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Abstract

The human brain develops with a nonlinear contraction of gray matter across late childhood and adolescence with
a concomitant increase in white matter volume. Across the adult population, properties of cortical gray matter
covary within networks that may represent organizational units for development and degeneration. Although gray
matter covariance may be strongest within structurally connected networks, the relationship to volume changes
in white matter remains poorly characterized. In the present study we examined age-related trends in white and
gray matter volume using T1-weighted MR images from 360 human participants from the NIH MRI study of
Normal Brain Development. Images were processed through a voxel-based morphometry pipeline. Linear effects
of age on white and gray matter volume were modeled within four age bins, spanning 4-18 years, each including
90 participants (45 male). White and gray matter age-slope maps were separately entered into k-means clustering
to identify regions with similar age-related variability across the four age bins. Four white matter clusters were
identified, each with a dominant direction of underlying fibers: anterior–posterior, left–right, and two clusters with
superior–inferior directions. Corresponding, spatially proximal, gray matter clusters encompassed largely cere-
bellar, fronto-insular, posterior, and sensorimotor regions, respectively. Pairs of gray and white matter clusters
followed parallel slope trajectories, with white matter changes generally positive from 8 years onward (indicating
volume increases) and gray matter negative (decreases). As developmental disorders likely target networks rather
than individual regions, characterizing typical coordination of white and gray matter development can provide a
normative benchmark for understanding atypical development.
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Significance Statement

The structure of the brain changes across late childhood and adolescence: gray matter volume decreases
and white matter volume increases. Gray matter changes occur within networks that may be targets for
neurodegenerative, developmental, and psychiatric disorders. This study demonstrates that changes in
white matter volume are also coordinated across regions, and that changes in these clusters parallel
corresponding gray matter clusters. While gray matter clusters show a posterior to anterior organization, we
observe here that white matter volume groups into regions with similar fiber orientation. This work adds to
our understanding of typical gray and white matter development, which ultimately can help understand how
the brain may be developing abnormally in neurodevelopmental disorders.
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Introduction
As the brain develops across late childhood and ado-

lescence, a pattern of white matter expansion (Giedd
et al., 1999; Paus et al., 1999; Sowell et al., 2002; Taki
et al., 2013) and gray matter contraction (Sowell et al.,
2003, 2004; Gogtay et al., 2004; Shaw et al., 2008) has
been observed. These co-occurring phenomena are
widely considered to be the product of developmental
exuberance (Innocenti and Price, 2005), through which an
overproduction of connections is followed by a selection
process. White matter volume expansion is thought to
reflect both an increase in myelination and axonal diam-
eter (Yakovlev and Lecours, 1967; Benes, 1989; Benes
et al., 1994; Rademacher et al., 1999; Paus, 2010). Ob-
served patterns of gray matter thinning may reflect syn-
aptic pruning (Huttenlocher, 1979), changes in size and
number of glia or size of neurons (Elgeti et al., 1976;
Drevets et al., 1998; Cotter et al., 2002), vasculature
(Vaidya et al., 2007), or changes in myelination of super-
ficial white matter (Sowell et al., 2004; Shaw et al., 2008,
but see Wu et al., 2014).

Distributed cortical regions show correlated anatomical
features across the population (Mechelli et al., 2005; Le-
rch et al., 2006; Chen et al., 2008; Tijms et al., 2012;
Alexander-Bloch et al., 2013b; Evans, 2013) in networks
similar to those defined by resting state functional con-
nectivity (Segall et al., 2012; Alexander-Bloch et al.,
2013b) and white matter tractography (Gong et al., 2012).
These findings have been extended to describe coordi-
nated cortical development across childhood and adoles-
cence (Zielinski et al., 2010; Raznahan et al., 2011b;
Alexander-Bloch et al., 2013b, 2014; Khundrakpam et al.,
2013). The importance of these findings is underscored by
the suggestion that neurodegenerative, psychiatric, and

neurodevelopmental disorders may target cortical net-
works rather than specific regions (Seeley et al., 2009;
Raznahan et al., 2010; Reid et al., 2010; Zielinski et al.,
2012; Alexander-Bloch et al., 2014).

