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Biofloc technology (BFT) is gaining traction as a strategic aquaculture tool for boosting

feed conversions, biosecurity, and wastewater recycling. The significant aspect of BFT

is aquaculture with highest stocking density and minimal water exchange. It not only

improves the water quality of a system by removing inorganic nitrogen from wastewater

but also serves as a suitable feed supplement and probiotic source for cultured species.

This technology is commonly used for shrimp and tilapia culture and can be used

for both semi-intensive and intensive culture systems. Biofloc, when combined with

formulated diets, forms a balanced food chain that improves growth performance.

Nutrients in this system are continuously recycled and reused and form an efficient

alternative system in aquaculture. In addition to the reduction in water exchange, it

is also considered as a bio-security measure, since it prevents entry of disease from

outside sources. Aquamimicry is an innovative concept that simulates natural estuarine

conditions by developing copepods that act as supplementary nutrition especially for

shrimp culture. The review highlights the process, significance, and development of BFT,

its microbial interactions, nutritional value, transition from biofloc to copefloc, and concept

of aquamimicry to sustainably improve aquaculture production.

Keywords: biofloc technology, waste utilization, nutritional composition, microbial interactions, sustainability

INTRODUCTION

With almost 7.8 billion people on earth, the demand for aquatic food is ever increasing; hence,
the need for horizontal and vertical expansions of aquaculture production systems is highly
recommended. At the same time, intensification of systems should be sustainable with more
ecologically sound management practices. Moreover, the intensification of culture systems is
likely to generate a tremendous amount of carbon-based pollutants causing toxic effects and
environmental risks (1). The risks of these toxic discharges can further be reduced by continuously
replacing pond water via exchange (2). Another approach for successfully removing major toxic
pollutants without environmental concerns is recirculating aquaculture system (RAS) technique in
which only 10% of total volume is replaced daily (3), but because of its high operational costs, the
technique is hardly adopted. Therefore, there is a dire need for low cost and environmental-friendly
technology for large-scale adoption. Therefore, an efficient alternative system that is environment
friendly and with low operational costs was established and called “Biofloc Technology (BFT)”
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with which water nutrients are continuously recycled and
reused. This sustainable approach grows microorganisms in
a culture medium and promotes minimum water exchange.
Microorganisms play an important role by uptaking nitrogenous
compounds producing microbial proteins, which assist the
system in maintaining water quality. The system is more
economical and profitable, as it increases culture feasibility by
decreasing FCR.

Aquaculture is a growing industry, and the vital component
of the subject is feeding aquatic organisms under controlled
conditions. Feed is a vital component in aquaculture and can
hamper the expansion of the industry by dependence on fish
meals and fish oil (4, 5). Such ingredients are one of the
prime constituents of feed for commercial aquaculture (6). Feed
costs in aquaculture represent at least 50% of total variable
cost that is mainly due to high priced protein components
in commercial diets (7). BFT in aquaculture uses food waste
and organic matters produced during the production cycle
through propagation of microorganism, which are developed
using an external carbon source and high aerations (8). This
technology has successfully demonstrated profitable results in
fish and crustacean farming along with the production of
value-added microbial proteinaceous feed for aquatic organisms.
The specific objective of the study is to comprehensively
review a study that has been conducted on the concept of
biofloc technology and aquamimicry, which can further be
disseminated to a global audience for better understanding of
the concept and its practical applications in aquaculture. The
study also signifies status and development in both concepts
for sustainably improving aquaculture production using limited
resources and cultivating commercially important species with
fewer aquaculture generated wastes.

BIOFLOC TECHNOLOGY

The biofloc system was initially developed for pollution-free
and cost-effective productions to improve the environment,
usually in areas where water is scarce. It has been an alternative
for sustainable aquatic production in which bacteria converts
fish waste to biomass (biofloc), eventually improving water
quality through the addition of extra carbon to the aquaculture
system, leading to minimal water use. Usually, in brackish
water ponds, almost 70–80% of fed proteins go to waste
in the form of nitrogenous metabolites. Thus, manipulating
C:N ratio in aquaculture ponds encourages the uptake of this
inorganic nitrogen into a microbial protein known as biofloc.
If in the system, perfect balance of carbon and nitrogen in the
solution exists, ammonium and other nitrogenous wastes will be
converted into bacterial biomass (9). Furthermore, by adding a
carbohydrate source to a culture pond, microbial proteins assist
heterotrophic bacterial growth and nitrogen uptake (10, 11). It
is essential to maintain a carbon-to-nitrogen ratio above 10 in a
system by adding carbon source organic materials like molasses,
starch, and wheat flour, or by reducing protein levels of the feed
that increases the activity of heterotrophic bacteria produced
(12–14). This eventually leads to the production of microbial

proteins, and improves water quality and serves as a source of
dietary proteins to cultured shrimps or fish (12).

The BFT was initially started in early 1970s at French
Research Institute for Exploration of the Sea, Oceanic Center
of Pacific where the concept was used for culturing various
penaeid species including Litopenaeus vannamei, Litopenaeus
stylirostris, Penaeus monodon, and Fenneropenaeus merguiensis
(10). The BFT yields an economically viable system supporting
high stocking density and biosecurity. The technology, which
is practiced in a closed system, has the advantage of minimal
environmental risk as used water is not released in natural water
bodies like estuaries, lakes, and rivers, preventing eutrophication
and loss of natural resources. C:N ratio manipulation develops
dense bacterial communities, making a system dominated by
bacteria rather than algae, promising a healthy rearing system
and an approach for disease prevention. The BFT has been
successfully implemented in aquaculture, especially in shrimp
farming, because of its economic, environmental, and marketing
advantages over conventional culture systems, making it a low-
cost sustainable technology for sustainable future aquaculture
development (5, 15). The technology provides higher degree of
biosecurity and higher environmental control. It enhances the
immune system (16) and contributes positively for strengthening
the status of cultured species. It also has a favorable effect on
the immunological response of Litopenaeus vannamei raised in
a biofloc system, resulting in greater resistance to infectious
myonecrosis virus (IMNV) (17) and Vibrio (18).

