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Genomic prediction in CIMMYT maize and wheat
breeding programs

J Crossa1, P Pérez2, J Hickey1,3, J Burgueño1, L Ornella4, J Cerón-Rojas1, X Zhang1, S Dreisigacker1,
R Babu1, Y Li1, D Bonnett1 and K Mathews1

Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating
genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending on the prediction problem
assessed and on several other factors, such as trait heritability, the relationship between the individuals to be predicted and
those used to train the models for prediction, number of markers, sample size and genotype� environment interaction (GE).
The main objective of this article is to describe the results of genomic prediction in International Maize and Wheat
Improvement Center’s (CIMMYT’s) maize and wheat breeding programs, from the initial assessment of the predictive ability of
different models using pedigree and marker information to the present, when methods for implementing GS in practical global
maize and wheat breeding programs are being studied and investigated. Results show that pedigree (population structure)
accounts for a sizeable proportion of the prediction accuracy when a global population is the prediction problem to be assessed.
However, when the prediction uses unrelated populations to train the prediction equations, prediction accuracy becomes
negligible. When genomic prediction includes modeling GE, an increase in prediction accuracy can be achieved by borrowing
information from correlated environments. Several questions on how to incorporate GS into CIMMYT’s maize and wheat
programs remain unanswered and subject to further investigation, for example, prediction within and between related bi-
parental crosses. Further research on the quantification of breeding value components for GS in plant breeding populations is
required.
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INTRODUCTION

In plants, quantitative trait locus (QTL) mapping was initiated more
than 20 years ago (Bernardo, 2008) and has been used very
successfully in the genetic analysis of several non-complex traits
and, in particular, of abiotic and biotic stress tolerance traits where
much of the genetic variance is conditioned by one or a few loci.
This has led to the wide-scale deployment in farmers’ fields
of alleles that confer resistance to submergence and salinity in rice
and fungal leaf diseases in wheat and maize, and to identifying and
mobilizing alleles with large effects. However, exploiting QTL for
more complex traits to predict candidates for selection in practical
breeding programs has had limited impact because, among other
factors, of the small genetic variance accounted for by QTL owing to
the model being used, and because many detected QTLs are specific
to a particular genetic background.

With high-density single-nucleotide polymorphism (SNP) markers, it
is possible to use multi-locus linkage disequilibrium (LD) between
QTLs and markers across the whole genome to predict genetic values
that can be used in predictive genomic selection (GS) methodologies. As
first proposed by Meuwissen et al. (2001), breeding values can be
predicted as the sum of all marker effects by regressing phenotypic

values on all available markers. In animals, the first to implement GS
was the US dairy industry (vanRaden, 2007; VanRaden et al., 2008);
later Hayes et al. (2009) and Goddard and Hayes (2009) successfully
implemented GS in other animal species. Daetwyler et al. (2008) showed
how to use genomic prediction for analyzing the genetic risk of human
diseases, and Bernardo and Yu (2007), Lorenzana and Bernardo (2009)
and Heffner et al. (2011) showed promising results of GS in plants.

In plants, several authors have used breeding data with individuals
genotyped with intermediate- to high-density markers to show that
traits such as grain yield, biomass yield, disease resistance and
flowering evaluated under different environmental conditions can
be predicted with varying levels of accuracy depending on, among
other factors, the heritability of the trait, the size of the training
population, the number of markers, the relationship between the
training and testing sets, and genotype� environment interaction
(GE) (de los Campos et al., 2009; Crossa et al., 2010, 2011; Pérez
et al., 2010, 2012; Burgueño et al., 2012; Gonzalez-Camacho et al.,
2012; Hickey et al., 2012; Riedelsheimer et al., 2012; Windhausen
et al., 2012; Zhao et al., 2012).

The main results of most prediction studies carried out on maize
and wheat trials at International Maize and Wheat Improvement
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Center (CIMMYT) show that when the aim is to predict the genetic
values of individuals in a population (with unknown subpopula-
tions), the use of intermediate- to high-density markers, along with
pedigree information, produces diverse prediction accuracy of the
genetic values of unobserved individuals, with pedigree accounting for
a large proportion of predictive ability. Pedigree (when available) is
the baseline model that considers family links (or breeders’ structures)
and, when used together with marker information, increases the
prediction accuracy for all traits most of the time.