White matter tracts also show developmental changes
in structural properties (Barnea-Goraly et al., 2005; Ben
Bashat et al., 2005; Giorgio et al., 2008; Lebel and Beau-
lieu, 2011). Fractional anisotropy (FA), a measure of co-
herent fiber orientation linked to myelination and axon
packing (Beaulieu, 2002), increases in most tracts
(Barnea-Goraly et al., 2005; Lebel et al., 2008) and peaks
in early adulthood before declining (Lebel et al., 2012).
Mean diffusivity (MD), a measure reflecting water content
and density, shows an opposite pattern, declining across
adolescence and increasing in adulthood (Lebel and
Beaulieu, 2011). The volume of white matter tracts also
typically increases across childhood, though the relation-
ship between tract-volume and microstructural parame-
ters is complex (Lebel and Beaulieu, 2011).

Although gray matter developmental networks are in-
creasingly well characterized, the relationship between
white matter structural changes and network-level gray
matter development remains unclear. In the present
study, we tested the hypothesis that clusters of white
matter regions would show coordinated volume develop-
ment, parallel to gray matter clusters. That is, clusters of
white matter regions showing coordinated variability with
age (e.g., volume expansion) would be inversely associ-
ated with changes in gray matter volume (e.g., contrac-
tion), in related regions, across childhood and
adolescence.

Materials and Methods
Participants and neuroimaging data

Neuroimaging data were obtained from the NIH MRI
study of Normal Brain Development’s Pediatric MRI Data
Repository (Evans and Brain Development Cooperative
Group, 2006). The cohort includes 433 typically develop-
ing participants, male and female, aged 4:6-18:3 years. All
subjects are purported to be normal and healthy, e.g., no
history of brain disease or trauma, with an IQ � 70.
Analyses reported here used T1-weighted images col-
lected on 1.5 T MRI scanners (GE or Siemens) at six sites
(Boston Children’s Hospital; Cincinnati Children’s Hospi-
tal Medical Center; University of Texas Houston Medical
School; Neuropsychiatric Institute and Hospital, UCLA;
Children’s Hospital of Philadelphia; and Washington Uni-
versity, St. Louis). Parameters for whole-brain T1-
weighted acquisitions were standardized across sites: 3D
RF-spoiled gradient echo, TR � 22-25 ms, TE � 10-11
ms, sagittal acquisition, FOV � AP 256, LR 160-180.
Resolution was typically 1 mm3; however, on GE scanners
on which thickness was increased up to 1.5 mm and in
some participants resolution was decreased to 3 mm3 to
enable more rapid imaging. For our sample we generated
four evenly sized groups of participants (90) with an equal
number of males and females (45), for a total sample
including 360 high-quality scans. Age groups were 4-8,
8-10.5, 10.5-13.5, and 13.5-18.5 years; detailed informa-
tion about participants is provided in Table 1.
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VBM processing
T1-weighted MRI scans were processed through a

voxel-based morphometry (VBM) pipeline in SPM12b.
Steps included segmentation and normalization using a
custom template generated with the DARTEL Toolbox
(Ashburner, 2007). Normalized gray and white matter seg-
mented images were modulated to “preserve amounts”
and smoothed using an 8 mm Gaussian kernel. All seg-
mentations were visually inspected prior to analysis. VBM
tools were also used to identify potential outliers by cal-
culating the squared distance to sample mean in each age
bin; no outliers were identified in this step.

Linear age models
As developmental changes in gray matter volume

across childhood and adolescence are known to be non-
linear (Gogtay et al., 2004; Shaw et al., 2008; Raznahan
et al., 2011a), our sample was divided into four age bins
similar to Zielinski et al. (2010) and Khundrakpam et al.
(2013). Two general linear models were estimated in each
age group, modeling a linear effect of mean-centered age
on gray and white matter volume separately. Models in-
cluded effects of gender, site (one regressor per site), and
a linear effect of image resolution. Explicit masks were
used to spatially constrain the analyses; gray and white
matter masks were created using the Masking Toolbox in
SPM12b (Ridgway et al., 2009) and constrained to prob-
abilities �0.4 to ensure that there was no overlap in gray
and white matter masks. Neither proportional scaling nor
total brain volume regression were used in the main mod-
els reported here. However, both methods were tested in
additional analyses, as described below.