Process of Biofloc Formation
High-density polyethylene (HDPE)-lined ponds with well-
prepared dikes are most preferred for large-scale biofloc
fish or shrimp production. HDPE-lined ponds with sufficient
elevation and central drainage are used for effective biofloc-
based farming. The BFT can be conveniently applied in re-
circulatory aquaculture or raceway systems either by in situ
inclusion or ex situ floc production through an activated sludge
system and by putting the harvested biofloc in the production
system. The system is adequately agitated and aerated to keep
the microbial floc in suspension. For the development of biofloc,
a small nitrogenous source (fish feed or urea) is added to
previously filled water tanks. Then, a healthy carbon source
like starch, molasses, or wheat flour is uniformly spread on the
surface of water. To create a microbial mass, clay is softened
and passed through a sieve (53-µm sized particles or less) and
then added to the microbial reservoir. In addition, the use of
farm wastewater containing nitrogenous wastes is helpful as an
inoculum. The addition of 20 g of clay, 10mg of ammonium
sulfate, and 200mg of carbonaceous organic matter such as
molasses stimulates biofloc formation in 1 L of water (19).
The primary inoculum in biofloc production cycle improves
microbial mass formation. However, care should be taken before
using any commercial inoculum for this purpose. Heavy aeration
is required for keeping the floc under suspension. The use of
clay and water rich in biofloc production cycle as the primary
inoculum improves microbial mass formation in the new culture
system (20). Heterotrophic bacteria are more active than other
bacteria because of the presence of the carbonated organicmatter,
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FIGURE 1 | Schematic diagram of various methods to generate biofloc based culture practices.

which assists the removal of carbon and nitrogen from the water,
and produces microbial biomass (13). This microbial biomass
is attached and fed by other organisms in the water forming
biofloc (14). Physical and chemical parameters like temperature,
oxygen, pH, alkalinity, total nitrogen, ammonium, nitrite,
and nitrate should be measured; subsequently, appropriate
responses should be adopted quickly (21, 22). As explained
in Figure 1, there are three major approaches for successfully
generating biofloc.

Approaches of Biofloc Generation
Natural Transition Approach

In this approach, autotrophs are generated through addition
of fertilizers, fish/shrimp feed, and other ingredients. The
autotrophs are further converted into heterotrophs by adding
a carbon source and maintain the ratio of C:N (12–15:1).
The amount of salinity and type of carbon used in the
system affect the rate and duration of biofloc formation
(13). It is observed that increasing salinity increases the
density of biofloc formation, and the quality of the floc is
determined by the type of carbon source (23). Furthermore,
improved water quality and faster growth of heterotrophic
bacteria are achieved by adding carbonaceous organic matter-
like molasses to the aquaculture system without exchanging
the water compared to the addition of complex carbohydrates
like wheat flour. Color transition from green to brown can
be observed, with the floc building up during the process.
Disadvantages of this approach are it is a time-consuming

process, and simple conversion of autotrophs to heterotrophs
takes several days.

Inoculum Approach

The main idea of this technique is to inoculate new biofloc based
culture water with it after evaluating the compatibility of the
previous crop in terms of nutrients availability and water quality.
Fermented products of the carbon source (rice bran, molasses,
etc.) are to be aerated with the source water for at least 24–
48 h for biofloc generation (20). Finally, the cultured biofloc mass
produced earlier is dried and developed into a powder form. This
powder is then stored and dissolved with the carbon source to
be added in the form of fermented products. The benefit of this
approach over natural transition is that it is a time-saving process;
therefore, biofloc can be generated in a very short duration.

Customization Approach

This method of biofloc production is the most sophisticated
one, as it involves blending of probiotics in the system for a
healthier environment. Previously, it has been discovered that
excessive amount of chemical compounds and antibiotics
(oxytetracycline, sulphamethoxazole, chlortetracycline,
amoxicillin, co-trimoxazole, and sulphadiazine) was used
to suppress a disease outbreak in aquaculture (24–28). However,
these compounds have not only been proved lethal for human
consumption, causing health risks, but have also been proved
to induce immune suppression. Different microorganisms
(probiotics or microalgae) are capable of inducing better
aquaculture production by modulating the immune system in
many ways. Thus, the need for natural friendly alternatives
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TABLE 1 | Ideal water quality parameters for successful biofloc technology (31).

Parameters Ideal range Observations

Dissolved oxygen (DO) Above of 4.0mg L−1 (ideal) and at least 60% of saturation For correct fish, shrimp, microbiota respiration, and growth

Temperature 28–30◦ (ideal for tropical species) Besides fish/shrimp, low temperatures (∼20◦C) could affect microbial

development

pH 6.8–8.0 Values < 7.0 is normal in BFT but could affect the nitrification process

Salinity Depends on the cultured species It is possible to generate BFT, e.g., from 0 to 50 ppt

TAN <1mg L−1(ideal) Toxicity values are pH dependent

Nitrite <1mg L−1(ideal) Critical parameter (difficult to control). Special attention should be done,

e.g., on protein level of feed, salinity, and alkalinity

Nitrate 0.5–20mg L−1 In these ranges, generally not toxic to the cultured animals

Orthophosphate 0.5–20mg L−1 In these ranges, generally not toxic to the cultured animals

Alkalinity More than 100mg L−1 Higher values of alkalinity will help the nitrogen assimilation by heterotrophic

bacteria and nitrification process by chemoautotrophic bacteria

Settling solids (SS) Ideal: 5–15mL L−1(shrimp), 5–20 (tilapia fingerlings) and

20–50mL L−1(juveniles and adult tilapia)

High levels of SS will contribute to the DO consumption by heterotrophic

community and gill occlusion

Total suspended solids (TSS) <500mg L−1 Ideal to SS

and growth promoters has become important for healthier
aquaculture. Then comes the role of probiotics, which are
important to maintain a healthy environment and positively
increase aquaculture production without causing any negative
effect on the health of consumers (29). These probiotic strains
are widely used in shrimp culture and can be blended in right
combinations in biofloc to get the best floc results. The floc can
be manipulated and prepared to contain naturally occurring
bacteria capable of producing high concentration of enzymes.
Bacterial probionts like lactic acid bacteria, Pseudomonads,
and Bacillus are found to give better results in salmon and
shrimp production by degrading the organic matter, reducing
hydrogen sulfide and ammonia accumulation in the system
(18). Bioremediation, a process that uses microbes for waste
water cleaning, involves organic matter mineralization to carbon
dioxide and maximizes primary productivity that stimulates
shrimp production (30). To maintain a stable BFT, excess
nitrogen is to be eliminated from the system by nitrification
and denitrification processes, and exclusion of pathogens in the
system by desirable bacterial species (11).

