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Abstract: Arrestin-dependent pathways are a central component of G protein-coupled receptor
(GPCRs) signaling. However, the molecular processes regulating arrestin binding are to be further
illuminated, in particular with regard to the structural impact of GPCR C-terminal disordered
regions. Here, we used an integrated biophysical strategy to describe the basal conformations of
the C-terminal domains of three class A GPCRs, the vasopressin V2 receptor (V2R), the growth
hormone secretagogue or ghrelin receptor type 1a (GHSR) and the β2-adernergic receptor (β2AR).
By doing so, we revealed the presence of transient secondary structures in these regions that are
potentially involved in the interaction with arrestin. These secondary structure elements differ from
those described in the literature in interaction with arrestin. This suggests a mechanism where the
secondary structure conformational preferences in the C-terminal regions of GPCRs could be a central
feature for optimizing arrestins recognition.

Keywords: GPCR; arrestin; intrinsically disordered proteins or regions (IDPs/IDRs); NMR

1. Introduction

G protein-coupled receptors (GPCRs) are integral membrane proteins involved in sig-
nal transduction. They are central in the cellular response for a wide range of extracellular
ligands, such as hormones, nucleotides, lipids, ions, photons, and neurotransmitters [1].
Their signaling outcome regulates a large number of biological functions and, therefore,
their dysfunctions are linked to various pathologies [2]. Consequently, GPCRs are the
target of a third of the current clinical drugs [3]. Their functional diversity comes from the
existence of a large number of GPCRs (~800 members in humans), classified according to
their sequence and phylogenetic analyses [4]. While they share a highly conserved core
domain (7TM) composed of seven transmembrane helices connected by three extracellular
(ECL) and intracellular (ICL) loops, their extracellular N- and intracellular C-termini, as
well as the loops, are highly variable in both sequence and length (Figure 1) [5,6].

Upon extracellular ligand binding, GPCR conformational rearrangements allow G
protein association and G protein dependent signaling initiation. Besides G proteins, GPCRs
can trigger other signaling pathways by interacting with arrestin, i.e., desensitization,
internalization, and receptor trafficking [7]. Arrestin interaction requires GPCR C-terminal
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domain (GPCR-Cter) phosphorylation by specific G protein-coupled receptor kinases
(GRKs). The current model of GPCR:arrestin interaction, the so-called phospho-barcode
model [8,9], states that, upon activation, GPCRs become phosphorylated at specific sites on
their C-terminal domain, and this impacts their interaction with arrestin, in turn affecting its
conformation and, ultimately, the intracellular signal triggered by arrestin. However, we are
just beginning to grasp the mechanistic basis of this mode of functioning as experimental
demonstrations are still scarce even for the best-studied GPCRs.
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Figure 1. Schematic representation of a GPCR. GPCRs share a common core domain with seven
transmembrane helices (7TM) linked by extracellular (ECL) and intracellular (ICL) loops. These loops,
as well as the N- and C-terminal domains, are variable in length and sequence. The sequences of the
three peptides used in this study are indicated just below.

GPCR:arrestin complex formation leads to arrestin activation through conformational
changes (for a review see [10]). However, putative conformational changes of GPCR-Cter
induced by GRK phosphorylation or arrestin binding are still poorly described. These
C-terminal regions are predicted to behave as intrinsically disordered regions (IDRs) [11,12].
Intrinsically disordered proteins (IDPs) and IDRs are highly dynamic proteins/regions
with a low content of transient secondary structures, which make their structural char-
acterization difficult [13]. Atomic structures of GPCR-arrestin complex revealed that the
C-terminus of the vasopressin 2 receptor (V2R) and rhodopsin are partially folded on
arrestin surface [13–16]. This suggests a mechanism by which the IDR undergoes confor-
mational changes upon post-translational modification and/or binding to its target [14].
Indeed, IDPs/IDRs most likely contain some pre-formed secondary structure elements that
are often involved in the recognition of specific partners and modulate the affinity [15].

In order to better understand how the structural features of the GPCR C-terminal
regions could impact on their functional role, we characterized the structure of the truncated
C-terminal regions of three GPCRs, namely the vasopressin V2 receptor (V2R), the ghrelin
receptor type 1a (GHSR) and the β2-adernergic receptor (β2AR) (Figure 1). These three
class-A receptors are important therapeutic targets [2] and are representative of the two
different classes of arrestin binders [16]. The first class, which includes β2AR and GHSR,
forms a transient complex with arrestin that dissociates near the plasma membrane. Thus,
arrestin does not internalize with the receptor. In contrast, the second class, which includes
V2R, forms a more stable complex allowing the internalization of the whole assembly.

Here, we confirmed the disordered nature of these three GPCR-Cters and the presence
of transient secondary structures by a set of biophysical tools: circular dichroism (CD), multi
angle light scattering (MALS), and small angle X-ray scattering (SAXS). Then, we used
nuclear magnetic resonance (NMR) to probe the conformational and dynamic preferences
at residue level, using a set of complementary experiments, such as secondary chemical
shifts (SCS), scalar (J) and residual dipolar couplings (RDCs), paramagnetic relaxation
enhancement (PRE) and relaxation [17–20]. We show that the three C-terminal regions
of the chosen GPCRs displayed different transient secondary structures, which could be
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involved in arrestin binding. These regions could act as short linear motifs (SLiMs), partner
recognition IDP segments that are embedded in poorly conserved, disordered regions.
By comparison with crystallographic structures of synthetic peptides in interaction with
arrestin [21–23], our results suggest that structural changes in these putative SLiMs occur
either after phosphorylation of the C-terminal region or upon arrestin binding.