General findings of CIMMYT studies show that the accuracy of
genotype imputation from low- to high-marker density is high for
large training sets and for individuals who have close relatives in the
training set even if the training set is relatively small; this offers a
valuable economic option for imputing high-density markers to large
sample populations from small sample populations that were
genotyped with high-density markers. However, prediction accuracy
between genetically unrelated populations (or families) is low, when
using any marker density; likewise, when heritability is low, genomic
information does not help prediction accuracy.

In terms of the algorithms used to make predictions in CIMMYT
trials, no one prediction model fits all situations (trait–environment
combinations), yet empirical evidence shows that models that include
nonlinear functions of the markers, when used on complex traits (that
is, grain yield), tend to increase prediction ability as compared with
linear models. For less complex traits that are predominantly additive
(that is, male and female flowering in maize and resistance to rust
diseases in wheat), linear models gave the best prediction accuracy.

In a recent article using data from a highly structured CIMMYT
maize population, Windhausen et al. (2012) showed that when
predicting between unrelated subpopulations, accuracy was close to
zero, and that almost all cross-validation accuracy achieved by
marker-based prediction was essentially the result of assigning lines
to subpopulations with differing trait means; identical accuracies were
obtained when prediction was simply based on breeder knowledge of
structural groupings, rather than on marker-based prediction.
Windhausen et al. (2012) discussed several possible applications of
GS to maize breeding programs, that is, prediction within progenies
of the same cross and prediction of progenies of different crosses.
Prediction within the same cross implies training and validating within,
for example, F2 individuals or doubled haploids or advanced inbred
lines (that is, F6) derived from one cross for which phenotyping in
multi-environment trials is more expensive than genotyping. Another
prediction problem that usually arises in practical breeding is predicting
individuals within and between different crosses, that is, within and
between F2 individuals (or their doubled haploids). It is expected that
factors such as the degree of relatedness of individuals between crosses,
and whether the LD between markers and QTL is stable across different
crosses, will affect the prediction accuracy between crosses.

A similar structural paradigm should be considered for genomic
prediction in multi-environment plant breeding trials. GE produces
environments that are structured into related or unrelated subsets that
may increase or decrease prediction ability. In plants, prediction
accuracy has been estimated by evaluating training and validation sets
in single environments or in a subset of similar environments (within
optimum or drought environments). Burgueño et al. (2012) studied
the effect of modeling GE (or not) on genomic prediction ability
when using marker and pedigree information. They found that multi-
environment models benefit from borrowing information from
correlated environments and from using information regarding
pedigree and genetic markers. Thus, when the environmental
structure (GE) was modeled, this increased the prediction ability of

unobserved individuals by about 20% with respect to the single-
environment prediction model. Windhausen et al. (2012) indicated
that the impact on prediction accuracy of environmental structure in
combination with population structure should be considered for
further research.

Two basic applications of GS are being studied in CIMMYT’s global
maize and wheat breeding programs. One application consists
of predicting the genotypic values of individuals for potential release
as cultivars. In this application, both additive and non-additive effects
are important for determining the final commercial value of the maize
or wheat lines to be released in the near future. The other application
is concerned with predicting the breeding value of candidates in
rapid-cycle populations (that is, focusing on the precise prediction of
additive effects in the breeding program’s early generations).

The main purpose of this article is to describe and summarize the
results of genomic prediction in CIMMYT’s maize and wheat
breeding programs starting from the initial assessment of the
predictive ability of different models using pedigree and marker
information to the present, when methods for implementing GS in
practical global maize and wheat breeding programs are being studied
and investigated. The article is organized as follows: first, we briefly
summarize the genomic prediction results obtained using several
CIMMYT maize and wheat breeding data sets and different models
for predicting genetic values of lines in a breeding population
in a single environment and/or across environments (drought or
optimum). We studied the effect of modeling GE (structuring
environments) on the prediction ability of a wheat multi-environment
trial using pedigree and marker data. Second, we show the results of
predicting between related and/or unrelated populations; predicting
between unrelated populations in CIMMYT breeding populations has
been unsuccessful. Third, we present prediction ability within two bi-
parental F2 crosses in maize when a small number of lines and
markers are considered.