For successfully developing the culture cycle, water quality
parameters like temperature, dissolved oxygen (DO), total
suspended solid (TSS), salinity, and alkalinity are to be measured
and monitored constantly. The recommended water quality
parameters for tropical species (e.g., Litopenaeus vannamei
and Oreochromis niloticus) of biofloc technology are shown
in Table 1. In addition to maintaining water quality, rigorous
turbulent mixing is also an essential requirement for a system to
function well, and solids must be suspended in a water column
at all times. Without proper mixing, biofloc forms piles and can
rapidly consume dissolved oxygen in the system and can further
lead to anaerobic zones releasing ammonia, hydrogen sulfide
and methane. Solids can be removed from the system by regular
flushing or by manually pumping sludge out from the pond
center. Aeration has dual functionality in the system, it is used to
supply oxygen and at the same time provides proper mixing (32).
The most common aerator used in the pond culture is paddle

wheel aerator supplying efficient oxygen, but it is not ideal for
pond mixing (32). Various configurations of aeration equipment
can be used for efficient mixing and aeration depending on the
form of the biofloc system. In shrimp indoor raceways, a number
of airlift pumps are used and placed at regular intervals for proper
water circulation. Devices that circulate water at low head, such
as low-speed paddle wheels and airlift pumps, can also be used.
The BFT is not viable for areas with expensive electricity and
unreliable power supplies (21).

Microbial Community in Biofloc
Biofloc is defined as a set of organic matters formed usually at
high density as suspended particles (33–35), and it comprises
60–70% of organic materials, and combination of fungi, algae,
bacteria, protozoa, rotifer, nematodes, and other inorganic
substances (36). In a zero-water exchange system, water quality
is maintained by two functional bacterial population, viz.,
heterotrophic ammonia- assimilative and chemoautotrophic-
nitrifying bacteria (37, 38). As the culture progresses, the
color changes from green to brown, indicating the transition
from algal-dominated to bacterial biofloc-dominated system.
The number of bacteria in biofloc ponds can be between 106

and 109 ml−1 of floc plugs, which contain between 10 and
30mg dry matter, making the pond a biotechnological industry
(39). Khanjani et al. (14) specified that the maturation of the
biofloc can be determined by the number of heterotrophic
bacteria per ml, which is 3.36 × 107. The type of carbon
source, salinity level, and species to be cultured are major
factors determining the different group of organisms present in
biofloc (40). The biofloc collected from Litopenaeus vannamei
tanks contained 24.6% phytoplankton (dominated by diatoms
like Thalassiosira, Chaetoceros, and Navicula), 3% bacterial
biomass (two-thirds was Gram-negative and one-third was
Gram-positive), a small amount of protozoan community (98%
flagellates, 1.5% rotifers, and 0.5% amoeba), and 33.2% detritus;
the remaining quantity of 39.25% was ash (16). However,
the composition may vary within different culture systems.
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Of the total organic sludge, it is believed that only 2–20%
is living as microbial cells, while the rest is total organic
matter (41).

Some of the dominant bacterial species found in the biofloc
system are Proteobacterium, Bacillus, and Actinobacterium, and
traces of other bacterial species (Roseobacter and cytophaga) are
also present in the system (42). For a bacterial species to run a
cellular machinery, it needs nitrogen like ammonium ion and
a carbon source such as sugar, starch, and cellulose to make
it responsive to toxic ammonia from the aquaculture system.
The ability to adhere to suspended particles and surfaces as
well as the use of organic matter are important physiological
properties of bacteria in biofloc. The role of bacteria here is
to transform the toxic form of nitrogen to one that is toxic
only at high concentrations by the process called nitrification.
This bacterial growth via promoted nitrogen uptake decreases
ammonium concentration more rapidly than nitrification (38).
The rapid occurrence of heterotrophic bacteria is due to the
growth rate and microbial biomass yields per unit substrate of
heterotrophs being a factor 10 higher than that of nitrifying
bacteria (38). The microbial biomass yield per unit substrate
of heterotrophic bacteria is about 0.5 g biomass C/g substrate
C used (43). The optimum C:N ratio in an aquaculture system
can be maintained (C:N ratio 15–20:1) by adding different
locally available cheap carbon sources and/or reducing protein
percentage in feed. Under optimumC:N ratio, inorganic nitrogen
is immobilized into bacterial cell, while organic substrates
are metabolized. Bacteria have a nutrient conversion ratio as
high as 50% and possess fast multiplication rates converting
toxic product in the biofloc system into highly nutritious and
useful microbial protein (42). Therefore, the biofloc system
could be considered as a microbial ecological sequence model.
It is reported that heterotrophic microbial communities like
Pseudomonas, Bacillus, Sphingomonas, Micrococcus, Nitrospira,
Nitrobacter, and yeast maintain water quality and manages
the physiological health of cultured species in a biofloc
system (44).

Carbon-nitrogen ratio in biofloc systems plays a vital role
in the restriction of toxic inorganic nitrogenous compounds
into beneficial bacterial cells acting as a source of food for
cultured organisms (10). Immobilization of inorganic nitrogen
takes place when the C:N ratio of the organic matter is higher
than 10 (45). In a biofloc system (intensive culture), the growth of
heterotrophic bacteria is restricted by dissolved organic carbon.
The population of the heterotrophic bacteria in the system
is stimulated by adding a supplementary carbohydrate source
or reducing the feed protein level manipulating the C:N ratio
and creating a demand for nitrogen (ammonia). The generated
ratio of organic carbon and inorganic nitrogen reflects the
requirement and composition of heterotrophic bacterial cells.
Substantial development of useful microbial growth and fixation
of ammonia in a culture medium are possible by directly or
indirectly adding a carbon source in limited discharge systems
(changing C:N ratio) (11, 15, 37, 46). Thus, manipulating the
C:N ratio results in shift from an autotrophic to a heterotrophic
system (4, 10).

Nutritional Value of Biofloc
Biofloc systems possess a dynamic nutritional value and can be
used as a complete aquatic food source and supply bioactive
compounds (47). There are many factors that can affect
nutritional value such as food preference, floc density in water,
and ability of animals to ingest and digest microbial proteins
(38). The heterotrophic bacterial population in a biofloc system
produces single-cell proteins, which act as a source of food
for carps, shrimps, and tilapia (48–50). Qualitatively, biofloc
contains crude protein (50%), crude lipid (2.5%), fiber (4%), ash
(7%), and 22 kJ g−1 energy (51). It is observed that the nutritional
value of biofloc depends on the biochemical compounds present,
particle size, and digestibility of cultured organisms. Ekasari (17)
found that particle sizes of <100µm and more than 45µm
are more promising for L. vannamei, Oreochromis niloticus,
and Perna viridis because of higher nutritional values. The
highest level of proteins and lipids are found in the particle size
of >100µm, whereas the amino acid concentration is found
highest in <45µm. Table 2 presents various studies conducted
on different aquatic species by adding different carbon sources
and microbes reported.