2. Materials and Methods
2.1. Sample Preparation

The (human) cDNA coding for the C-terminus of V2R (343–371), GHSR (339–366) and
β2AR (342–413) were ordered to GeneArt® gene synthesis (Life Technologies, Courtaboeuf,
France). They were cloned into the expression vector pETM33 for GHSR-Cter and V2R-Cter,
while β2AR-Cter was cloned into pET1a expression vector. Vectors were transfected into E.
Coli BL21 DE3 strain (Fisher Scientific S.A.S., Illkirch, France) and (His)6-GST-tagged pro-
teins were expressed in self-inducible medium N5052 or in minimal medium M9 by adding
2 mM IPTG when the OD600 reached 0.6. Labeling with 15N and/or 13C was carried out by
growing cells in the previous media with 99% 15NH4Cl (CortecNet, Voisins-Le-Bretonneux,
France) and/or 99% 13C6-Glucose (Cambridge Isotope Laboratories Inc., Tewksbury, MA,
USA) as unique source of nitrogen and carbon, respectively. After harvesting, bacteria were
resuspended and lysed by sonication in 20 mM Tris 20 pH 7.5, 300 mM NaCl and 2 mM
dithiothreitol (DTT) (buffer A) supplemented with anti-protease (Complete® EDTA free
tablet (Sigma-Aldrich Chimie S.A.R.L.-Roche, Saint Quentin Fallavier, France)). Cell debris
was removed by centrifugation and the soluble fraction was loaded onto 5 mL HisTrap FF
column (Cytiva Europe GmbH, Velizy Villacoublay, France). The resin was washed with
buffer A containing 10 mM imidazole and proteins were eluted with a linear gradient of
buffer A supplemented with 500 mM imidazole. The combined eluate was dialyzed over
night at 4 ◦C in 1 L of buffer A with the 3C PreScission protease (ratio protease:protein
1:100 (w/w)) or TEV protease (ratio protease:protein 1:50 (w/w)) for the pETM33 and
pET1a constructs, respectively. Proteases and His-GST tags were removed using gravity
column containing 2.5 mL Ni-sepharose (GE Healthcare). Untagged proteins were concen-
trated using a 2 kDa Millipore concentrator and injected into a HiLoad 16/60 Superdex
75 exclusion column (GE Healthcare) with SEC buffer (50 mM Bis-Tris pH 6.7, 50 mM NaCl,
2 mM DTT). The purified proteins were then concentrated to 200–300 µM using Millipore
concentrator and aliquots were flash-frozen in 50 mM Bis-Tris pH 6.7, 50 mM NaCl, 1 mM
EDTA (EthyleneDiamineTetraAcetic acid), 0.5 mM TCEP (Tris(2-CarboxyEthyl)Phosphine)
and stored at −80 ◦C until use.

Concentration of V2R-Cter was determined by refractometry after gel filtration, while
concentrations of β2AR-Cter and GHSR-Cter were estimated using absorbance at 280 nm.

2.2. Bioinformatic Analyses
2.2.1. Disorder Prediction

The disorder state of the three C-termini was determined using the Charge-Hydropathy
plot computed by PONDR [24]. Disordered propensity of amino-acid were predicted using
PONDR-FIT [25], PrDOS [26], SPOT-Disorder [27,28], Espritz-NMR [29], DisPro [30], and
DISOPRED3 [31] predictors.

2.2.2. Secondary Structure Prediction

Secondary structure predictions were computed with different servers: SOPMA [32],
PSIPRED [33], JPRED4 [34], PSSpred [35], SPOT1D [36], SPIDER3 [37].

2.3. Size Exclusion Chromatography-Multi-Angle Light Scattering (SEC-MALS)

The experiments were performed at 25 ◦C using a Superdex 75 10/300 GL column (GE
HealthCare) connected to a miniDAWN-TREOS light scattering detector and an Optilab
T-rEX differential refractive index detector (Wyatt Technology, Santa Barbara, CA, USA).
The column was equilibrated in 50 mM BisTris pH 6.7, 50 mM NaCl, 1 mM TCEP and
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0.5 mM EDTA buffer filtered at 0.1 µM, and the SEC-MALS system was calibrated with
a sample of Bovine Serum Albumin (BSA) at 1 mg/mL. Samples at 1.5 mM, 0.6 mM, and
0.7 mM were prepared for V2R-Cter, GHSR-Cter, and β2AR-Cter, respectively. For each
GPCR-Cter, 40 µL of sample were injected at 0.5 mL/min. Data acquisition and analyses
were performed using the ASTRA software (Wyatt).