Clustering based on gray and white matter age
slope

For each tissue type (white and gray matter), parameter
estimates for the effect of age in each of the four age bins
were obtained for each voxel. All parameter estimates
(�-values) were entered into a pair of matrices, one gray
and one white matter, in which each row corresponded to
a voxel and each column corresponded to an age bin.
Analyses were performed on all voxels independent of the
significance of age effects, that is, voxel-level significance
of age effects was not assessed as part of this study.
Matrices were entered into k-means clustering in MAT-
LAB to identify clusters of voxels with similar age slopes
across these developmental stages. Clustering was
seeded with random centers and repeated 10 times; 2-10
cluster solutions were tested, and peak silhouette values

(Kaufman and Rousseeuw, 1990) were used to identify the
optimal clustering solution for each tissue class.

Directional bias in white matter clusters
Visual inspection of white matter clusters indicated a

potential directional bias. To test this, white matter clus-
ters were compared against directional maps from the
ICBM-DTI-81 Atlas (Mori et al., 2008) to determine the
primary direction of white matter fibers in each cluster.
This atlas includes estimated eigenvalues for eigenvec-
tors corresponding to three principal directions (x: right–
left, y: anterior–posterior, z: superior–inferior). To
determine whether voxels assigned to each white matter
cluster had a preferred direction, the three eigenvalue
maps were masked by each white matter cluster. For
each cluster the subset of voxels with a dominant orien-
tation along one of these principal directions was ob-
tained by thresholding to include only voxels for which at
least one eigenvalue was �0.4. We then calculated the
proportion of voxels for which the maximum eigenvalue
was in each principal direction.

Effects of site and resolution on VBM segmentation
As previous studies have shown that VBM segmenta-

tions may be affected by data collection site and acqui-
sition parameters (Pardoe et al., 2008; Pereira et al., 2008;
Focke et al., 2011; Takao et al., 2013), additional analyses
were run to investigate effects of data collection site and
image resolution. We note that participant age did not
significantly vary by site (F(1,360) � 0.02, p � 0.88). Reso-
lution did show a significant negative trend with age as the
youngest participants were more likely to have larger
voxel size (F(1,360) � 12.6, p � 0.001). However, resolution
did not significantly vary with age in individual age bins,
though a trend remained in the youngest bin (p � 0.051,
p � 0.73, p � 0.60, p � 0.22). To determine which regions
may be affected by these parameters, models were run
for gray and white matter volume separately including all
360 participants; effects of age, resolution, gender, and
site were modeled (one column per site). F-contrasts were
used to identify regions showing linear effects of reso-
lution on gray and white matter volume, and nonlinear
effects of site. We then compared clustering results, for
models that included these covariates with a set of
models that did not include site and resolution covari-
ates, to assess effects of these parameters on cluster-
ing results.

Table 1. Participant demographics

Group 1 Group 2 Group 3 Group 4
Mean 6.47(0.81) 9.16(0.76) 12.04(0.84) 16.03(1.27)
Age range (years) 4.80-7.85 8.02-10.47 10.68-13.50 13.99-18.35
Mean IQ (SD) 110.9(16.0) 112.5(12.9) 112.1(10.7) 109.0(11.4)
IQ range 79-156 77-160 84-131 78-132
Handedness R:L 83:7 80:10 80:10 81:9
Gender M:F 45:45 45:45 45:45 45:45
Mean adjusted income 71.1(32.5) 70.0(30.6) 70.1(32.0) 70.0(31.4)
Thousands (SD)
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Effects of modeling total gray and white matter
volume

Many VBM studies model effects of total tissue volume,
enabling the identification of regions that discriminate
between groups after differences in total volume are ac-
counted for (Peelle et al., 2012). Significance of regional
effects of age is sensitive to the choice of model (Peelle
et al., 2012). For the main analysis here, we chose not to
account for total gray and white matter volume, as our
goal was simply to model age trends and not to identify
regions where age effects were greater than the mean.
However, to investigate differences in our results when
accounting for total volume, two additional models were
run, using proportional scaling by total tissue volume and
including total tissue volume as a nuisance covariate.