It is reported that the feed conversion ratio (FCR) values of
a fish culture in the biofloc technology can be reduced to 1.2–
1.29 from 1.52 in clear water (22). In clear water treatments,
feed efficiency was recorded as low as 66.81%, whereas the same
was 84.26% in BFT (22). Ballester et al. (55), in his study on
the BFT, used wheat bran and molasses as carbohydrate source
and revealed the nutritional breakdown of biofloc as 30.4%
crude protein, 4.7% crude fat, 8.3% fiber, 39.2% ash, and 29.1%
nitrogen-free extract. Khanjani et al. (13) used molasses, starch,
wheat flour, and their mixtures as carbon sources and suggested
that experimenting with different carbon sources changes the
nutritional composition of the biofloc produced. Ray et al.
(40) revealed that in super-intensive shrimp culture systems,
an environment friendly plant-based diet can produce results
similar to those from fish-based feed in the BFT, and that
controlling the concentration of particles could improve water
quality and shrimp production. Samocha et al. (66), in his study
on 120 days of L. vannamei biofloc culture, reported 92, 81, and
75% survival with stocking of 150, 300, and 450 shrimps/m2,
respectively, and detected no significant changes in FCR when
feeding L. vannamei with different percentages of CP diets;
he claimed that floc biomass provides a complete source of
cellular nutrition to the system. The exact mechanism of growth
enhancement by microbial flocs is unknown, but it is believed
that continuous consumption of native proteins without previous
treatments (56) could possess a growth factor enhancing the
growth in the system. Biofloc improves ingestion and digestion
of supplied feed and provides cellular nutrition to cultured
organisms (67). Emerenciano et al. (57) stated that the presence
of biofloc in the brood-stock diet of Litopenaeus vannamei and
Penaeus stylirostris improved reproductive performance and egg
quality. In his study, L. vannamei females were cultured under
biofloc conditions and fed with fresh food, and later showed
higher egg production and better spawning rates, and contained
higher levels of highly unsaturated fatty acids (HUFAs) in eggs.
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TABLE 2 | Studies with different carbon sources, species, and microbes reported by different authors.

Carbon sources Species Microbes reported References

Molasses L. vannamei and P. monodon – (49)

Starch L. vannamei and M. rosenbergi – (52)

Wheat flour Tilapia O. niloticus A.Protozoa, B. Rotifera C. Oligochaeta A. Paramecium, Tetrahymena

and Petalomonas

(51)

Cellulose Tilapia – (15)

Dextrose Litopenaeus vannamei – (53)

Tapioca starch M. rosenbergii Rotifers: Lecane, Trichocerca, Polyarthra and Asplanchna. Oligochaeta:

Tubifex

(54)

Acetate Macrobrachium rosenbergii – (11)

Wheat bran and molasses Farfantepenaeus paulensis Phytoplankton, periphyton, zooplankton, microbial floc and benthic

macro invertebrates

(55)

Wheat bran + Molasses F. paulensis Lactobacillus spp. (56)

Wheat bran + Molasses F. brasiliensis – (35, 57)

Sugarcane molasses Tapioca flour wheat flour Litopenaeus vannamei Vibrionaceae, Enterobacteriaceae Alteromonadaceae and

Micrococcaceae

(58)

Molasses + dextrose + rice flour Litopenaeus vannamei – (59)

Molasses, Molasses+ rice powder Oreochromis niloticus Tintinids, Ciliates, Copepods, Spirulina and Nematodes. (60)

Wheat bran Litopenaeus vannamei – (61)

Molasses + wheat flour + Starch Litopenaeus vannamei – (13)

Sugar beet molasses: Cyrinus carpio. Lactobacillus spp. (62)

Molasses + palm sap Litopenaeus vannamei – (63, 64)

Wheat flour and Molasses Tilapia O. niloticus – (65)

Wastewater Reduction by BFT
In addition to improving target species production, the BFT
can help conserve the amount of water required in aquaculture.
Biofloc, compared to traditional aquaculture practices, provides
a more sustainable approach with minimum water exchange and
lower feed intake, transforming it into a low-cost sustainable
technology for aquaculture development (5, 15). Traditional
aquaculture systems with regular water exchange require up
to 80 m3 kg−1 shrimp, but intensive shrimp farming systems
with zero exchange require just 1–2.26 m3 kg−1 shrimp (38).
When compared to a recirculating aquaculture system (RAS),
biofloc systems based on tilapia production utilized about 40%
less water (68). Majority of studies using the BFT found that
nitrogen and phosphorus waste in this system could be decreased
further, supporting the importance of the system in improving
aquaculture productivity and minimizing environmental effects
from aquaculture production systems (68, 69). Heterotrophic
bacteria in a biofloc system assimilate inorganic nitrogen
compounds at a faster rate than denitrifying bacteria, resulting
in a 10-fold increase in microbial biomass (38). As a result, if
there are enough organic carbon sources available, heterotrophic
bacteria can immobilize ammonia in biofloc in a matter of
hours or days (38). Although heterotrophic bacteria are primary
nitrogen conversion agents, the biofloc system also aids in
nitrification, phototrophic nitrogen uptake, and denitrification
(17). Farm biosecurity and biofloc technology are two key aspects
that must be considered for long-term intensive aquaculture
sustainability. The BFT improves biosecurity by limiting water
exchange, increasing environmental control, creating biological

and physical (indoor) barriers to infections, and boosting the
immune system.

Effect of Biofloc System on Aquaculture
Microbiome
Wasielesky et al. (70) studied various aspects like endurance,
growth, feeding pattern, and feed conversion ratio (FCR) of L.
vannamei juveniles in a biofloc system, and positive association
was observed between growth of shrimp and protein content,
depicting the benefits of the BFT for the culture of white-legged
shrimp (L. vannamei). Another study on white-legged shrimp
in the BFT (8) showed higher growth rates, improved water
quality, and increment in the final body weight of the shrimp.
The comparative analysis of Farfantepenaeus brasiliensis post
larvae when stocked with and without a biofloc system showed
better growth and survival in the biofloc system because of high
nutritional environment (34). Pinto et al. (71), in his study on
culturing the L. vannamei utilizing artificial seawater in the BFT,
concluded that the BFT systemwas zootechnically and financially
viable. Ferreira et al. (30), in his study on the BFT, reported
the presence of Bacillus species demonstrating the probiotics
nature of the system. Huang et al. (72), in his study on L.
vannamei in the BFT, observed an increase in the concentration
of Actinobacteria, Alteromonadaceae, and Rhodobacteraceae and
a decrease in the number of Cyanobacteria, Mycoplasmataceae,
and Vibrio, indicating t the higher C:N ratio in the system
responsible for enhancing and promoting beneficial bacteria
and ultimately suppressing harmful pathogens. Hence, from the
above studies, it can be explained that the BFT could be used as
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an innovative strategy to develop and grow enriched probiotic
microbes for improving health and enhancing growth of cultured
species (73).