2.4. Circular Dichroism (CD)

Far UV-spectra of the C-termini were recorded in a quartz cuvette (path length 0.1 cm)
at 0.08 mg/mL in H2O at 20 ◦C using a Chirascan. The ellipticity was scanned from 190 to
260 nm with an increment of 0.5 nm, an integration time of 3 s, and a constant band-pass of
1 nm. Data were treated using Chirascan and, after substraction of the buffer signal, were
converted to mean residue ellipticity ([θ]MRW, mdeg.cm2.dmole−1) using Equation (1) [38]:

[θ]MWR = [(θ × Mw)/(L × C × 10)]/(n − 1) (1)

where θ is the ellipticity (mdeg), Mw is the molecular weight (g/mol), L is the cell length
(cm), C is the protein concentration (mg/mL), and n is the number of peptide bonds.

2.5. Small-Angle X-ray Scattering (SAXS) Measurement and Analysis

Synchrotron radiation SAXS data were acquired for GPCR-Cters at the SWING beam-
line at the SOLEIL synchrotron (Saint-Aubin, France) [39] using an X-ray wavelength of
1.03 Å and a sample-to-detector distance of 1.99 m. Samples were measured at 15 ◦C and at
two concentrations, 5 mg/mL and 10 mg/mL, for all GPCR-Cters, in 50 mM BisTris pH
6.7, 50 mM NaCl and 2 mM DTT buffer. Before exposure to X-rays, 45 µL of sample were
injected into 3 mL Superdex 75 5/150 GL column (GE HealthCare) at 0.2 mL/min, pre-
equilibrated into the same buffer as the samples. The intensity was measured as function
of the magnitude of the scattering vector, s, using Equation (2) [40]:

s = 4π.sin(θ)/λ, (2)

where θ is the scattering angle and λ is the X-ray wavelength.
The scattering patterns of the buffer were recorded before the void volume of the

column (1 mL). The scattering profiles measured covered a momentum transfer range of
0.002 < s < 0.5 Å−1. Data were processed using CHROMIX from ATSAS [41] software
package to automatically select frames corresponding to buffer and sample, and performed
buffer subtraction. The scaled and averaged SAXS curves were analyzed using Primus
from ATSAS software package.

2.6. Nuclear Magnetic Resonance (NMR) Spectroscopy

All NMR experiments were performed on a Bruker Bruker Avance III 700 MHz
spectrometer, except for the 3D assignment of β2AR-Cter performed on a 800 MHz, and
for the 3JHNHA of GHSR-Cter performed on a 500 MHz. The 700 MHz and 800 MHz
spectrometers are equipped with a cryogenic triple-resonance (1H, 15N, 13C) probe and
shielded z-gradients. All NMR experiments were recorded at 20 ◦C in a buffer (named
NMR buffer) composed of 50 mM Bis-Tris pH 6.7, 150 mM NaCl, 1 mM EDTA, 0.5 mM
TCEP, 5% D2O (Eurisotop), and 5 mM DSS-d6 (2,2-dimethyl-2-silapentane-5-sulfonate,
Sigma) as internal reference [42]. All experiments used the pulse sequences provided by
Bruker Topspin 3.2. Squared cosine apodization was used in indirect dimensions, prior
to zero-filling and Fourier transformation using TOPSPIN (version 4.0.6, Bruker) and
data processing was performed using NMRFAM-SPARKY (version 1.414, [43]). For each
NMR experiments, concentrations of GPCR-Cters were indicated in Table S1. For all NMR
experiments, data were measured for all residues of C-terminus regions excepted proline
residues, the residue A339 of β2AR-Cter, and the first N-terminal residue.
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2.6.1. Backbone Assignment

For the sequential assignment of the 13C/15N GPCR C-terminus of V2R, GHSR and
β2AR, HNCO, HN(CA)CO, HNCA, HN(CO)CA, CBCA(CO)NH and HNCACB triple
resonance 3D experiments were recorded. HN, N, CO, Cα and Cβ nuclei of all residues were
assigned, expected the first N-terminal residue, A339 for β2AR-Cter and proline residues.

2.6.2. Secondary Chemical Shift (SCS)
13Cα and 13Cβ chemical shifts were used to calculate Secondary Chemical Shift (SCS)

by subtraction of experimental chemical shifts (from the 3D experiment) from random-
coil chemical shift computed by POTENCI database [44,45]. SCS were calculated for all
residues of C-terminal domains excepted proline residues, the N-terminal residue, A339
for β2AR-Cter, and the last residue.

2.6.3. 3JHNHA Coupling
3JHNHA scalar coupling measurements were obtained according to Vuister and Bax [46].

Briefly, HNHA experiments were recorded on 15N-labelled GPCR C-termini. Intensity
of the cross-peak (Scross) and intensity of the corresponding diagonal peak (Sdiag) were
extracted using Sparky. They were used to calculate the 3JHNHA scalar coupling of each
amino acid using the Equation (3):

(Scross/Sdiag) = −tan2(2π × 3JHNHA × ξ) (3)

where 2ξ is the total evolution time for the homonuclear 3JHNHA coupling, which has been
set to 26.1 ms.

3JHNHA scalar coupling were measured for all residues of C-terminal tails excepted
proline residues and the first glycine residue. Random coil scalar coupling were predicted
using RC_3JHNHa server [47].

2.6.4. 1H-15N Residual Dipolar Couplings (RDCs)

RDCs were obtained by recording 2D IPAP HSQC spectra [48] in isotropic and
anisotropic media. The anisotropic media were obtained by adding a 5% (w/v) mixture of
polyoxyethylene 5-lauryl ether (PEG/C12E5) (Sigma) and 1-hexanol (Sigma) in a molar
ratio of 0.85 [49] or by adding ~20 mg/mL of filamentous phage Pf1 (Asla biotech) [50].
Spectra were recorded on 15N-labelled GPCR C-termini in alcohol and phage media. 1DNH
dipolar couplings were measured from the difference of doublet peak positions in the 15N
dimension measured in the anisotropic (J + D) and isotropic (J) spectra.