Effects of age on image contrast
T1-image contrast is known to increase over the first

few years of childhood (Paus et al., 2001; Shi et al., 2010).
Although the population assessed here was older (i.e., the
youngest participant was 4.8 years), systematic effects of
image contrast may nonetheless contribute to variable
quality of gray/white segmentation, and these effects may
vary between brain regions. To assess effects of image
contrast as a function of age, bilateral masks covering
frontal, temporal, parietal, and occipital gray and white
matter regions were generated using the Wake Forest
Pick Atlas tool (Maldjian et al., 2003) and the TD-ICBM-
152 atlas (Mazziotta et al., 2001). These masks were
warped into each participant’s native space and used to
extract regional gray and white matter values. Contrast
was calculated in each subject and each region as fol-
lows: C � (white matter intensity–gray matter intensity)/
gray matter intensity. We then assessed effects of age

and site on contrast across the sample and within each
age bin.

Results
White matter clustersa showed a peak silhouette value

at the four-cluster solution and gray matter clustersb at
the two-cluster solution (this solution divided cerebral
cortex from cerebellum). As the goal of this study was to
identify clusters of white matter regions with coordinated
developmental patterns, in relation to gray matter clus-
ters, both gray and white matter was divided into four
clusters, which were subsequently paired based on adja-
cency of regions (Figs. 1-4). Gray and white matter struc-
tures were identified through visual inspection and
comparison to gray and white matter atlases (Tzourio-
Mazoyer et al., 2002; Oishi et al., 2011).

Superior corona radiata white matter/precuneus and
intraparietal sulcus (posterior) gray matter
One white matter cluster included the superior longitudi-
nal fasciculus, superior corona radiata, and body of the
corpus callosum (Fig. 1A,C,D), as well as a region along
the posterior thalamic radiation (Fig. 1C). White matter
voxels were predominantly (68%; Fig. 5) superior–inferior
in orientation (Fig. 5). The most spatially similar gray mat-
ter cluster included primarily posterior cortical regions
(Fig. 1A-D) such as the precuneus (Fig. 1B) and bilateral
intraparietal sulcus (Fig. 1C). This cluster also included
anterior temporal cortex (Fig. 1A) and smaller bilateral
regions of posterior middle frontal gyrus (Fig. 1D). The
gray matter cluster was characterized by a steep negative
slope in the 8-10.5 year age bin and more positive slopes
in other age groups; white matter age slopes followed a
similar trend, though slopes were generally positive (indi-
cating increasing volume with age; Fig. 1E-F).

Figure 1. Superior corona radiata/posterior gray matter clusters. This white matter cluster included deep white matter of the
superior longitudinal fasciculus, superior corona radiata, and body of the corpus callosum (A, C, D) and included mostly (68% of
voxels) superior–inferior-oriented voxels. The corresponding gray matter cluster included primarily posterior cortical regions (A-D),
including precuneus (B) and bilateral intraparietal sulcus (C). Mean gray and white matter slopes for the cluster with SDs (E) and a
graphical illustration of volume trajectories (F) are shown for all four age bins. GM, gray matter; WM, white matter.
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Medial corpus callosum white matter/anterior
cingulate, prefrontal cortex, and insula (anterior)
gray matter
A second white matter cluster (Fig. 2) included medial
corpus callosum (Fig. 2A), anterior internal capsule (Fig.
2D), superior parietal lobule white matter (Fig. 2C), pos-
terior thalamic radiation and retrolenticular portion of the
internal capsule (Fig. 2D), and inferior frontal gyrus white
matter (Fig. 2B). White matter voxels were mostly left–
right oriented (70%; Fig. 5). The corresponding gray mat-
ter cluster included anterior cingulate and medial
prefrontal cortex (Fig. 2A-C) and insular (Fig. 2B,D) and
temporal regions (Fig. 2B). Gray matter age slopes (Fig.
2E,F) indicated the greatest volume decreases in the
8-10.5 year age bin, though slopes in all age bins were
more moderate than in the posterior cluster (Fig. 1E,F).
White matter slopes paralleled gray matter, but were gen-
erally positive, except for slight volume decreases in the
8-10.5 year age bin (Fig. 2E,F).