It is of prime importance to conduct research on species
for the BFT, which are commercially important and have a
social interest. The only sole member of the freshwater prawn
species having published literature associated with the BFT is
Macrobrachium rosenbergii, allowing it to be used commercially.
Considering the research on shrimps includes species like L.
vannamei (74), Penaeus monodon (46), Litopenaeus setiferus (75),
Fenneropenaeus merguiensis (76), and Farfantepenaeus paulensis
(77). There are many other species of the family to which the BFT
has successfully extended such as F. brasiliensis (34), F. duorarum
(57), L. stylirostris (34), L. schmitti (78), Marsupenaeus japonicus
(42), and Fenneropenaeus indicus (79).

Oreochromis aureus (10), Oreochromis mossambicus (39), and
Oreochromis niloticus (51) are among the freshwater fish species
studied using the BFT. The technology has also been extended
to two major commercially important carps, i.e., Catla cattle
(80) and Labeo rohita (50). For the ornamental fish industry,
various species have also been studied using this technology like
Poecilia reticulata (81), Scatophagus argus (82), Carassius auratus
(83), and Pseudotropheus saulosi (84). Some other commercially
important species that have been studied using the BFT are
shown in Table 3.

Economic Aspects of BFT
To make any aquaculture venture profitable, there is a need
to reduce production costs and increase profitability. The key
deciding factors for the aquaculture industry to sustain in the
long-run are feed cost and environmental protection (21). In this
technology, the carbon source used is mainly a by-product that
is derived from either the plant or animal food industry and is
locally available. Before the stocking of post larvae and during the
grow out culture, cheap sources of carbohydrates like molasses
and plant meals are applied in the system to provide food for
initial stages of growth and maintain the C:N ratio.

The biofloc system is responsible for increasing the growth
rate and reducing the feed conversion ratio, which eventually
increases profitability and reduces aquaculture costs (22).
Megahed (85) found that the per-kilogram production cost
of green tiger shrimp (Penaeus semisulcatus) and tilapia was
reduced by 33 and 10% (93), respectively, using the BFT
depending on diet, species, and price of carbohydrates. The
biofloc system is more successful in increasing growth rate and
reducing culture period than the clear water system (94). Liu et al.
(18) showed that shrimp yield can be increased, and that feed
conversion ratio can be lowered by adding maize to stimulate
biofloc growth in an integrated culture of shrimp, spotted scat,
and water spinach. This process can further reduce the total
phosphorous and total nitrogen in the cultured water. Similarly,
Ekasari (17) demonstrated that biofloc-based polyculture of
shrimps, tilapia, mussel and, seaweed resulted in higher growth
rate and reduced waste nutrient and microbial biomass. The
biofloc system reduces the cost of organic and inorganic fertilizers
and covers the cost of carbon source. The BFT is also responsible
for reducing water treatment expenses by 30%, and protein

TABLE 3 | Applications of the biofloc technology (BFT) in species based on their

bibliographic references.

Species Family Bibliographic references

Litopenaeus vannamei Penaeidae McIntosh (74), Tacon et al.

(67), Burford et al. (49), Hari

et al. (46), Wasielesky et al.

(70), Ju et al. (16)

Penaeus monodon Penaeidae Hari et al. (46)

Penaeus semisulcatus Penaeidae Megahed (85)

Penaeus merguiensis Penaeidae Aquacop (76)

Marsupenaeus japonicus Penaeidae Zhao et al. (42)

Litopenaeus stylirostris Penaeidae Emerenciano et al. (34)

Farfantepenaeus brasiliensis Penaeidae Emerenciano et al. (34)

Litopenaeus setiferus Penaeidae Emerenciano et al. (75)

Catla Catla Cyprinidae Prajith (80)

Labeo rohita Cyprinidae Prajith (80), Mahanand et al.

(50)

Tinca tinca Cyprinidae Carbo and Celades (86)

Carassius auratus Cyprinidae Faizullah et al. (83),

Cyprinus carpio Cyprinidae Sarker (87), Najdegerami

et al. (88)

Labeo victorianus Cyprinidae Magondu et al. (89)

Macrobrachium rosenbergii Palaemonidae Crab et al. (11), Prajith (80)

Oreochromis aureus, O. niloticus, Cichlidae Avnimelech (10)

Etroplus suratensis Cichlidae Thilakan et al. (90)

Clarias gariepinus Cichlidae Dauda et al. (91), Putra et al.

(92)

Poecilia reticulata Cichlidae Sreedevi and

Ramasubramanian (81)

utilization efficiency is double when compared with conventional
water treatment technologies (5, 21).

When investing in a new or experimental technology, it
is necessary to adapt it to the local environment until the
production process can be standardized and survival can be
maximized (95). Rego et al. (96), in his study, estimated the
financial viability of Litopenaeus vannamei culture in the BFT and
found that per hectare BFT operating costs are 10 times higher
than those of the conventional aquaculture practice. Among the
total variable costs, feed contributed highest in both systems,
accounting for 54% in the BFT and 79% in conventional (96).
Feed was found to be the most important variable cost for
intensive shrimp farming in Asia (97), accounting for between
23 and 46 % of expenditures. Rego et al. (96) found that in the
BFT, total production cost per cycle and total production cost per
year were US$ 33,294.87 and 124,369, respectively, with stocking
density of 113 shrimp per m−2. In terms of production cost,
the BFT system generated an annual operating profit of US$
51,871.54 per productive hectare, which is 141% greater than
that of the conventional approach. In comparison, Hanson (98)
estimated an initial expenditure of around US$ 992,000, with
total production cost equivalent to US$ 983,950.00 year−1, for
a super-intensive BFT system operating with densities of 500
shrimps per m−3 in 10 tanks of 500 m3 each, located in Texas,
United States. The high overall production cost of the BFT system
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compared to the conventional system is justified not only by
the highest feed expenditure but also by the high labor work
and energy values that significantly contribute to this variance.
Hargreaves (32) stated that the greater energy consumption in
the BFT system is due to the shrimp and heterotrophic bacteria
in biofloc having high oxygen demand, necessitating the need for
artificial aeration in a minimum ratio of 25 HP ha−1, as opposed
to only 3 HP ha−1 in the conventional system.