2.6.5. 15N Relaxation Experiments

Relaxation data were measured on 15N-labelled GPCR C-termini for all residues
except proline residues and the two first N-terminal residues. Heteronuclear 15N{1H}-
NOE values were determined from two experiments with on- (saturated spectrum) and
off-resonance 1H saturation (unsaturated spectrum) that were recorded in an interleaved
manner. The saturation time by 120◦ pulses (~10 kHz) was set to 6 s and the recycle delay
to 6 s. NOEs values were obtained from the ratio of intensities measured in the saturated
(I) and unsaturated (I0) spectra. Longitudinal (R1) and transversal (R2) relaxation rates
were measured through acquisition of 15N-HSQC spectra with different relaxation delays:
10, 50, 100, 200, 400, 600, 800, 1000 ms for R1, and 16, 32, 64, 96, 160, 240, 480, 640 ms for
R2. For each peak, the intensity was fitted to a single exponential decay using Sparky [43]
to obtain the relaxation parameters. For all relaxation parameters, three residues at N-
and C-termini were discarded from the calculation of average values due to their inherent
higher flexibility.
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2.6.6. Paramagnetic Relaxation Enhancement (PRE)

The C378A or C406A variants of 15N β2AR-Cter were labeled on the remaining
cysteine using 3-(2-Iodoacetamodi)-proxyl (Merck). Paramagnetic samples were recorded
with a recycling delay of 2 s. Reference diamagnetic samples were recorded in the same
conditions after the addition of 5 mM fresh ascorbic acid, pH 6.7, in the NMR tube. PRE
were analyzed by measuring the peak intensity ratios (Ipara/Idia) between two 15N-HSQC
spectra of paramagnetic and diamagnetic samples. The theoretical profile expected for a
strictly random coil polymer was calculated according to [51].

2.6.7. Ensemble Calculations

Ensembles of explicit models were generated using Flexible-Meccano (FM) [52], which
sequentially builds peptide planes based on amino acid specific conformational propen-
sity and a simple volume exclusion term. To account for deviations from a random-coil
description, different structure ensembles of 50,000 conformers were computed including
user-defined local conformational propensities in different regions of the protein. Local
conformational propensities were first localized using the consensus of all NMR data,
and then were adjusted by comparing back-calculated and experimental 1DHN RDCs to
get the lowest X2 (for more details [53]). For β2AR-Cter, a long-range contact of 15 Å
between two regions affected by the probe, i.e., from residues 338 to 357 and from residues
367 to 386 (regions in grey in Figure S7b), was introduced to get a better agreement between
back-calculated and experimental 1DHN RDCs.

3. Results
3.1. The Disordered C-Termini of V2R, GHSR, and β2AR Contain Transient Secondary Structures

As is the case for many C-terminal domains of GPCRs [54], the C-terminal regions of
V2R, GHSR, and β2AR are shown to be disordered (Figure 2) and are predicted to contain
transient secondary structures by various computational tools (Figure 3). In fact, they are
composed of more than 50% of disorder-promoting residues (Arg, Gly, Gln, Ser, Pro, Glu,
and Lys) (Figure 3a) [55]. In the Charge-Hydropathy plot [56] (Figure S1), V2R-Cter is at
the disorder-order boundary, while β2AR-Cter (pink) and GHSR-Cter (green) appeared in
the cluster of disordered proteins (yellow). Sequence based disorder prediction by a set
of six predictors (Table S2) showed an overall disordered state (values higher than 0.5) for
the three C-termini (Figure 3b). More specifically, prediction by PrDOS, DISOPRED3, and
Espritz-NMR showed less disordered regions from residues ~351 to 365 for V2R-Cter and
from residues ~343 to 359 for GHSR-Cter (Figure 3b). β2AR-Cter is also predicted to be less
disordered from ~345 to 356 and from ~369 to 405 according to PrDOS, DISOPRED3, and
Espritz-NMR predictors (Figure 3b). Interestingly, these regions are predicted to contain
helical conformations by a set of distinct secondary structure predictors (Figure 3c, Table S3).

In order to characterize these domains experimentally, we expressed and purified the
intrinsically disordered and soluble C-terminal regions of V2R (343–371), GHSR (339–355),
and β2AR (342–413). SEC-MALS analysis revealed a single elution peak for each protein
at a volume that corresponded to the volume of standard proteins with a molecular mass
greater than 13 kDa. However, the masses derived from a MALS analysis are 3.9 (±3.2%),
3.4 (±3.7%), and 8.6 (±1.1%) kDa for V2R-Cter, GHSR-Cter, and β2AR-Cter, respectively
(Figure 2a). This is in agreement with the expected molecular weight of their monomeric
forms (3.3, 3.6, and 8.2 kDa, respectively). Molecular masses were confirmed by mass
spectrometry (MS) with 3.264, 3.672, and 8.175 kDa obtained for V2R-Cter, GHSR-Cter, and
β2AR-Cter, respectively. The behavior of V2R-Cter, GHSR-Cter, and β2AR-Cter on a SEC
column is typical of a disordered protein, with a smaller elution volume than expected
for globular proteins of the same molecular mass [57]. In addition, far UV CD spectra
showed a minimum around 198 nm, characteristic of unfolded proteins [58] (Figure 2b),
and a negative shoulder around 222 nm, suggesting the presence of residual secondary
structures [59] (Figure 2b). The Kratky plots extracted from SAXS data were typical of
disordered regions with no clear maximum and a monotonic increase along the momentum
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transfer range (Figure S2) [18,60,61]. Additionally, 15N-HSQC spectra of the three C-
terminal regions showed a reduced amide proton spectral dispersion (around 1 ppm)
typical of a disordered protein (Figure 2c) [18,19].

