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Abstract
Although researchers have found support for a relationship between temperature and 
violence and evidence of temporal patterns in violent crime, research on homicide 
shows less consistent results and no research on mass murder has been conducted. 
We address this by examining predictive factors in multi-victim shootings (those 
with four or more victims, including injured), a more general crime category than 
mass murder, but one with likely similar predictive factors. We used data from the 
Gun Violence Archive to understand the relationship between multi-victim shoot-
ings and temperature as well as other extrinsic factors. To avoid the confound 
between season and temperature, we employed temperature anomaly (the differ-
ence between actual and expected temperature) as a predictor of daily shooting rate. 
Using a generalized linear model for the daily count of multi-victim shootings in the 
U.S., we found that these events are significantly more frequent on weekends, some 
major holidays, hotter seasons, and when the temperature is higher than usual. Like 
other crimes, rates of multi-victim shooting vary systematically.
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Introduction

On October 1, 2017, the deadliest single-perpetrator mass shooting in U.S. his-
tory occurred in Las Vegas, leaving 58 victims dead and over 400 injured. These 
types of shocking events dominate public discourse on gun violence, garner sig-
nificantly more media coverage than much more prevalent single-victim homi-
cides, and are likely to impact public opinion disproportionately relative to public 
risk (Pinker, 2018). Many researchers (e.g., Slutkin, 2018) consider mass shoot-
ings to be a public health problem as well as a criminal justice issue. In the wake 
of events such as these, the focus tends to be on offender motivation. However, 
understanding broader, extrinsic patterns in the occurrence of violent crime may 
not only help researchers discern their causes, but also help criminal justice pro-
fessionals prevent future crimes.

While there is considerable support for temperature effects, weekly cycles, 
and seasonal patterns in violent crime, research focusing on homicide shows 
less consistent results (e.g., Rotton & Cohn, 2002). Additionally, research has 
failed to distinguish between various forms of homicide, and there has been no 
research specifically examining how these factors may affect mass murder. In this 
study, we examine exogenous factors related to the incidence of multiple-victim 
shootings (MVSs), focusing specifically on temporal patterns and temperature 
variation.

Temporal and Temperature Variations of Violent Crime

The scientific study of the relationship between temperature and aggression dates 
back to the nineteenth century, and involves three main types of research: rand-
omized experiments, comparisons of rates of violence across geographic regions, 
and comparisons over time (Miles-Novelo & Anderson, 2019). All three types 
consistently show an increasing relationship between overall violent crime and 
temperature (see Rotton & Cohn, 2002, for an overview). Jacob, Lefgren, and 
Moretti (2006) reported that a 10 °F increase in average weekly temperature was 
associated with a 5% increase in violent crime, while Mares (2013) found that 
for each 1  °F above expected seasonal temperature, violence increased an aver-
age of 0.74%. Horrocks and Menclova (2011) found that violent crime increased 
with temperature until about 80 °F, after which point it began to decrease, while 
Gamble and Hess (2012) observed a temperature threshold of about 90 °F; these 
are similar to results obtained by Cohn and Rotton (2000) and Rotton and Cohn 
(2000). Heilmann and Kahn (2019) found violent crime in Los Angeles increased 
5.7% on days with a maximum daily temperature greater than 85 °F, compared to 
days below that temperature. These relationships may be moderated by other fac-
tors, such as the time of day or the day of the week (e.g., Cohn & Rotton, 2005), 
as well as community income levels and access to climate control (e.g., Heilmann 
& Kahn, 2019; Rotton & Cohn, 2004). Research into seasonal patterns of violent 
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crime also generally finds peaks during summer months, which have warmer tem-
peratures (e.g., Breetzke & Cohn, 2012; McDowall, Loftin, & Pate, 2012). How-
ever, this relationship is confounded by seasonal behavioral changes.