MATERIALS AND METHODS
Models for genomic prediction
The standard linear genetic model considers that the phenotypic response of

the ith individual (yi) is explained by a factor common to all individuals, a

genetic factor specific to that individual (gi) and the residual comprising all

other non-genetic factors (ei), including environmental effects (temporal or

spatial) and effects described by the design of the experiment, among others.

Thus, the linear genetic model for n genotypes (i¼ 1,...,n) is represented by

yi¼ giþ ei. In this standard linear genetic model, the genetic factor gi can be

described by adding the molecular marker effects or by using pedigree, or both.

When gi is defined as a parametric linear regression on marker covariates xij

(for example, 0, 1 and 2 for additive effects), then gi¼
Pp

j¼ 1 xijbj, such that

yi¼
Xp

j¼ 1

xijbjþ ei ð1Þ

where bj is the effect of the the jth marker covariate on yi (Meuwissen et al.,

2001) (j¼ 1,2,yp, markers). Assuming that the distribution of the residuals is

normal with mean zero and variance s2
e , then the likelihood of model (1) is

p yjg;s2
e

� �
¼
Yn

i¼ 1

N yij
Xp

j¼ 1

xijbj;s
2
e

 !

where N yij
Pp

j¼ 1 xijbj;s
2
e

� �
denotes a normal density for random

variable yi centered at
Pp

j¼ 1 xijbj and with variance s2
e .

The large variation resulting from hundreds of thousands of markers can be

controlled by various shrinkage methods that can be formulated in frequentist

or Bayesian models. Depending on how priors on the marker effects are

assigned, different Bayesian linear regression models can also be derived. We
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considered models for GS that differ in the information used (pedigree,

molecular markers or both) and in the way markers are incorporated into the

model. We used parametric linear regression models, for example, the Bayesian

LASSO (BL) and the GBLUP, as well as semiparametric nonlinear models, that

is, Reproducing Kernel Hilbert space (RKHS) and the Neural Network

methods with a Radial Basis Function (RBFNN) and Bayesian regularization.

The pedigree model, BL and GBLUP are explained in detail in several articles,

for example, de los Campos et al. (2009), Crossa et al. (2010; 2011) and Pérez

et al. (2010). The GBLUP models using pedigree and genomic information

while modeling GE using factor analytic (FA) model information are described

in Burgueño et al. (2012). Detailed descriptions of the nonlinear models RKHS

and RBFNN are given in de los Campos et al. (2009), Gonzalez-Camacho et al.

(2012) and Pérez et al. (2012). A brief description of these and other models is

given in the Appendix.

Models accounting for epistasis
There is concrete proof that the agglomeration of multiple gene� gene

interactions (epistasis) having small effects and acting in small epistatic

networks is important for explaining the heritability of complex traits in

genome-wide association studies (McKinney and Pajewski, 2012). Epistasis

networks and methods with connections based on gene� gene interactions can

also be integrated for GS using statistical genetic models that consider these

network complexities. Evidence from studies conducted at CIMMYT for

complex traits, such as grain yield, shows that models that allow for nonlinear

components consistently predicted the unobserved individuals better than

linear models (Crossa et al., 2010; 2011; Gonzalez-Camacho et al., 2012; Pérez

et al., 2012). In principle, epistasis can be incorporated when the number of

markers is large, but the large number of epistatic effects (two-locus

interaction) makes their use unfeasible. The RKHS regression approach and

the RBFNN implicitly map marker effects into a high-dimensional feature

space that utilizes non-additive genetic effects. Recently, Wang et al. (2012)

developed an approach for incorporating the large number of markers used in

GS into the adaptive mixed LASSO (Wang et al., 2011), which accounts for

two-locus epistasis effects for predicting genetic values.