Altogether, bioinformatics analyses and experimental data confirm the disordered
nature of the C-terminal regions of V2R, GHSR, and β2AR [62]. Furthermore, these results
suggest the presence of residual secondary structures.
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Figure 2. The C-terminal domain of V2R-Cter (blue), GHSR-Cter (green), and β2AR-Cter (purple)
are monomeric and disordered. The color code is maintained for all panels. (a) SEC-MALS curves
(colored dashed lines). Molar masses derived from MALS are indicated by thick black line (right axis);
(b) far-UV circular dichroism (CD) spectra (colored lines) present a minimum around 200 nm (black
dashed line) and a shoulder at 220 nm (black dashed and dotted line) characteristic of disordered
proteins with transient secondary structure content; (c) 15N-HSQC spectra display a low proton
spectral dispersion (~1 ppm) typical of IDPs. HSQCs were recorded on 300 µM samples at 700 MHz
and 20 ◦C, in 50 mM Bis-Tris pH 6.7, 150 mM NaCl buffer.

3.2. Location of the Transient Secondary Structures in V2R, GHSR, and β2AR C-Termini

In order to localize the transient secondary structures of these three GPCR C-terminal
regions, we performed a NMR study, as described in [53]. Before NMR investigation,
the backbone assignments were performed on the studied C-terminal domains of GPCRs
(Figure S3) (BMRB accession codes, respectively: 51318, 51317, and 51316). Then, we
used a consensus of four NMR parameters to highlight the secondary structure content.
First, 13C secondary chemical shifts (SCS), which are highly sensitive to the backbone
conformations, were computed (Figure 3d and Figure S4b–g) [45,63]. Three-bond HN-
Ha J-coupling constants (3JHNHA), which are related to the ϕ angles of the polypeptide
chain, were compared to random coil scalar coupling [46,47]. Residual dipolar couplings
(RDCs), which are related to the orientation of the amide backbone vector to the magnetic
field [64], give information on the location and secondary structure type. These data
were also compared to back-calculated RDCs on random-coil ensembles computed with
Flexible-Meccano [52,65]. Finally, dynamic parameters, such as heteronuclear 15N{1H}-
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NOEs, longitudinal (R1), and transverse (R2) relaxation rates, give information on local
backbone mobility on the ps–ns timescale, while R2 is also sensitive to motions on the µs to
ms timescale (chemical or conformational exchange processes). Thus, R2/R1 ratio reveals
slow conformational motions or conformational/chemical exchange. Depending on the
NMR experiments, the GPCR-Cter sample concentrations varied, but did not affect the
structure (Table S1, Figure S3).
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Figure 3. Bioinformatics predictions, secondary structure propensity, backbone dynamics, and
RDC conformational profile of the disordered V2R-Cter (blue), GHSR-Cter (green), and β2AR-
Cter (purple). (a) GPCR C-termini are composed of more than 50% disorder-promoting residues
(in orange). Ordered-promoting residues are indicated in purple. Secondary structures obtained
by the consensus of all NMR data are indicated under the sequence and highlighted according to
their respective color code. Helix, β-strand, extended conformation (β-strand or polyproline helix 2,
PPII), and turns are represented as red cylinder, blue arrow, purple box, and green bars, respectively;
(b) disorder prediction by SPOT-Disorder 2 (red), SPOT-Disorder Single (black), PONDR-FIT (purple),
PrDOS (green), DisPro (orange), DISOPRED 3 (grey), and Espritz-NMR (blue). The disorder/order
threshold (0.5) is indicated in black line; (c) secondary structure prediction by SOPMA, PSIPRED,
JPRED4, PSSpred, SPOT 1D, and SPIDER 3 web-servers are represented for helices (red cylinder),
strands (blue arrow), and turns (green); (d) computed secondary structure SCS Cα-SCS Cβ using
random coil chemical shifts from POTENCI; (e) heteronuclear 15N{1H}-NOEs are represented with
colored curves and the average with dash colored lines; (f) back-calculated and experimental 1DHN

RDCs. Comparison of experimental RDC (colored according to the GPCR-Cter color code) and
back-calculated values computed with FM on a random-coil ensemble (dash color line) and biased
ensemble (red line) and populated as indicated in the figure for helical structure (highlighted in red),
extended structure (highlighted in blue), or turn (highlighted in green). Spectra were recorded at
700 MHz and 20 ◦C, in 50 mM Bis-Tris pH 6.7, 150 mM NaCl buffer.
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3.2.1. Vasopressin V2 Receptor C-Terminal Domain (V2R-Cter)