The results of research examining the relationship between temperature and hom-
icide is less consistent. McDowall et  al. (2012) found intra-year crime variations 
of about 7% for homicide, but this was not statistically significant independent of 
season. Gamble and Hess (2012) found that a 1  °F increase in mean temperature 
was associated with less than a 0.1% increase in the homicide rate. Adding mean 
temperature to their baseline model explained only 0.1% of the variation in daily 
homicide rate. Maes, De Meyer, Thompson, Peeters, and Cosyns (1994) found no 
relationship between homicide and temperature in Belgium, and Yan (2000) found 
none in Hong Kong. The results of studies examining seasonal variations also lack 
consistency. While some reported increased homicide rates during summer months 
(e.g., Ceccato, 2005; McDowall et  al., 2012), others have not found support for a 
seasonal pattern (e.g., Abel, Strasburger, & Zeidenberg, 1985; Yan, 2000). McDo-
wall and Curtis (2015) also identified a December spike in homicides that nearly 
reached the July peak.

Weekends consistently see an increase in overall violent crimes (e.g., Harries, 
Stadler, & Zdorkowski, 1984; LeBeau & Corcoran, 1990), and homicide specifically 
(e.g., Abel et al., 1985; Ceccato, 2005). For example, Ceccato (2005) reported that 
over half the reported homicides in São Paulo occurred on weekends. Violent crimes 
are also more frequent on major holidays (Cohn & Rotton, 2003).

Theoretical Background

The primary theories used to explain the link between temperature and violent 
behavior are Temperature/Aggression (T/A) theories and Routine Activities Theory 
(RAT). T/A theories (e.g., Anderson, Deuser, & DeNeve, 1995; Bell & Baron, 1976; 
Cohn, Rotton, Peterson, & Tarr, 2004) suggest that the relationship between aver-
sive events and aggression is mediated by negative affect. Discomfort from higher 
temperatures is believed to increase irritability and frustration, leading to a greater 
likelihood of aggressive behavior, including crime; thus, seasonal changes in tem-
perature explain seasonal crime patterns. T/A theories are supported by experi-
mental laboratory research (Anderson et  al., 1995; Bell & Baron, 1976) and field 
research showing reduced self-control at higher temperatures (see Gailliot, 2014, for 
a review).

RAT (Cohen & Felson, 1979) proposes a more indirect relationship between tem-
perature and violence. It focuses on opportunities rather than motivation, empha-
sizing the ways in which temporal patterns structure behavior, particularly through 
changes in environmental conditions, many of which (e.g., temperature) are seasonal 
(e.g., Hipp, Bauer, Curran, & Bollen, 2004; McDowall et al., 2012). According to 
RAT, a crime requires three elements: a motivated offender, a suitable target, and 
the absence of a capable guardian against crime. RAT suggests that individuals have 
habitual behavior patterns (routine activities) that affect both criminal opportunity 
and victimization risk. Factors such as temperature, time of day, day of week, and 
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holidays may affect discretionary routine activities (e.g., socializing), potentially 
affecting the likelihood that the three elements for crime will converge. Because 
warmer temperatures often encourage people to spend time outdoors, bringing them 
into closer proximity to others and increasing the potential for interaction between 
motivated offenders and suitable targets, RAT predicts that crime is likely to 
increase with temperature (Cohn & Rotton, 2000). RAT also supports a curvilinear 
relationship between temperature and crime; as temperatures become uncomfortably 
warm and create extreme discomfort, people may choose to spend more time indoors 
(e.g., in climate-controlled environments), reducing the possibility of interpersonal 
contact (Rotton & Cohn, 2000). Support for RAT over T/A theories is provided in 
research by Harp and Karnauskas (2018), which found higher rates of violent crime 
during mild compared to harsh winters. Mild winter temperatures increase the like-
lihood of outdoor activities, increasing the likelihood of interpersonal interactions 
and creating opportunities for crime.

Our Study

Our goal was to identify factors associated with gun violence incidents involving 
multiple victims, rather than just those with multiple fatalities. Because the lethal-
ity of a violent encounter may be affected by contextual factors (e.g., Weaver et al., 
2004), the shooter’s intent may be more accurately reflected by the number of vic-
tims shot rather than the number killed. The lethality perspective recommends that 
homicide research focus on “potentially lethal criminal actions rather than on com-
pleted homicides…” (Harris, Thomas, Fisher, & Hirsch, 2002, p. 156). We have 
adopted this perspective, focusing on multiple victim shootings (MVS) rather than 
only mass murders. We prefer the term “multiple victim shooting” to “mass shoot-
ing” since the latter is often confusingly used interchangeably with “mass murder.” 
We define an MVS to be a shooting event in which four or more victims (excluding 
the shooter) are killed or injured in a single location. The injured are included on an 
equal footing with fatalities because the factors influencing MVS event occurrence 
are unlikely to influence the number of fatalities versus injuries. Fox and Levin 
(2015, p. 12) support investigating such broad event scopes, stating that excluding 
incidents that do not reach preconceived murder counts “adds insult to injury for 
those victims.” Although mass murders differ in several ways from single-victim 
homicides, including showing greater evidence of premeditation (e.g., Fox & DeLa-
teur, 2014; Fox & Levin, 1998), which may lead to different impacts of temperature 
and temporal factors on the two types of crimes, there has been no research focusing 
specifically on this issue.