Occipital, parietal, and prefrontal white matter/visual
and motor gray matter
A third white matter cluster (Fig. 3) included superior
cerebellar peduncle (Fig. 3A), occipital and superior pari-
etal white matter (Fig. 3B), superior frontal gyrus white
matter (Fig. 3C,D), posterior internal capsule (Fig. 3C),
posterior thalamic radiation (Fig. 3B,C), and precentral
gyrus white matter (Fig. 3D). This white matter cluster
showed a strong superior–inferior orientation (74%; Fig.
5). The corresponding gray matter cluster involved cuneus
(Fig. 3A-C), motor (Fig. 3D), superior parietal (Fig. 3B), and
lateral prefrontal (Fig. 3C) regions. Among the identified
gray matter clusters, this set of regions showed the most
moderate slopes—slightly positive in the youngest age
bin and relatively stable across the 8-18.5 year age range

(Fig. 3E,F). White matter slope trajectories, again, fol-
lowed a similar trend to gray matter, with a moderate but
consistently positive slope from ages 8-18.5 years (Fig.
3E,F).

Cerebellar peduncles/cerebellum
A fourth pair of gray and white matter clusters captured
the cerebellum and cerebellar peduncles (Fig. 4). The
white matter cluster included bilateral cerebellar pedun-
cles (Fig. 4A) and portions of the superior longitudinal
fasciculus (Fig. 4C); voxels were mainly anterior–posterior
oriented (58%; Fig. 5). The gray matter cluster included
bilateral cerebellum (Fig. 4A), but also caudate (Fig. 4B)
and dorsomedial prefrontal cortex (Fig. 4D). For both gray
and white matter, the slopes for this cluster were generally
positive; white matter slope was slightly negative in the
8-10.5 year age bin and gray matter slopes became
slightly negative in the 14-18.5 year age bin (Fig. 4E,F).

Effects of data collection site and resolution
Previous studies have noted that VBM estimates of gray
and white matter volume are sensitive to differences in
MR scanner and image resolution (Pardoe et al., 2008;
Pereira et al., 2008; Focke et al., 2011; Takao et al., 2013).
As the present study made use of a multisite dataset,
additional analyses were run to estimate potential impact
of these factors on our results. A general linear model was
estimated using the entire sample of 360 participants,
including a linear effect of resolution and separate regres-
sors modeling effects of each site. F-contrasts were used
to identify regions sensitive to these effects. Results of
F-contrasts for site are shown in Figure 6, a and b, thresh-
olded at p � 0.001 uncorrected, for gray and white matter,
respectively. We observe significant effects of site around
the posterior putamen, orbitofrontal, inferior temporal,

Figure 2. Medial callosal white matter/anterior gray matter clusters. This white matter cluster included medial corpus callosum
(A), anterior internal capsule (D), and superior parietal lobule white matter (C) and was primarily ordered left–right (70%). The
corresponding gray matter cluster included anterior cingulate and medial prefrontal cortex (A, B, C) and insular (B, D) and temporal
regions (B). Mean gray and white matter slopes for the cluster with SDs (E) and a graphical illustration of volume trajectories (F) are
shown for all four age bins. GM, gray matter; WM, white matter.
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and peripheral gray matter in Figure 6a. Significant effects
on white matter volume were most prominent around the
internal capsule (Fig. 6b). Results of F-contrasts for res-
olution are shown in Figure 6, c and d, thresholded at p �
0.001 uncorrected, for gray and white matter, respec-
tively. Affected gray matter regions were similarly concen-
trated around the posterior putamen and insula and
occipital and dorsal prefrontal regions (Fig. 6c). For white
matter, similar to effects of site, effects of resolution were
largely concentrated around the internal capsule (Fig. 6d).

We next compared clustering results for age �-values
from models that did and did not include effects of site
and resolution. These results are shown in Figure 6, e and
f. We note that clustering results were largely similar
between these two models. Figure 6, g and h, shows gray
and white matter clusters obtained from these two models
overlaid; regions of overlap are shown in purple. The only
regions where cluster assignment substantially differed
were around the putamen and internal capsule. Overall
these results suggest that effects of site and resolution

Figure 3. Frontal and occipital white matter/visuomotor gray matter. This white matter cluster included mostly superior–inferior-
oriented voxels (74%) in superior cerebellar peduncle (A), occipital and superior parietal (B) and superior frontal gyrus white matter
(C, D), posterior thalamic radiation (B, C), and precentral gyrus white matter (D). The corresponding gray matter cluster recruited
cuneus (A, B,C), motor (D), superior parietal (B), and lateral prefrontal (C) regions. Mean gray and white matter slopes for the cluster
with SDs (E) and a graphical illustration of volume trajectories (F) are shown for all four age bins.