Biofloc Technology for Sustainable
Aquaculture
The concept of BFT goes against the popular understanding that
pond water must be clean; thus, convincing farmers to use the
approach is a big challenge (21). It is also because of the lack
of perfect technology, justifying BFT technology and persuading
farmers to implement it is more challenging than with traditional
approaches. Several considerations, on the other hand, encourage
the use of the technique. To begin with, water has become
scarce or expensive to the point that aquaculture development
is being hampered. Second, most nations have laws prohibiting
the discharge of contaminated effluents into the environment.
Finally, significant outbreaks of contagious diseases prompted
the implementation of overly restrictive biosecurity measures,
such as lowering water exchange rates (21). Monitoring of
ponds is a critical part of implementing the technology in
aquaculture. The BFT is not yet entirely predictable, making its
implementation at the farm level riskier.

Water quality monitoring including determining and
stabilizing the total concentration of suspended solids, settling
solids, the number of aerators, their type and location in
ponds are important for the successful implementation of
the technology (5). Various findings have revealed that BFT
have the ability to control dangerous chemicals in aquaculture
systems, which, if left intact, can reduce productivity (21, 99).
The BFT system has been tested for multi-species production
systems, like tilapia with vegetables, shrimp with microalgae
and seaweed, producing favorable results (100). Aquaculture is
a sustainable technique that focuses on environmental, social,
and economic concerns as it grows, according to the BFT. The
BFT is developed on the principle of recycling and reusing
nutrients, particularly nitrogen, into microbial biomass, which
may either be utilized by cultured organisms or collected and
processed into important feed nutrients (101). The development
of such an approach necessitates careful modification and
execution, requiring additional research and information from
researchers, producers, and customers in order to establish a
base for this method, which ultimately is the foundation of
sustainable aquaculture.

Integrated Multi-Trophic Aquaculture
Using Biofloc
While the BFT helps in the maintenance of adequate water
quality suitable for the survival and general well-being of reared
aquatic species without the use of massive water volumes and
exchange rates, the accumulation of total suspended solids (TSSs)
and organic matter in rearing units may cause a number of

environment problems. In the BFT, an integrated multi-trophic
aquaculture (IMTA) system can be set up in which the waste
of a new organism is used as feed for another (102). The
system allows filter feeding organisms like Oreochromis sp. and
Mugil liza to incorporate in the culture system, so suspended
particles and organic debris that accumulate at the bottom of
rearing units are absorbed (102). However, the organisms should
not compete for food and space with co-cultured species. The
species to be cultured is a crucial consideration when building
a biofloc system. Biofloc systems function best with species
that can benefit nutritionally from direct floc ingestion. Biofloc
systems are also best for species that can withstand high sediment
concentrations in water and are tolerant of poor water quality.
Physiological changes in shrimp and tilapia allow them to absorb
biofloc and digest microbial protein, and to take advantage of
biofloc as a food source (82). Earlier studies have revealed an
increase in N and P recovery, growth performance, profitability,
yield, and immunity in integrated culture of shrimps and Nile
tilapia (Oreochromis niloticus) when stocked at various stocking
densities (5, 103). Borges et al. (102), in his study on integrated
polyculture of BFT in mullet (Mugil liza) and white shrimp
(Litopenaeus vannamei), revealed that the organic matter in
rearing units were utilized by the mullet when raised in same
units or two different units with 41 days of culture. When
tropical fish species like tambaqui (Colossoma macropomum)
were cultivated in the BFT, no improvement in growth or
productivity was noted when compared to conventional culture
techniques; however, major water problems like turbidity and
amount of nitrite increased in the system (102).

There are many methods that can be adopted for increasing
the efficiency of BFT when culturing a particular species or a
combination of species. One of them is to use lined ponds like
those used in countries like Australia, Indonesia, andMalaysia for
commercial shrimp culture (15). The basic strategy is to employ
small (0.5 to 1.5 ha) ponds lined with plastic (30- to 40-mil
HDPE) and aerate vigorously (28–32 hp/ha) with paddle wheel
aerators to keep floc in suspension (15). This system requires
high stocking density of PL (125–150/m2) to maximize yield. The
culture is carried out usually for 90–120 days with maximum
daily feed of 400–600 kg/ha before harvesting. This technique
of lining shrimp ponds has produced tremendous yields of 20–
25 metric tons/ha per crop (15). Another approach is the use of
greenhouse raceways for shrimp, which member universities of
the old US Marine Shrimp Farming Consortium developed for
intensive lined raceways in standard greenhouses (100 feet long
× 25 feet wide), building on the intensification of lined, outdoor
shrimp ponds. If supplemental heat is given, these greenhouses
can be located inland to avoid expensive coastal land, and in
temperate climates (93). The stocking density of these shrimps
varies from 300 to 500 PL/m2, and yields an output of 3–7 kg/m2.
Higher yields of around 10 kg/m2 are also found when supplied
with pure oxygen supplementation (93).

Applications of Biofloc Technology
It was in the mid-1990s when first commercial uses of BFT in
shrimp aquaculture were reported in Belize. The area of culture
ponds were around 1.6 ha producing 11–26 mt of shrimp in each
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cycle (35). Commercial large-scale and small-scale BFT-based
shrimp farms are now spreading across Indonesia, Malaysia,
Thailand, South Korea, China, and India (35, 80). It is reported
that the commercial size of a biofloc pond varies between 0.1
and 2 ha with proper aerators (paddle- wheel) and aspirators
in order to aerate the system well and allow particles to be
in suspension for proper mixing (34). The technology often
leads to higher productivity without affecting the environment.
Production intensity in BFT ponds is far more higher than that
in non-BFT ponds, like a tilapia culture in the BFT system that
exhibited higher growth and quality. The BFT improves output
and productivity by assisting in the supply of high-quality fish
juveniles, which is one of the most significant inputs in the
production process. The culture system contributed around 45%
higher production and individual weight gain than those without
BFT (51). In Indonesia alone, the technology is used by almost
20–25% of farmers with an average pond area of 0.5 ha and
produces more than 30 metric tons of output per cycle. High-
density polyethylene (HDPE) sheets are used for lining ponds
with an aeration capacity of 28 hp ha−1 (56). While full HDPE-
lined ponds in Malaysia generated an average of 17–23 metric
tons of produce every cycle, ponds with lining in dikes had a
much lower output of 12 metric tons per cycle (56).

Furthermore, biofloc systems may be created and
implemented in conjunction with other forms of food
production, resulting in more productive integrated systems that
seek to produce more food and feed from the same amount of
land with less input. By boosting the reproductive performance
of aquaculture animals and increasing the immunity and
robustness of larvae, the BFT might help sustain the supply of
high-quality seeds (17, 35).