For V2R-Cter, a central helical region was identified from residues 356 to 364, called
V2-1 from now on (Figure 3). Indeed, 13C SCS presented positive values in this region
(Figure 3d). The presence of this helix is in agreement with disorder and secondary structure
predictions (Figure 3b,c). Globally, in V2R-Cter, 32% of the residues displayed 3JHNHA
scalar coupling values below 6 Hz, normally assigned to helical conformations, and the
rest were between 6 and 8 Hz, consistent with a random coil (RC) polypeptide chain
(Figure S4i). Moreover, experimental 3JHNHA scalar couplings for the V2-1 region were
lower than the predicted ones (Figure S4h) [47], substantiating its helical conformation.
Further evidence for transient secondary structure elements in V2-1 came from dynamical
parameters. V2R-Cter showed low heteronuclear 15N{1H}-NOE values as expected for a
disordered polypeptide. However, in the V2-1 region, heteronuclear NOE values were
above the average (−0.09 ± 0.01), suggesting an enhanced rigidity in the region (Figure 3e).
Residues of V2-1 adopted larger R2 values than the average (2.80 ± 0.05 Hz), suggesting
the presence of slow dynamic processes. R1 and R2/R1 also displayed slightly higher
values for V2-1 than their averages, 1.75 ± 0.03 Hz and 1.59 ± 0.04, respectively (Figure
S5). This transient helical secondary structure in V2-1 was also highlighted by 1DNH RDC
values. RDCs were measured in alcohol mixture (C12E5/hexanol media) and in filamentous
bacteriophage Pf1. However, the homogeneity of the aligned sample was checked on
the quadrupolar splitting of D2O and was higher in alcohol medium (27 Hz) than in Pf1
medium. While RDC values were mainly negative, as observed in disordered proteins, the
segment encompassing V2-1 displayed higher values than those expected for a random
coil, which was in agreement with the presence of a helix in this region (Figure 3f).

3.2.2. Ghrelin Receptor C-Terminal Domain (GHSR-Cter)

For GHSR-Cter we identified two transient secondary structures: from residues 345
to 348 (called GH-1) and from residues 356 to 361 (called GH-2) (Figure 3). These regions
were predicted to form helices (Figure 3c) and SCS showed positive values, suggesting
helical conformations (Figure 3d). The SCS profile also presented high positive values for
354-355 that could be related to the presence of a turn as predicted by the secondary
structure predictor SOPMA. 3JHNHA scalar couplings confirmed that GHSR-Cter was
mostly disordered (50%) with transient helical conformations (46%) and a small portion of
extended conformation (4%) (Figure S4i). The comparison of experimental and random
coil 3JHNHA scalar couplings was in agreement with the presence of transient helices in
GH-1 and GH-2 (Figure S4h). Additionally, in these two regions, heteronuclear NOE, R1,
R2, and R2/R1 showed higher values than their averages, 0.11 ± 0.01; 2.11 ± 0.04 Hz;
3.17 ± 0.06 Hz and 1.49 ± 0.04, respectively (Figure 3e and Figure S5). This indicated
less flexibility in these regions, suggesting some local structuration. When measuring
RDCs, a small interaction between the alcohol mixture and GH-1 region (chemical shift
differences > 0.01 ppm between 15N-HSQC spectra) was observed (Figure S6); thus we
analyzed RDCs measured in phage Pf1 medium (quadrupolar splitting of 18 Hz). 1DNH
RDCs exhibited lower (GH-1 region) and higher (GH-2 region) values than those expected
from a random coil, suggesting an extended and a helical conformation in these regions,
respectively (Figure 3f).

3.2.3. β2-Adrenergic Receptor C-Terminal Domain (β2AR-Cter)

For β2AR-Cter, we identified two regions forming secondary structures: from residues
349 to 357 (called β2-1) and from 368 to 376 (called β2-2). They were predicted to be more
ordered and to contain helical secondary structures (Figure 3a,b). However, SCS presented
negative values for β2-1 and positive values for β2-2, corresponding to an extended and
a helical conformation, respectively (Figure 3d). 3JHNHA scalar couplings were consistent
with an overall unstructured protein (73% of the residues) with a small content of helical
(25%) and extended conformations (1%) (Figure S4i). In β2-2, experimental scalar couplings
were lower than those predicted for a random coil, suggesting a helical conformation in
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this region. Note that glycines are not predicted by the RC_3JHNHa server; thus scalar
couplings in β2-1 could not be properly compared to random-coil values [47] (Figure
S4h). In β2-1 and β2-2, heteronuclear NOE and R2 values were above their average,
0.11 ± 0.01 and 3.44 ± 0.01 Hz, respectively. This indicated restricted flexibility in these
regions (Figure 2e and Figure S6). However, in β2-2, R1 remained flat. Consequently,
R2/R1 displayed larger values than the average (1.83 ± 0.03), suggesting conformational
fluctuations on the µs–ms time-scale. RDC measurement in Pf1 medium showed a small
interaction with β2-2 (chemical shift differences > 0.01 ppm) (Figure S6); thus we used
RDC data extracted from the alcohol mixture (quadrupolar splitting of 31 Hz). Compared
to random coil values computed with FM, experimental RDCs showed more positive
values in β2-1 and more negative values in β2-2 (Figure 3f), suggesting a helical and
an extended conformation, respectively. However, RDCs are not only sensitive to local
structuration, such as SCS, but they can also probe long-range transient contacts [66,67].
Indeed, paramagnetic relaxation enhancement (PRE) data of the C406A variant, where the
paramagnetic probe in C378 lies just after β2-2 region, showed reduction of the intensity
ratio in the N-terminal part of β2AR-Cter, including β2-1 region and its N-flanking region,
revealing long-range contacts between the N-terminal part of β2AR-Cter and β2-2 C-
flanking region (respectively, from residues 338 to 357 and 367 to 386). PRE affected
regions are highlighted in grey in Figure S7b. These long-range interactions could affect
the overall profile of RDCs, probably explaining the absence of consensus between SCS
and RDC data (see below). The second PRE dataset, measured in the C378A variant, where
the paramagnetic probe lies at the C-terminal region (C406), did not induce substantial
reduction of the intensity ratio in β2AR-Cter, indicating the overall disorder of the protein.
Interestingly, a slight reduction of intensity in the N-terminal part β2AR-Cter confirmed the
presence of fuzzy long-range contacts between the N- and C-terminal parts of the protein
(Figure S7c).