We hypothesized that extrinsic factors known to influence violent crime rates—
specifically weekends, holidays, cyclical variation in routine, and outside temper-
ature—will also impact MVS rates. Quantifying these effects is complicated by 
the confounding of cyclical temporal factors and temperature: it is hotter outside 
in summer than winter. To help remedy this, we use temperature anomaly (the dif-
ference between actual temperature and that expected from seasonal variation) as 
a predictive factor in some models. This helps isolate the impact of weather-based 
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temperature fluctuations, which we show to be non-multicollinear with temporal 
factors. Only a few studies of crime have examined temperature anomalies. Mares 
(2013) found a relationship between temperature anomaly and crime overall, but 
none for homicide. Williams, Hill, and Spicer (2015) found a positive relationship 
between temperature anomaly and assaults. Schinasi and Hamra (2017) found that 
violent crime was strongly associated with temperature deviations. Park et al. (2020) 
found that temperature anomaly was positively related to death by assault.

We obtained MVS data from the Gun Violence Archive1 (GVA), which col-
lects information from law enforcement, government, and media sources. The GVA 
merges gang shootings, home invasion robberies, and familicide with traditional 
mass murder events. While studying each event type separately would be interest-
ing and important, the dataset does not provide that information and it is beyond the 
scope of this broad exploratory research. We obtained data on MVSs in the conti-
nental U.S. from January 1, 2014 through December 31, 2019 (yielding a total 2191-
day epoch). The data include the date, location, number killed, and number injured 
for each event. We aggregated events by day to produce a daily time-series of MVS 
rate (range = 0–7, mean = 0.95). From 2014 to 2019 the rate increased by more than 
half, from 0.7 to 1.1 per day (see Fig. 1). Whether this long-term change was due to 
an actual increase in MVS rate, crime reporting differences, or some other cause, 
we took it as given, and instead sought to understand how the day-to-day variation 
is influenced by extrinsic factors. We compared 12 models, all of which included 

Fig. 1   Multiple victim daily shooting rate averaged by year (points), with model M2 cubic fit to daily 
data (curve), demonstrating the data epoch’s daily MVS rate variation and its capture by the cubic fit. 
Relative rate (left scale) is referenced to epoch.time = 0

1  https​://www.gunvi​olenc​earch​ive.org/repor​ts, Downloaded 1/3/2020.

https://www.gunviolencearchive.org/reports
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effects for weekends and holidays, but differed in their accounting for outside tem-
perature and yearly cyclical variation.

To model the effect of temperature on daily aggregated MVSs, we assessed a 
single aggregated daily temperature for the continental U.S. Although this spatially 
coarse measure does not necessarily reflect the conditions at any given MVS loca-
tion, we show below that it has a strong relationship to MVS rate. Because tem-
perature fluctuations tend to be correlated across much of the U.S. (data available 
upon request), using a summary value is reasonable as a first approximation. We 
obtained weather data from the National Centers for Environmental Information.2 
For each weather station, we computed the hourly apparent temperature, accounting 
for both wind chill3 and temperature-humidity index (heat.index function in weath-
ermetrics R package), and averaged these values in a weighted fashion by city to 
aggregate by day. Only temperatures4 for cities having at least one MVS in the data-
set were included, weighted by the city’s total shooting count (see Fig. 3 in Appen-
dix 2). In some models we employed the temperature anomaly, which is the differ-
ence between the day’s apparent temperature and its average for that week of the 
year (1–53). It has a mean of 0 and standard deviation (SD) of 5.5 °F that varies by 
month, from 2 °F in August to 8 °F in January (see Fig. 4 in Appendix 2). Due to 
missing temperature data, seven days5 were removed from the data set, leaving a 
total of 2184 days encompassing 2081 MVS events. In this pilot study, we do not 
include other weather factors (e.g., precipitation).