THE CONCEPT OF AQUAMIMICRY

Biofloc is being considered as a sustainable technology and
cost effective method for controlling waste generated in the
aquaculture system, but it also has some disadvantages which
deter shrimp farmers from using this. The major drawback of
this technology is the need for continuous aeration to suspend
the waste generated in the system so that active metabolism
by bacteria to generate proteins could take place. Second, the
drop in pH and alkalinity due to nitrification and the need to
add sufficient carbon are all factors that need to be monitored
closely compared with conventional methods of shrimp farming
(104). These constraints lead to the development of a new novel
technology called the copefloc technology that relies on the
natural production of copepods in the system that are further
eaten by stocked shrimps. The technique negates the use of
external feed source or any rigorous churning and oxygenation
in the culture system (105). Zooplankton copepods produced
during the process are very advantageous, convert energy in the
food chain, act as a source of food for marine animals, and
perfect nutrient recyclers (106). Shrimps, when fed with these
copepods, showed better growth and improvement in survival
rate (107) because of better biochemical composition of the
plankton (108).

The orders harpacticoid, calanoid, and cyclopoid are the three
major candidate species of copepods for aquaculture production
and usually dwell in fresh, marine and estuarine environments
(109). Harpacticoid copepods are epi-benthic and have superior
nutritional attributes compared to Artemia and rotifers (108).
The advantage of harpacticoids over other rotifers is that they can
grow at high densities (110). Cyclopoid copepods are rarely used
in aquaculture, and a density of ∼5,000/L is possible to achieve
in cultures (111). It is due to its difficulties in harvesting nauplii
and lack of storage possibilities for egg that the culture practice
is not standardized in spite of high nutritional profile. Calanoid
copepods are pelagic and the natural prey for fish larvae (112).

An innovative concept of in-situ waste assimilation creating
blooms of zooplankton (copepods), enhancing the growth of
beneficial bacteria and acting as a good source of supplementary
nutritional form in shrimp culture, is aquamimicry (113). In
aquamimicry, a carbon source such as fermented rice bran
(FRB) is added with some probiotics that generate phytoplankton
and zooplankton blooms and simulate natural pond conditions.
These planktons acts as a supplemental nutrition and improve
water quality in fish and shrimp cultures (114). As per Romano
(109), FRB is made by adding water, some hydrolyzing enzymes,
and probiotics to rice bran powder and is then allowed to soak
overnight. The pH of incubation water should be in the range of
6–7 and adjusted if necessary. The prepared mixture is allowed to
ferment for 24 h and then added to cultured ponds at the rate
500–1,000 kg ha−1 (115). If the rice bran used is in powdered
form, it is added gradually to the pond, and if the crumble form
is used, its supernatant/juice is added to the pond, and solid bran
particles are fed to fishes in the bio filter pond. The dominance
of copepods in the ponds can be observed within a week of
application. Now, once the zooplankton is ready, the ponds are
stocked with shrimp post larvae at the stocking density of 20 PL
m−2 (115). In order to sustain the copepod bloom, the stocked
ponds are regularly seeded with FRB at the rate of 10 kg ha−1

every month (115). The stocked shrimps are provided with the
supplementary nutrition, as they feed easily on particles of FRB.

For high stocking intensive culture, the concept of
aquamimicry can also be adopted; in that case, a central drainage
system is developed from grow-out pond to sedimentation pond.
In grow out ponds, fishes like catfish and milkfish are grown,
which churn up the detritus promoting the growth of oligochaete
worms rich in essential amino acids, such as lysine and
methionine and can be eaten by the fishes (114). Furthermore,
in bio filter ponds, fishes like tilapia can be grown, which can
further reduce the waste in the water coming from sedimentation
ponds and can be reused and pumped back in the grow out. To
maintain water quality in grow out ponds, additional probiotics
should be added every month. In order to accumulate sediments,
a sedimentation pond should be constructed deeper than grow
out and stocked with catfish/milkfish (bottom dwelling) at lower
densities for pond cleaning. The sediments accumulated from
grow-out ponds generate worms and other benthic invertebrates
that are further eaten by fishes. Now, from sedimentation ponds,
the water overflows to another pond that acts as a bio filter,
and fishes like tilapia are stocked in it. Nitrogenous wastes are
reduced in this bio filter pond and water overflows back to
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grow-out ponds. Once harvesting is done, the pond bottom
shows no signs of smell and black soil accumulation.

WASTE UTILIZATION IN AQUACULTURE

Due to high intake of feed in shrimp and fish ponds, almost
50–60% of the feed is uneaten, which causes high nutrient load
because of imbalance of carbon and nitrogen in the system,
ultimately leading to water quality deterioration. Since dietary
nutrients supplied in feed are not fully recovered and each
nutrient contributes to the total feed cost, increasing nutrient
utilization efficiency would improve fish or shellfish production
economics (32). The increase of nutrient waste in a pond
aquaculture system can have adverse implications that limit
production and pollute the environment. The BFT can improve
water quality in these ponds by regulating carbon and nitrogen
through the processes photosynthesis and nitrification (12). It
is reported that mullet (Mugil liza) were able to lower total
suspended solids generated from vannamei production in a
BFT system by consuming solids; however, their culture in
the same tank resulted in shrimp growth being reduced (116).
Furthermore, a biofloc inoculum could be used to modify the
nitrifying bacterial community in mullet and shrimp community
culture (116). Kim et al. (117), in his study, demonstrated that
without any sodium bicarbonate supplementation, the biofloc
system demonstrated satisfactory recovery and sustainable water
quality management. Heterotrophic bacteria are the most
prevalent microbial community members in biofloc that are
mostly responsible for generating the structure of biofloc.
Similarly, chemoautotrophic nitrifiers are lower in number than
other types of bacteria that ultimately results in less nitrogen
efflux into a pond ecosystem (117). Actinobacteria also facilitate
the development of biofloc, which may be required for secondary
protection against fish infections. They may, however, lead to off
flavor in fish flesh and pond water (118). In BFT artemia biomass,
polychaetes, and semi-moist feed were the most important fresh
food sources for broodstock origins in both Farfantepenaeus
brasiliensis and Litopenaeus vannamei (119, 120). In addition,
there is no significant difference in spawning performance among
females reared in the BFT with or without feed supplementation
(121). The use of biofloc can also improve the growth, survival,
and reproductive performance of cultured animals (56, 122).
However, some species like Farfantepenaeus duorarum, in their
natural habitat, produce a larger number of eggs per spawning
period than those cultured in the biofloc system (123).

