was higher than that in Chi-
naMAP (75.3%) and NyuWa (86.8%), using whole genome
sequencing data. The impact distribution of these novel
variants was: 18.99% HIGH, 6.56% MODERATE, 3.94%
LOW and 6.39% MODIFIER. The proportion of high-
impact variants in the novel sets is significantly higher than

https://www.bycensus2016.gov.hk/en/Snapshot-10.html
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the known sets (Figure 3A). A comparison of novel and
known variants in different AF categories under each im-
pact level is shown in Supplementary Table S5.

We computed pathogenicity scores using the C-scores re-
ported by CADD (Combined Annotation-Dependent De-
pletion), a widely used database of pathogenicity. A higher
C-score or pathogenicity score means more deleterious out-
comes. The mean pathogenicity scores of novel variants and
all (i.e. novel + known) variants of HKG were 14.4 and
10.5, respectively. A larger proportion of novel variants fell
into the high score range (>20) compared to all variants
of HKG (Figure 3B), indicating that a larger percentage
of novel variants were more deleterious. Among the 175
rare LoF variants in HKG, six (3.43%) were also present
in 799 VEP annotated high-impact novel variants (Figure
3C). The biological association study mapped 799 high-
impact novel HKG variants to 731 coding genes, which
were significantly enriched with cilium assembly and mor-
phology, ECM-receptor interaction, protein transport, mi-
crotubule cytoskeleton organization, sister chromatid cohe-
sion, and protein digestion and absorption (Figure 3D). We
also obtained a set of high-impact variant-mapped genes
that were present only in HKG but not in other CHN.
Other disease-associated genes which were potentially re-
lated to high-impact novel variants, based on DisGeNET
and their association network, are listed in Supplementary
Table S6 and Supplementary Figure S5 for reference. We
found eight of the disease-associated genes with novel high-
impact variants in at least three individuals (Supplemen-
tary Table S7). Our detailed studies suggest that these high-
impact novel variants often existed on the same exon of the
affected genes. Known pathogenic variants could also be
found on the same exons of MUC4 (45) and CACNA1A (46)
genes. However, owing to the limited sample size and uncer-
tainty by in silico predictions, further confirmation of their
pathogenicity is awaited with larger sampling in the Hong
Kong Genome Project (HKGP) (https://www.info.gov.hk/
gia/general/202011/05/P2020110500465.htm) in the future.

Among the 26 common novel variants (MAF > 0.05), six
were in coding regions, although these variants are likely
to be benign in HKG given their high AF. The coding re-
gion variant chr7:100773854G > GTT of the ZAN gene
occurs in 7.80% of the population. Deleterious mutations in
ZAN might affect the adhesion of sperm to eggs, thus reduc-
ing fertility (https://www.genecards.org/cgi-bin/carddisp.pl?
gene=ZAN). There is also a known benign record listed
in ClinVar at the same genomic position as the frameshift
G > GT variant. Another high AF variant associated with
immune response was found on chr7:142796847A > T of
the TRBJ2-3 gene, with AF 20.97%. The closely associ-
ated pseudogene in the same family chr7:142796707C > G
TRBJ2-2P also had a high MAF of 20.20%, but no func-
tional significance was recorded. All the HKG common
novel variants are listed in Supplementary Table S8.

Efficiency of HKG for imputation and correlation

We validated the effective usage of HKG variants using im-
putation and correlation studies. The imputation accuracy
was evaluated using HKG + 1KGP and 1KGP reference
panels to impute variants in 200 randomly selected posi-

tions in five phased Hong Kong Cantonese samples. The
addition of HKG in the reference panel yielded a significant
increase of 2.189% on the average info score in autosomes
compared with using just 1KGP data as panel (Supple-
mentary Table S9 and S10). For variants with MAF > 5%
and MAF ≤ 5%, the info score increment reached 2.86%
and 3.38% respectively. Improvements in imputation qual-
ity could be observed as there were 1.33% more high-
confidence variants (info score > 0.7) and 1.495% fewer
low-confidence variants (info score < 0.4). These improve-
ments were found to be significant, based on the student
T-test, marked as ** on Figure 4A, suggesting Hong Kong-
specific data should be included in imputation of local sam-
ples.

For correlation analysis, we obtained a limited num-
ber of Hong Kong samples from two existing studies
and checked their variant consistency with HKG. The
Northeast Asian Reference Database (NARD; (9)) in-
volves 58 whole genome sequencing Hong Kong samples.
It is the known database with the greatest number of
variants (8,898,677 variants) from a Hong Kong popula-
tion. The variants in these samples are hereafter abbrevi-
ated as NARD HK. We found 17 224 variants in both
NARD HK and HKG. Figure 4B shows that allele frequen-
cies in NARD HK are well correlated (r2 = 0.985) with
HKG, suggesting a strong positive linear association. Us-
ing Cook’s distance (>0.0002), seven variants were identi-
fied to be common in NARD HK but rare in HKG (Sup-
plementary Table S11). Among them, only two variants,
chr11:55639048C > T and chrX:71104307C > T, could be
found in dbSNP, but none of them had a record of clin-
ical significance. We also correlated the novel variants of
HKG with the pharmacogenetic variants reported by Yu et
al. (15). A linear relationship between their variant AFs was
still observed (Figure 4C), but with a lower r2 of 0.909 due
to the strong sampling bias towards pharmaceutical use in
that study. These results highlight the effective correlation
between HKG with other Hong Kong samples, hence they
are a good representation of the local genetic diversity.