To account for cyclical variation in MVS rate, we optionally included a discrete 
factor of varying temporal granularity, be it season (four levels, with December the 
first month of winter), month (12 levels), or week (53 levels). Additionally, since 
there is a known relationship between major holidays and crime (e.g., Cohn & 
Rotton, 2003; Lester, 1987), we included a federal holiday factor (11 levels: New 
Year’s, Martin Luther King, Jr.’s Birthday, Washington’s Birthday, Memorial Day, 
Independence Day, Labor Day, Columbus Day, Veterans Day, Thanksgiving Day, 
Christmas, and none). For holidays typically celebrated across two days (New Year’s 
Eve and Day; Independence Day and early morning July 5th; Christmas Eve and 
Day), we assigned the holiday to both. We included a factor for the day being on 
a weekend. Finally, we accounted for year-to-year variation in MVS rate using a 
cubic polynomial in epoch.time, a continuous factor coded from − 1 to + 1 across 
the epoch 1/1/14 to 12/31/19.

2  https​://www.ncei.noaa.gov/data/local​-clima​tolog​ical-data/, downloaded 11/19/2019 (2014–2018 data) 
and 1/4/20 (2019 data).
3  https​://en.wikip​edia.org/wiki/Wind_chill​; we use the formula TWC = 35.74 + 0.6215 * TDB − 35.75 * 
v0.16 + 0.4275 * TDB * v0.16, with TDB the dry bulb temperature and v the wind speed in MPH. All tem-
peratures are in °F. Wind chill correction was performed for TDB < 50 °F and v > 3 MPH.
4  City apparent temperatures were estimated as averages of the up to nearest six weather stations within 
250 miles of the city’s location (defined by the location of the lowest numerical zip code assigned to the 
city, found through the R package concensus). Daily apparent temperature for each station were evaluated 
on an hourly basis and averaged across 24 h in a day, accepting at most one data point as not available.
5  4/14/15, 11/19/16, 12/18/16, 2/9/17, 2/5/18, 4/8/18, and 2/16/19.

https://www.ncei.noaa.gov/data/local-climatological-data/
https://en.wikipedia.org/wiki/Wind_chill
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Results

To determine the effect of these extrinsic factors on daily MVS rate, we used a gen-
eralized linear model (GLM) with Poisson statistics. This model assumes that sepa-
rate MVS events within a day are unrelated, and therefore only their expected rate 
can be predicted. Daily MVS counts are modeled as Poisson distributed at the day’s 
predicted rate. Because the event rate in the data is about one per day, statistical 
fluctuations in MVS count will be relatively large, making prediction of MVS count 
on any given day inaccurate. However, with sufficient data, we can determine which 
factors affect the expected MVS rate and quantify their impact.

We examined 12 models in a 4 × 3 factorial design that explored varying factors 
for annual cyclical effects (season, month, week, or none) and outside temperature 
(temperature, temperature anomaly, or none). We ranked models using the Akaike 
Information Criterion (AIC), which trades model accuracy for the number of model 
parameters (or degrees of freedom). In addition to possible cyclical temporal and 
temperature factors, each model included a cubic polynomial in epoch.time (we 
found no significant coefficients for higher-order terms at p < 0.05), a weekend fac-
tor, and a holiday factor. Results are shown in Table  1, with models (M1–M12) 
arranged from lowest to highest AIC6 (best to least supported model).