Free amino acids, such as alanine, glutamate, arginine, and
glycine, which have been identified as possible attractants in
shrimp diets (31) and are present in biofloc, are found to be
comparable to those reported in commercial shrimp diets (16).
This indicates that some aquaculture organisms are likely to
recognize biofloc as food particles. According to Avnimelech
(39), using the biofloc system in tilapia intensive cultures
enhanced nitrogen recovery from 23 to 43%. Second, since
the biofloc system employs no or limited water exchange,
it is believed that it will use water more efficiently than
a traditional system having regular water exchange. Ekasari

(17), in his experiment, concluded that regardless of the
animal species cultured, nitrogen uptake from biofloc with a
particle size of >100m was determined to be the highest. The
ability of the biofloc system to improve nutrient utilization
efficiency in aquaculture systems is clearly demonstrated by
nutrient conversion by biofloc followed by consumption by
cultured animals.

Aquaculture mimicry, also known as aquamimicry, is a
technique that involves simulating natural estuary conditions
in culture ponds. To improve and sustain water quality,
zooplanktons bloom, primarily copepods, and beneficial bacterial
populations are established. Copepods can bloom as soon
as 2 days after applying FRB, depending on water source,
temperature, and previous pond management (113). It refers to
the integration of aquatic biology and technology to construct
living beings that mimic the nature of aquatic ecosystems for
the well-being and development of aquatic animals, with the
aim of reviving the shrimp farming sector on a long-term basis.
Aquamimicry technology is being used to create a natural estuary
environment by encouraging and balancing the growth of natural
planktonic communities. Natural feeds found in water resources,
such as zooplanktons, artemia, and phytoplanktons, are fed to
shrimp using this approach (115). Shrimp do not consume
phytoplankton directly. They devour phytoplankton-eating tiny
organisms or bacteria that grow on dead phytoplankton cells that
gather on the bottom. The culture environment ideally resembles
a natural estuary environment with balanced water quality
provided by acquired planktons with these biofloc changes (113).
As a result, feed consumption and water exchange can be
minimized. This technology is proved best for waste utilization,
as with the continuous use of carbon sources and probiotics,
planktonic growth can be supported.

AQUAMIMICRY VS. BIOFLOC
TECHNOLOGY

Both aquamimicry and the BFT depends on external carbon
source addition. In the biofloc system, in order to maintain floc,
the C:N ratio is to be maintained at 15:1 (124). Heterogeneous
bacteria then derive carbon from a supplied carbonaceous
substrate. However, in the concept of aquamimicry, once
stocking of cultured organism is done, the carbon source to be
added is dependent on the level of intensification (extensive or
intensive) and turbidity level of the water. The BFT is considered
as an economical method for aquaculture (12) by acting as live
feed for stocked species (21), but a major disadvantage of the
technology is the need for continuous and rigorous aeration for
suspending generated wastes, which is further metabolized by
bacteria for protein generation (105).

The concept of aquamimicry originated from Thailand during
a disease outbreak in the early 1990s (115). In aquamimicry, the
major vital ingredient used in the system is rice bran, which acts
as a carbonaceous source and is easily available in nearby market.
Initially, rice bran was used in the culture system but was later
replaced by standardized fermented rice having higher efficiency.
Rice bran is rich in nutrients but at the same time contains higher
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fiber contents (125). Therefore, by using the fermentation process
lipid, ash, fiber, and phytic acid were successfully removed from
rice bran, and the technique was standardized (126). In the
Philippines, a technical project was started by JICA to understand
and evaluate the benefits of pond-grown natural food. Initially,
fish in ponds were fed with rice bran, and compounded feed was
given; the calculated feed conversion ratio (FCR) was found to be
1.27, and profitability was 17%. Later in the experiment, rice bran
was replaced with fermented rice bran and the profitability rose
to around 40%, believing that fermentation increased the protein
content (127). In aquamimicry, the production system contains
the beneficial zooplanktons and microalgae that are produced in
the water, and the system mimics natural estuarine waters. The
system does not necessitate the use of any chemical or antibiotics,
since rice bran itself provides nutrition to the zooplanktons,
and the bacteria present are responsible for the development
of pre- and probiotics creating a healthy environment. In this
technology, post-harvest pond preparation does not need much
effort and attention, since the bottom of the pond reportedly
does not have black soil, smell, and sediments and is often
ready for next production cycles. In most cases, there are three
significant limitations in adopting this aquamimicry technology:
first, this idea is extremely difficult to implement in indoor
settings; second, this system requires huge treatment ponds;
another disadvantage of this method is that the trash produced
in the form of excessive sediments is not recyclable and has to be
disposed off, which is not the case with BFT.

CONCLUSION

The current major crisis the world is facing is ever-increasing
seafood demand, water scarcity, and cultivable land resources.
In order to overcome these problems, the best solution is
intensive sustainable aquaculture. The BFT can serve as an eco-
friendly and sustainable effort to not only increase aquaculture
production but use minimum land and water resources. For
a cultured species to grow and prosper, nutrition plays a vital
role, and biofloc acts as best substitute for fishmeal in a diet
reducing the FCR and, consequently, feed costs. Biofloc is rich in
microbial protein and contains an organic polyhydroxybutyrate
polymer that, when introduced with commercial feeds, forms
a complete healthy and nutritious food chain and improves
growth performance. Advantages of the BFT include improved
biosecurity, less feed utilization, lower pathogenic introduction,
higher growth and survival, reduced water exchange, and, hence,
better productivity. Farmers must be trained in a practical
manner about the successful experiences of the BFT as well as the
economic benefits. Aquaculture now has a sustainable solution
to solve its environmental, social, and economic challenges at
the same time that it grows owing to the BFT. Many studies
have been carried out to understand the growth and development
of herbivorous and detrivorous fishes in biofloc systems. There
is a need to conduct more research and experimentation for
carnivorous organisms with different carbon sources and ratios

to see whether the BFT can provide them with any benefits.
Therefore, it is recommended that future studies be conducted
in order to provide the most appropriate specialized conditions
for many species in the system. Researchers should also be
encouraged to improve this technology, and farmers should be
scientifically advised to incorporate this technology into their
future aquaculture systems. Future research should emphasize
on the role and significance of the BFT in persuading farmers
to implement it. Organic aquaculture products from BFT ponds
should be promoted to customers through suitable supply chains
and marketing techniques.

Aquamimicry is a revolutionary concept that simulates
natural estuarine conditions by developing copepods that act
as supplementary nutrition to a cultured species. It is a more
balanced approach that uses both microalgae and biofloc in
aquaculture. The concept is best known for reducing the stress
associated with fluctuating water quality, and it minimizes
favorable environmental conditions to pathogens. Usually, the
shrimps produced by this technology are rich in astaxanthin,
PUFAs, and amino acids responsible for red coloring in shrimps,
which increases the market value by labeling the shrimps as
“organic shrimps” (109). The technique can be very fruitful in
uplifting the economic status of shrimp farmers by producing
disease-free and cost-efficient produce.
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