DISCUSSION

Among 612 search results of ‘Hong Kong Chinese vari-
ant’ and ‘genotyping’/‘WES’/‘WGS’ in PubMed (on 14 De-
cember 2020), 192 used samples collected in Hong Kong,
but only 84 of them provided the count or frequency
of the variants in individuals (Details can be found in
Supplementary Table S12). As discussed above, there has
long been a research gap in the development of a Hong
Kong Cantonese-specific genomic database, which has hin-
dered the regional and local development of genetic stud-
ies. Population-specific genomic data is undoubtedly one of
the most valuable knowledge databases, which evolves with
the ancestry and demography of a population (47). It allows
us to trace the population origin or predict population sus-
ceptibility to future environmental changes (48). There is
an increasing number of population-wide genetics studies
(49,50), driven not only by the availability of resources, but
also the related practical health care benefits. In this study,
we illustrated the power of using WES as an alternative ap-
proach to describe the landscape of genetic variations to

https://www.info.gov.hk/gia/general/202011/05/P2020110500465.htm
https://www.genecards.org/cgi-bin/carddisp.pl?gene=ZAN
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Figure 3. Analyses of the novel HKG variants. (A) Proportion of known and novel variants according to consequences. (B) the pathogenicity score in
novel and all variants of HKG. (C) Venn diagram of novel variants, rare LoF and high impact variants. (D) Significantly enriched GO terms and KEGG
pathways in 731 genes responsible for the novel high-impact variants of HKG.
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Figure 4. Validation of HKG variants by imputation and correlation anal-
ysis. (A) Imputation testing using the two reference panels: 1KGP and
1KGP + HKG. The average Info scores ± standard deviation error was
based on 22 chromosomes. ** indicates the difference meets a significant
level with P < 0.01 of student’s T test. (B) Correlation analysis using AFs
of variants in HKG and NARD HK. (C) Correlation analysis using AFs
of variants in HKG and Yu et al. reported actionable pharmacogenetic
variants.

define the genomic characterizations of HKG. This holds
the potential for novel gene characterizations at a lower cost
than WGS (16). As HKG is the first public Hong Kong Can-
tonese variant database, it is the leading project to promote
local genetic studies for research and clinical applications.

It is obvious that Hong Kong Cantonese consist mainly
of Chinese Cantonese. The backbone of HKG is closest
to Chinese CHB, CHS and CDX populations sampled by
1KGP, with over 60% similarity. The majority of Hong
Kong Cantonese share ancestry with CHS, and both have a
similar effective population size. Our analysis also suggests
sufficiently large uniqueness of HKG to justify the need to
have a population-specific variant database. HKG is the first
to demonstrate the potential association between ancestral
composition and geographical distribution of Hong Kong
Cantonese and provides evidence for the historical interpre-
tation of Hong Kong Cantonese population migration, fill-
ing the gap of genetic diversity among Cantonese people.
Interestingly, HKG also successfully captured a portion of
non-Chinese diversity among the Hong Kong Cantonese.
These samples might represent the South Asians who mi-
grated to Hong Kong many years ago for historical reasons
(1). This also suggests the comprehensiveness in our sam-
pling.

Developments towards precision medicine are one of the
most important medical challenges in recent years (51). Al-
though a large proportion of variants identified in HKG
are known variants, we updated the population-specific fre-
quency and haplotype for 599 potentially pathogenic and
druggable variants, based on the CIViC, PharmGKB and
ClinVar annotations. The dynamics in population allele fre-
quencies influences the functional interpretation of vari-
ants, which may assist local medical consultations and treat-
ment decisions (51,52). HKG found 11,659 novel variants,
6.85% of which were high-impact variants. Since these novel
variants had not been documented, biological associations
were made only based on the corresponding gene and their
association from disease databases. As different exomic
variants could be mapped to the same coding genes, the bio-
logical associations should be carefully interpreted. There-
fore, the HKG-specific disease-gene network presented in
this study should only be regarded as predicted patterns and
not to be taken as clinical advice. Instead, we encourage fur-
ther investigation of possible genetically related health is-
sues in the community, using HKG data as a steppingstone.

HKG is by far the largest public variant database for
Hong Kong Cantonese. With its highly confident variant
data, HKG can serve as a pioneering genomic resource re-
gion wide. As a part of southern Chinese, HKG also pro-
vides additional data for genetic studies of human traits in
Chinese populations. The application effectiveness of our
data is reflected in the imputation study and correlation
analysis. Although HKG has already shown high discovery
power to detect high-quality variants using high-depth ex-
ome data, the number of samples is still limited at this stage,
and we believe that large-scale sampling in the future, such
as HKGP, would be meaningful for further investigation.
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