Figure 4. Cerebellar white and gray matter clusters. This white matter cluster included the cerebellum and cerebellar peduncles
(A), including white matter in portions of the superior longitudinal fasciculus (C); voxels in this cluster were predominantly oriented
anterior–posterior (58%). The corresponding gray matter cluster included the bilateral cerebellum (A), caudate (B), and dorsomedial
prefrontal cortex (D). Mean gray and white matter slopes for the cluster with SDs (E) and a graphical illustration of volume trajectories
(F) are shown for all four age bins.
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may have a fairly localized effect in subcortical regions,
and we note that reliability of cluster assignment in these
regions is a limitation of the present work.

Effects of modeling total gray and white matter
volume
Two additional analyses were run using proportional scal-
ing by total tissue volume and including total tissue vol-
ume as a covariate (ANCOVA). The resulting parameter
estimates for age were entered into a similar cluster anal-
ysis as that described above. These analyses identified
very similar clusters (Fig. 7), however, with some differ-
ences specifically in white matter clustering in the mid-
brain for the ANCOVA model.

Effects of image contrast
White/gray matter contrast values for each lobe (frontal,
temporal, parietal, and occipital) were entered into ANO-
VAs modeling effect of site with age as a covariate. Mod-
els were run across the entire sample and within each age
bin. This analysis showed a significant effect of site in the
temporal (F(1,357) � 16.6, p � 0.001) lobe and a trend level
effect in the frontal lobe (F(1,357) � 4.3, p � 0.04 uncor-
rected for multiple comparisons). Over the entire sample
there was a trend-level, negative association with age in
the parietal cortex (F(1,357) � 3.9, p � 0.048 uncorrected).
However, age was not a significant predictor of contrast
within any of the age bins, for any of the lobes. From these
results we conclude that image contrast is unlikely to have
biased age slopes in this analysis.

Discussion
In this study, white and gray matter volumes were divided
into clusters based on the similarity of age-related volume
changes from 4-18 years. The four identified white matter
clusters each showed a dominant orientation of fibers
(anterior to posterior, left to right, and two clusters supe-
rior to inferior), and could be uniquely matched to a
spatially proximal gray matter volume cluster. Gray matter
clusters corresponded to cerebellar, medial/anterior, and
sensorimotor clusters, respectively. Within gray and white
matter network pairs, slopes followed similar trajectories
across ages.

To our knowledge, this study is the first to investigate
the organization of age-related structural variability in
white matter volumes. Our results suggest that data-
driven clustering of age-related variability in white matter
volume can, to some extent, recover anterior-to-posterior,
left-to-right, and superior-to-inferior directional compo-
nents. While previous work has shown region- and tract-
specific white matter volume changes with age (Tamnes
et al., 2010; Lebel and Beaulieu, 2011), our results sug-
gest a relationship between age-related variability in white
matter volume and fiber direction. We also note that the
identified clusters generally did not segregate deep from
superficial white matter. These findings add to our under-
standing of properties of white matter volume develop-
ment.

Furthermore, our results demonstrate a spatial and tem-
poral relationship between patterns of age variability in
white and gray matter volume. Previous work had shown
that in individuals aged 8-30 years (Tamnes et al., 2010)