3.2.4. Conformational Ensemble of GPCR-Cters

To further illuminate the presence of transient secondary structures or turns in the
three C-terminal domains of GPCRs, we built biased ensembles using Flexible Meccano
(FM) (Figure 3f). Ensembles of 50,000 conformers were built for V2R-Cter, GHSR1a-Cter,
and β2AR-Cter, respectively, and were used to compute back-calculated RDCs (Figure 3f).
In these ensembles, we added as constraints the transient secondary structures determined
by the consensus analyses of all NMR data to improve the agreement between experimental
and back-calculated RDCs. Then, the population of the local conformational propensities
and turns were adjusted by monitoring the agreement using χ2. The quality of these
ensembles was evaluated by comparing the back-calculated RDCs with the experimental
ones and was optimized until obtaining the lowest possible χ2 (near 1). RDCs were
measured in alcohol mixture for V2R-Cter and β2AR-Cter or in phage Pf1 medium for
GHSR1a-Cter. For V2R-Cter, the best agreement (χ2 = 1.41) was obtained when 5% of
α-helix was imposed in V2-1 and when poly-proline helices II (PPII) were added at 25%,
35%, and 70% in position 344–347, 349–350, and 368–370, respectively. For GHSR1a-Cter,
the best ensemble (χ2 = 1.49) was obtained by adding 8% of α-helix in GH-2 and 20% of
type 1 β-turn that was predicted for 353 to 354. Additional secondary structures were
added (residues 337–338: 50% of type I β-turns, 340–341: 15% of type I β-turns: 343–344: 5%
γ-turn; 363–366: 10% of β-strand). For β2AR-Cter, the lowest χ2 (χ2 = 1.36) was obtained
when the long-range contact (15 Å) identified with PRE between regions surrounding
β2-1 (from residues 338 to 357) and β2-2 (from residues 367 to 386) was incorporated
to the model (see details in Materials and Methods 2.6.7., and PRE affected regions are
highlighted in grey in Figure S7b). These results substantiate the presence of transient
long-range interactions in β2AR-Cter. In β2-1, two type I β-turns at 50% were added, and
in β2-2, a type II Poly-Proline helix (PPII) at 10% was imposed. This ensemble was also
constrained by two other PPII in position 380–383 and 391–394, a type I β-turn in position
388–389 and a helix from residues 399 to 402.
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In all C-terminal domains, the introduction of these secondary structures resulted in a
better description of the experimental data, suggesting a more accurate description of the
conformational ensembles.

4. Discussion and Conclusions

All GPCRs share a conserved and folded 7TM domain involved in the signal trans-
mission. Conversely, the extracellular regions (N-terminal and C-terminal domains and
loops) are rather diversified in length and sequence [4] and are involved in the functional
properties of GPCRs, such as, respectively, ligand and partner binding. It is interesting
to note that theses extracellular regions are predicted to contain intrinsically disordered
regions (IDRs) [5,6], which could play key roles in GPCR interaction (for review [68,69]).
Indeed, IDRs explore an astronomical number of conformations in solution that we assume
in fast equilibrium, and very often contain pre-formed secondary structure elements. In the
majority of cases, these transient secondary structures, or short linear motifs (SLIMs), are
involved in the binding process with their partner [15], which makes IDPs very well suited
agents for signaling processes, such as arrestin:GPCR interaction. Thus, the characterization
of the structural features of these extracellular regions of GPCRs is crucial to reveal the
molecular basis of signaling and cell regulation [70]. For instance, it was reported that
the truncated C-terminal domain of GPR50 (GPR50-Cter) translocates to the nucleus and
directly regulates gene transcription; thus the cleavage of this Cter has an unconventional
signaling mode of GPCRs [70]. Intriguingly, this GPR50 receptor has been deeply remod-
eled through evolution by the mutation of numerous residues and by the addition of a long
C-terminal domain. Indeed, the GPR50 homolog found in lower vertebrates was lacking
the Cter of the human GPR50 [71]. This illustrates how the study of the isolated C-terminal
domain of GPCRs is of relevant importance per se for understanding the multitude of
signaling pathways regulated by the C-terminal domains of GPCR.