Table 1   Performance comparison of models differing in cyclical temporal and temperature factors

df degrees of freedom, dAIC difference in Akaike information criterion statistic from lowest

6  We also evaluated the Bayesian Information Criterion (BIC), which greatly penalizes additional 
parameters when modeling large data sets, such as this one. BIC very strongly selected the model M3, 
with a temperature factor but no temporal cyclical factor, above all others. We believe BIC to be too con-
servative with model parameters, and prefer AIC for model ranking.
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The model rankings reveal some consistent findings. First, models without tem-
perature factors (M6, M7, M10, and M12) all have dAIC values (differences from 
lowest AIC) of at least 21.6. A model with dAIC > 10 is considered highly unlikely 
to be the best (Burnham & Anderson, 2004), so models that include temperature are 
far superior to those that do not. M11 is also in this group, since it has knowledge 
of temperature anomaly, but no temporal reference to absolute temperature. Second, 
the top two models (M1 and M2) have an AIC difference of 0.1, which is consid-
ered insignificant. Both have month as the cyclical factor and take temperature into 
account, either absolutely (M1) or as its anomaly (M2). Since absolute temperature 
can be estimated knowing the month and the day’s temperature anomaly (as in M2), 
it is not surprising that these models perform equally well. Third, all models with 
week as the cyclical factor (M8–M10) have large dAICs, implying that including the 
additional parameters does not sufficiently improve prediction. Fourth, in contrast, 
season as the cyclical factor is too temporally granular (M4, M5). Finally, M3, which 
includes temperature but no temporal factor, has substantial support (dAIC = 2.2). 
This temperature model is much better than the month/no-temperature model M6 
(dAIC = 19.3); including both factors gives a somewhat better model (M1).

To quantify these effects, we selected a high performing model with low multi-
collinearity for further investigation. This enables coefficients to be well estimated. 
Since M1 includes month and temperature factors, which are related and yield high 
variance inflation factor (VIF) (see Appendix 1), we chose M2, whose use of tem-
perature anomaly reduces VIF (see Table 4 in Appendix 2). The full specification 
and diagnostics of M2 are found in Appendix  1. We did not find any significant 
two-factor interactions in this model (ANOVA, all ps greater than 0.05). Because the 
link function for Poisson GLMs is exponential, factors contribute multiplicatively 
to MVS rate. The epoch.time effect is shown in Fig. 1 (see Table 5 in Appendix 2 
for coefficients); it approximates well the fluctuations in yearly average rate. The 
month factor coefficients are shown graphically in Fig. 2, exponentiated to quantify 
weekday MVS rate by month (mid-epoch) and plotted against average monthly tem-
perature. Interestingly, the coefficients are well-approximated by a linear function of 
temperature (R2 = 0.79, p < 0.0001, with a slope of 0.014 ± 0.002 °F−1 [mean ± SE]; 
95% CI 0.009, 0.019). Thus, hotter months have higher MVS rates (see Table 6 in 
Appendix 2 for coefficients).

Multiplicative effects of holidays and weekends are shown in Table  2. Three 
holidays have a significant effect (p < 0.05): Christmas, Independence Day, and 
New Year’s. Both Christmas and New Year’s (including their respective Eves) have 
MVS rates about twice as high as otherwise expected (95% CIs 1.2, 3.4 and 1.1, 
3.2, respectively). Independence Day (including July 5th) has about three times the 
expected rate (95% CI 2.2, 4.4). Although all three of these significantly increased 
MVS holidays have two contributing days per year, their effects were significant 
even when modeled as single-day holidays. Finally, weekend days have 2.8 times the 
MVS rates of weekdays (95% CI 2.5, 3.0).

Temperature anomaly (unexpectedly hot or cold days) alters the MVS rate 
exponentially by a rate of 0.022 ± 0.005  °F−1 (95% CI 0.013, 0.032), equivalent 
to 2.2%  °F−1. Assuming a causal relationship, temperature anomaly fluctuations 
(± 1SD swing of 11  °F) would typically affect MVS by about 25%. Temperature 
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anomaly deviates more in cold months than in warm ones (see Fig.  4 in Appen-
dix 2), with estimated corresponding MVS fluctuations of minimally 10% in August 
and maximally 35% in January. By way of comparison, the M3 (temperature factor 
but no cyclical factor) absolute temperature coefficient is 0.015 ± 0.002 °F−1. This 
is not significantly different from the M2 temperature anomaly coefficient (p = 0.13, 

Fig. 2   Model M2 exponentiated monthly coefficients (box centers) and 95% confidence intervals (ver-
tical lines) plotted by average monthly apparent temperature, demonstrating significant association 
between monthly average temperature and corresponding weekday MVS rate model coefficients. Vertical 
axis is logarithmic; fit line is linear regression on semi-log scale