Figure 5. Preferred white matter direction in each cluster. For this analysis, the voxels within each cluster were thresholded to only
those voxels with an eigenvalue �0.4 in one of the three canonical directions. a, Shows the proportion of voxels for the maximum
value in each direction. b, Illustrates eigenvalues for all three directions across all voxels with at least one eigenvalue �0.4, sorted by
maximum value in each row (i.e., each row is one voxel; heat map indicates the eigenvalue at that voxel for each canonical direction).
SCR, superior corona radiata; CC, corpus callosum; FO, fronto-occipital; AP, anterior–posterior; LR, left–right; SI, superior–inferior.
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Figure 6. Effects of site and resolution on regional volume and clustering results. a, b, Results of an F-contrast for effects of site,
thresholded at p � 0.001 uncorrected, on gray and white matter volume, respectively. Site effects were identified around the putamen
and internal capsule as well as medial orbital and peripheral gray matter. c, d, Results of an F-contrast for effects of resolution,
thresholded at p � 0.001 uncorrected, on gray and white matter volume, respectively. Effects were again concentrated around the
internal capsule, with gray matter effects in dorsal prefrontal, occipital cortices, and cerebellum. e, f, Illustrate clustering results for
age �-estimates from gray (e) and white (f) matter models that included effects of site and resolution (left and superior) and from
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there are negative correlations between cortical thickness
and volumes of corresponding gyral white matter. Wu

et al. (2014) found that the association between superficial
white matter FA and cortical thickness was positive in

continued
models that did not include these effects (right and inferior). We note that these are largely similar. g, h, Illustrate regions of overlap
(purple) and difference (red and blue) in cluster assignment for gray (g) and white (h) matter clusters when site and resolution are taken
into account. The only substantial differences in clustering results were in posterior putamen and near the internal capsule. GM, gray
matter; WM, white matter.

Figure 7. Gray and white matter clusters derived from models accounting for total tissue volume. a, b, Gray matter clusters for
models using proportional scaling (a) and ANCOVA (b). c, d, White matter clusters for models using proportional scaling (c) and
ANCOVA (d) models. Clusters are similar to Figure 6, e and f, with a notable difference in the white matter cluster in the midbrain for
the ANCOVA model (d).
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unimodal sensory areas, but negative in polymodal re-
gions. In adolescents, a negative correlation between gray
matter density and FA in the right superior corona radiata
has been described (Giorgio et al., 2008). These studies
show that the general pattern of maturational contraction
of gray matter is coupled with changes in white matter
properties, including increased FA and volume. The pres-
ent study builds on these findings by showing that there is
a network organization in patterns of age-related variabil-
ity in both gray and white matter volumes, and that these
clusters are coupled based on both spatial proximity and
similarity in age slopes.

White matter development across childhood and ado-
lescence is characterized by increased FA and volume
and reduced MD (Barnea-Goraly et al., 2005; Ben Bashat
et al., 2005; Giorgio et al., 2008; Lebel and Beaulieu,
2011). These processes occur asynchronously across
white matter regions (Lebel et al., 2008), and are believed
to reflect changes in myelination and axonal packing (Ya-
kovlev and Lecours, 1967; Beaulieu, 2002). White matter
properties such as FA appear to be influenced by both
genetic (Kochunov et al., 2015) and environmental (Hof-
stetter et al., 2013) factors. We speculate that genes
expressed within regions or networks may contribute to
coordinated patterns of volume development observed
here. Though often considered separately, gray and white
matter development may reflect processes occurring in
the same cells (though changes in gray matter may also
reflect changes in glial cells or vasculature; Zatorre et al.,
2012). We further speculate that coordinated white matter
expansion and gray matter contraction may reflect a syn-
ergistic process of increased myelination and decreased
synaptic or dendritic density that occurs as networks
mature. We note, however, that MRI studies are quite
limited in resolution and thus have limited ability to test
these hypotheses directly.

Different distributed networks have been identified in
fMRI connectivity studies, including default-mode or task-
negative, frontoparietal/dorsal attention/task positive,
ventral attention, salience, visual, motor, and subcortical
networks (Fox et al., 2005; Power et al., 2011). A previous
seed-based study showed that longitudinal change in
cortical thickness in core regions of the task-positive and
task-negative networks are correlated (Raznahan et al.,
2011b). We note that using a data-driven approach, the
gray matter clusters identified here did not specifically
resemble either of these two networks. Instead, we found
a posterior cluster that included both precuneus and bi-
lateral intraparietal sulcus, regions associated with both
the task-positive and task-negative networks. An anterior
cluster included both medial prefrontal task-negative re-
gions and cingulate and dorsal prefrontal regions associ-
ated with task-positive and salience networks. A recent

study using a qualitatively similar approach to that de-
scribed here also identified one primarily parietal network
and several networks that bisected the prefrontal cortex
into superior and inferior regions (Alexander-Bloch et al.,
2014). Although similarities in network properties of mat-
urational and functional networks have been shown
(Alexander-Bloch et al., 2013b), recent results (Alexander-
Bloch et al., 2014), together with those reported here,
suggest that the spatial distribution of maturational struc-
tural covariance networks may not map directly onto
canonical functional networks. Further work is required to
carefully characterize the relationship between develop-
mental gray matter networks and brain systems defined
based on functional connectivity.