With the hypothesis that the C-terminal domains of GPCRs contain partially structured
elements involved in signaling pathways, we characterized the free state of the C-terminal
domains from three commonly studied GPCRs, the vasopressin V2 receptor (V2R-Cter), the
ghrelin receptor type 1a (GHSR-Cter) and the β2-adernergic receptor (β2AR-Cter). These
three class-A receptors are important therapeutic targets [2] and present different affinities
for arrestins [16].

The structural characterization of these disordered C-termini was challenging, due
to their inherent flexibility, and required the synergistic application of several biophysical
tools. Firstly, by SAXS, MALS, and CD, we confirmed that V2R-Cter, GHSR-Cter, and
β2AR-Cter are IDRs containing secondary structures. Then, we used NMR in combination
with computationally generated ensembles, to locate and identify these residual secondary
structure elements. The C-terminus of V2R displayed a central helix from residues 356
to 364 (V2-1). The C-terminus of GHSR encompassed two helixes from 345 to 348 (GH-1)
and from residues 356 to 361 (GH-2). The C-terminus of β2AR contained two structured
regions: an extended conformation from 349 to 357 residues (β2-1) and a helix from 368 to
376 (β2-2) (Figure 4). Moreover, the propensities of these secondary structures were low
(~25% on average), which illustrate the high flexibility of GPCR-Cters and their ability to
adopt distinct conformations in solution, a general feature of IDPs/IDRs.

V2R-Cter, GHSR-Cter, and β2AR-Cter are variable in length and in sequence (Figure 1).
However, it is interesting to note that their residual secondary structures either encompass
or are next to residues known to be phosphorylated by GRKs (Figure 4). It is accepted
that the phosphates of the C-terminal domains of GPCRs are important for the interaction
with arrestin (for a review see [10]). This strongly suggests that the transient secondary
structures that we have identified are directly involved in arrestin binding.
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GRK2 (red) and GRK6 (blue) phosphorylated sites according to [9] for β2AR, [72] for GHSR, and [73]
for V2R are indicated in the sequence. Secondary structures obtained by NMR secondary structure
consensus are indicated under the sequence, according to Figure 3.

Interestingly, V2-1 region has been characterized in complex with arrestin in crystal-
lographic and cryo-EM structures (Figure 5) [21,22,74]. These structures were obtained
using a fully synthetic phospho-peptide of V2R C-terminal domain (V2Rpp), truncated or
attached to other receptors (chimeric receptor) (Figure 5), and each of these complexes was
stabilized with a Fab30 antibody. In these structures, the central region of V2Rpp adopts
a β-strand that interacts with the N-domain of arrestin. Here, we show that in solution,
this SLiM displays a helical structure instead of an extended conformation. This result
suggests that a conformational change must occur upon binding to arrestin and/or phos-
phorylation, a feature that has been found in several SLiMs [75]. Moreover, this structural
transition might be at the basis of the molecular regulation of GPCR:arrestin interaction.
Indeed, β-strand formation has been proposed to serve as a general mechanism by which
arrestins recognize the phosphorylated carboxy-terminal domains of receptors [21]. In the
pre-structuration profile of GHSR-Cter and β2AR-Cter, only GH-2 and β2-2 are in helical
conformations as found for the V2-1 region. Thus, we can hypothesize that these regions
interact with arrestin with a similar mechanism to the one found for V2R, and that their
basal conformation changes upon arrestin binding and/or phosphorylation.
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Figure 5. A conformational change must occur in the C-terminal region of V2R (blue) upon bind-
ing to arrestin and/or phosphorylation. Comparison of the free, in solution state of V2R-Cter to its
bound state identified in complexes between a fully phosphorylated phospho-peptide of vasopressin
V2 C-terminus (V2Rpp) and arrestin-2. On top is represented the sequence of human V2R C-terminus.
Residues known to be phosphorylated by GRKs are colored in green [73]. Below, V2R-Cter sequences
used in each work are represented in dashed lines. Residues encompassing the binding regions
are identified in red and phosphorylated residues are noted as p. Stars (*) indicate that the V2R
C-terminus is fused to another receptor (PDB: 6U1N, muscarinic receptor; 6TKO: β1-adrenergic
receptor). Helices and β-strands are represented as red cylinders and blue arrows, respectively. In
the frame, the PDB structure of V2R:arrestin-2 complexes is shown [21]. Phosphorylated residues of
V2Rpp (in blue) are highlighted as sticks.
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Until now, the free states of GPCR C-termini were poorly characterized due to their
high flexibility. Comparison of our data with GPCRs:arrestin complexes showed that a
conformational change is expected after GRK phosphorylation and/or arrestin binding. The
phospho-barcode model states that distinct GRK phosphorylation patterns at the C-termini
of GPCRs lead to distinct arrestin conformations and outcome functions [8,9,72,76]. Thus,
we can anticipate that phosphorylation would dictate the signaling of GPCRs by modulating
the folding of their C-termini and/or their folding upon binding. Phosphorylation has
already been described as a regulator of IDP folding mechanism for biological function [77].
To test this hypothesis, the characterization of the secondary structure profile for each
phosphorylation pattern of GPCR C-termini and the comparison with the basal profile
described in this study will be the key to understanding how arrestin dependent signaling
pathways are modulated.
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