Table 2   Model M2

Exponentiated coefficients (multipliers), their 95% confidence 
intervals, and p values for holidays and weekend two-level factors. 
Bolded values indicate statistical significance, p < 0.05

p value Multiplier 95% CI

Christmas Day 0.01 2.0 1.18, 3.36
Columbus Day 0.84 1.1 0.41, 2.99
Independence Day < 0.0001 3.1 2.24, 4.38
Labor Day 0.06 2.0 0.96, 3.97
Memorial Day 0.16 1.7 0.80, 3.66
MLK Jr.’s Birthday 0.12 2.0 0.83, 5.01
New Year’s Day 0.02 1.9 1.12, 3.17
Thanksgiving Day 0.81 1.1 0.42, 3.06
Veterans Day 0.69 1.2 0.52, 2.67
Washington’s Birthday 0.30 0.4 0.05, 2.53
Weekend < 0.0001 2.8 2.54, 3.02
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Gaussian test). Additionally, there is no significant difference within M2 between the 
linear slope relating monthly coefficient to temperature and the temperature anomaly 
coefficient (p = 0.10, Gaussian test). These temperature effects are somewhat larger 
than those reported by Jacob et al. (2006) and Mares (2013) for violent crime (0.006 
and 0.007 °F−1, respectively), and of that reported by Park et al. (2020) for deaths by 
assault (0.006 °F−1).

Discussion

This study extends the research into the effect of temporal and weather factors on 
crime, focusing on identifying extrinsic factors associated with daily MVS count in 
the continental U.S. It is the first study to examine the relationship between gun 
violence and temperature anomaly. Consistent with prior research into violent crime 
in general and homicide in particular, we found that the MVS rate is significantly 
related to the day of the week: MVS rates are nearly three times as frequent on 
weekend days than weekdays. Also consistent with prior violence research, some 
major holidays have higher MVS rates, specifically Christmas and New Year’s at 
double the rate, and Independence Day at triple. We examined whether the occur-
rence of televised major sporting events impacted the MVS rate, but found none for 
the Superbowl, World Series, or Olympics (data not shown).

The MVS rate exhibits cyclical temporal variation. It peaks in the summer 
months and is minimal in the winter ones, with a twofold total variation. Interest-
ingly, the monthly model coefficients are well fit by an increasing linear relationship 
with temperature. Because of this month/temperature confound, we chose to use 
the temperature anomaly. We expect that a particular day being unexpectedly hot or 
cold to be independent of other factors (as borne out by M2’s VIF), so the tempera-
ture anomaly coefficient likely represents an isolated outside temperature effect. We 
found that the MVS rate is positively related to daily temperature anomaly, contrib-
uting a typical rate fluctuation of around 25%. Furthermore, the effect of tempera-
ture anomaly per °F is not significantly different either from that of temperature’s 
impact on the month coefficient or from the absolute temperature coefficient in a 
model that excludes cyclical temporal variation (M1). Taken together, these effects 
would render an unusually hot weekend Independence Day an order of magnitude 
riskier than a typical summer weekday.

The positive relationship between temperature anomaly and MVS is consistent 
with expectations from both T/A Theory and RAT. Additionally, the effects of cycli-
cal temporal factors on MVS are consistent with predictions derived from RAT. 
MVS events are significantly more likely to occur on weekends and some major hol-
idays, times when routine activities show greater variability.

One limitation of this study is its use of a single weighted temperature anomaly 
rather than regional values. The available data are not sufficiently large to power 
such regional investigation. This study was also limited by the need to obtain MVS 
data from an independent agency, rather than from official crime statistics. Finally, 
the information included in the dataset was limited. It did not include the time 
of each shooting, making it difficult to identify shootings that occurred just after 
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midnight and might be related to the previous day; nor was there information on 
the victim/offender relationship, making it impossible to separate domestic and non-
domestic shootings.