Our results suggest a period of particular cortical thin-
ning in late childhood in the anterior and posterior gray
matter clusters that consist of more cognitive frontal,
parietal, insular, and temporal regions. This has also been
noted as a period of nonlinear change in cortical thickness
networks, when local efficiency is reduced but global
efficiency increases (Khundrakpam et al., 2013). In terms
of cognitive development, late childhood corresponds to
a period of rapid maturation of attention and executive
functions (Pennington and Groisser, 1991; Hommel et al.,
2004; Zhan et al., 2011). Our data suggest that cortical
thinning most prominently in parietal regions, but also in
the more anterior cortical network, may play a role in this
process. A goal for future longitudinal studies will be to
consider the maturational trajectories of gray and white
matter networks in relation to cognitive maturation.

There are several limitations associated with this study.
We used a single time point rather than longitudinal mea-
surements to identify age slopes. Male and female partic-
ipants were included in our analysis in similar numbers,
though previous studies have shown evidence for sexu-
ally dimorphic trajectories in gray and white matter devel-
opment (Giedd et al., 1997; Lenroot et al., 2007;
Raznahan et al., 2011a). VBM analyses do not allow for
separation of volume into thickness and surface area
components, which make distinct contributions to volume
development (Raznahan et al., 2011a). The age windows
used here were defined to correspond with recent reports
(Zielinski et al., 2010; Khundrakpam et al., 2013); how-
ever, these are somewhat arbitrary divisions and may not
reflect optimal boundaries for transitions in age slope. The
“optimal” number of clusters as defined using silhouette
values did not match for gray and white matter clusters;
the gray matter solution peaked at two clusters, separat-
ing cortical from cerebellar regions, while the white matter
solution peaked at four clusters. We chose to model gray
matter using a four-cluster solution, to match the white
optimal white matter solution, and therefore note that gray
matter clusters in the cortex may reflect gradations of a

Statistical table

Data structure Type of test Power
a White matter volume (normally distributed) K-means clustering, silhouette values n/a
b Gray matter volume (normally distributed) K-means clustering, silhouette values n/a

Mean, SD, and range were calculated for age and IQ in each group. Handedness reflects right (R) versus left (L) hand preference. Mean adjusted income is
measured in thousands of dollars.
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largely similar age-related volume pattern rather than sub-
stantially distinct clusters. Significant effects of data ac-
quisition site and resolution were most prominent around
the internal capsule, putamen, and posterior insula; clus-
tering results in these areas may therefore be less reliable.
Finally, we note that our analysis identified a set of gray
and white matter clusters that covered regions that are
very different in terms of cellular composition. As such,
this analysis did not perform well at identifying regions
with particular properties.

In summary, this work describes a correspondence
between clusters of white and gray matter regions, de-
fined in terms of age-related variability in volume across
childhood and adolescence. We found that white matter
voxels clustered together based largely on fiber direction,
and gray matter regions divided into anterior, posterior,
sensorimotor, and cerebellar clusters. These gray and
white matter clusters could, nonetheless, be uniquely
matched on the basis of spatial proximity, and showed
parallel trajectories in age-related variability. This study
identifies a previously unreported property of directional
selectivity in white matter volume development, and dem-
onstrates that white and gray matter volume clusters are
linked across childhood and adolescence. There is a
growing interest in understanding the role of anatomical
networks in neurodevelopmental (Zielinski et al., 2012),
neuropsychiatric (Alexander-Bloch et al., 2014), and neu-
rodegenerative (Douaud et al., 2014) disorders; these re-
sults lay a foundation for studying network-level
abnormalities in white matter volume and their relation-
ship to gray matter covariance networks.
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