While gun violence is generally viewed as a criminal justice issue, it is a lead-
ing cause of injury and death in the U.S. MVSs may account for a small percent-
age of gun-related deaths, but their effect on society is far-reaching. Expanding our 
understanding of MVS, including greater awareness of the relationship between 
MVS and factors such as temperature, may help to provide law enforcement with the 
tools needed to anticipate MVS events and prevent some of the resulting injuries and 
deaths.
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Appendix 1: Statistical Methods

Analyses were performed using R7 3.6.1 on macOS 10.14.6. The function glm was 
used to model the daily number of MVS events as Poisson distributed (log link func-
tion), based on a linear model. Model M2 included a continuous predictor for temp.
anomaly, a cubic polynomial in epoch.time, and discrete factors for Weekend (True/
False), Holiday (11 levels; see text), and Month (12 levels). This model was speci-
fied as:

We evaluated a number of diagnostics of model applicability. To ensure the 
model did not exhibit multicollinearity, we employed the vif function on the model 
adjusted to contain an intercept, and examined the GVIF1/(2*df) values for each factor. 

glm(MVS.count ∼ (Month − 1) + poly(epoch.time, 3, raw = TRUE) + Holiday

+Weekend + temp.anomaly, family = poisson)

7  https​://www.r-proje​ct.org/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.r-project.org/
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All were 1.03 or less (see Table 4 in Appendix 2), indicating absence of multicol-
linearity. In contrast, M1 had a GVIF1/(2*df) value of 3 for the temperature factor, 
indicating multicollinearity (with month). We visually compared the conditional 
distributions of MVS count to the expected Poisson distributions, and found them 
to fit well (see Fig. 4 in Appendix 2), validating the Poisson assumption. We fur-
ther checked for zero inflated data, which we did not observe (model p(0) = 0.44, 
data p(0) = 0.45). We tested for over-dispersion using the dispersiontest function, 
which failed to reject the null hypothesis of unit dispersion (p = 0.20). To validate 
the assumption of temporally uncorrelated shooting rates across days, we tested for 
correlated model residuals using the Ljung–Box method (Box.test function), which 
found no significant correlation (p = 0.71).

Model parameter estimates, standard errors, and p values were extracted using the 
summary.glm function. Their 95% CIs were computed using the confint.lm function.

Packages and functions used are listed in Table 3.

Appendix 2

See Figs. 3, 4 and 5 and Tables 4, 5 and 6.

Table 3   R packages, versions, 
functions, and data used in this 
study

Package Version functions/data

AER 1.2.8 dispersiontest
binom 1.1.1 binom.confint
car 3.0.6 outlierTest, Anova
caTools 1.17.1.3 runmean
Hmisc 4.3.0 mean_cl_boot
noncensus 0.1 Zip codes
RANN 2.6.1 nn2
timeDate 3043.102 Holiday dates
weathermetrics 1.2.2 heat.index
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Fig. 3   Geographic weightings of city apparent temperatures as combined to produce the continental U.S. 
apparent temperature. Circle areas are proportional to weighting. Circles are drawn partially transparent 
to reveal overlaps

Fig. 4   Intra-month standard deviation (SD) of temperature anomaly by month. Horizontal black line rep-
resents mean of intra-month SD across 6  years; bars represent bootstrap estimates of 95% confidence 
intervals from six data points (mean_cl_boot function from R package Hmisc)
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Fig. 5   Conditional distributions of MVS count at four model-predicted MVS rates. Data are pooled 
within each graph for predicted rates within 0.25 of the stated rate (0.5, 1, 1.5, or 2 MVS events per day). 
Points represent relative frequencies of MVS counts, and bars represent 95% confidence intervals (bino-
mial distribution). Lines correspond to Poisson probability distributions of the graph’s stated rate

Table 4   Variance inflation 
factor results for the model M2

GVIF generalized variance inflation factor, df degrees of freedom

GVIF df GVIF1/(2*df)

Month 1.89 11 1.03
Poly(epoch.time, 3, 

raw = TRUE)
1.13 3 1.02

Holiday 1.75 10 1.03
Weekend 1.02 1 1.01
Temp.anomaly 1.07 1 1.03

Table 5   Coefficients of 
polynomial fit to log of MVS 
rate across the epoch 1/1/14 
to 12/31/19, with epoch.time 
correspondingly ranging from 
− 1 to + 1

p value Coefficient 95% CI

epoch.time 0.336 − 0.09 − 0.29, 0.10
(epoch.time)2 0.445 − 0.06 − 0.21, 0.09
(epoch.time)3 0.003 0.46 0.16, 0.77
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