In a recent study, González-Camacho et al. (2012) analyzed real and

simulated data by Zhang and Xu (2005). Simulated data have a sample size of

600 individuals and a genome with only a single chromosome (1800 cm long)

and 121 evenly spaced markers with a 15 cm per marker interval. The authors

simulated 9 main QTL effects and 13 interactions between different QTL

effects; all QTL effects overlapped with markers. Each QTL made a contribu-

tion to phenotypic variance that varied from 0.5 to 20%. Results show that the

prediction ability of RKHS and RBFNN was superior to that of the BL,

indicating that RKHS and RBFNN are able to capture patterns (for example,

gene� gene effects) that cannot be captured by a linear model. When marker

main effects and two-marker interactions were fitted, the performance of the

linear model increased sharply and that of the semiparametric methods

decreased, indicating that, for nonlinear models, information on gene� gene

interaction incorporated into the input space becomes redundant in the feature

space, whereas for the linear models, information on gene� gene interaction

incorporated in the input space is useful for predicting the feature space. The

linear model was able to detect this via estimates of regression coefficients that

weigh the contribution of each marker to the estimated conditional expecta-

tion. On the other hand, in both RBFNN and RKHS, each marker gets a

similar weight in the basis function or kernel, and the effect of adding non-

signal covariates reduces method performance.

Assessing the models’ predictive ability
The predictive ability of the models was computed as a Pearson correlation

between predicted and observed values. Commonly, phenotypic and genotypic

data comprise inbred lines that are either breeders’ candidates for selection

or segregating populations at different levels of inbreeding. Phenotypic data

may include candidates for selection from different years tested in different

environments.

Two types of partition designs were used for the data sets (training and

testing sets). The first partition design considered a cross-validation that

divides the data into a training sample and a validation sample or testing set.

The models are fitted using the training sample, and the fitted models are used

to predict outcomes in the validation sample. Here, the data set is divided into

k groups; this is done by assigning observations {i¼ 1,..,n} to k disjoint sets

{S1,...,Sk}. Each of these sets can then be used to measure predictive ability.

For example, using the first set, the data can be divided so that the training set

contains all the observations in {S2,...,Sk}, and the testing set those in S1.

Subsequently, models are fitted using data in {S2,...,Sk}, and the fitted models

are used to obtain predictions for observations in {S1}, that is, {ŷi: iAS1}.

Repeating this exercise for the second, third,.., kth sets yields a whole set of CV

predictions ŷif gn
i¼ 1 that can be compared with actual observations yif gn

i¼ 1 to

assess predictive ability. In general, we used a 10-fold cross-validation scheme.

In addition to using a k-fold cross-validation partition layout, we used a

second partition design for splitting the data into training and testing sets that

consists of 50 random partitions, with each partition randomly assigning 90%

(or less) of the lines to the training set and the remaining 10% (or more) of the

lines to the testing set. This partition scheme is similar to that used by

Gonzalez-Camacho et al. (2012) and Gianola et al. (2011), and helps obtain a

distribution of the correlations in the testing set for each tested model.

RESULTS

Predicting genetic values of lines in a breeding population
The main objective of these initial studies was to compare the
prediction ability of various parametric and semiparametric models
using intermediate- to high-marker density for assessing the genomic
prediction of genetic values in real plant breeding populations
evaluated under different environmental conditions. The maize data
used consist of diverse inbred lines (that is, tropical, subtropical,
tolerant to acid soils, and so on) from CIMMYT’s Global Maize
Program that were evaluated for several traits in different environ-
ments and genotyped with low and high marker density. The wheat
lines in one data set are selection candidates evaluated for grain yield
and other traits in several site–year combinations (Pérez et al., 2012),
whereas the other data set comprises a set of historical wheat lines
from CIMMYT’s Global Breeding Program evaluated in several mega
environments (Crossa et al., 2010; Burgueño et al., 2012).

Maize. A summary of the results is presented in Table 1 for the
mean correlation of 10-fold cross-validation (Crossa et al., 2010) and
50 random partitions (Gonzalez-Camacho et al., 2012), each with
90–100% for the training and testing sets using two-marker densities
in a maize population of 284 inbred lines evaluated for various trait–
environment combinations and genotyped with 1148 and 55 000
SNPs. Broad-sense heritabilities of the trait–environment combina-
tions were relatively high for male and female flowering traits, and
intermediate for grain yield; these estimates were consistently
higher under well-watered (WW) conditions than under severe
drought stress (SS). Results indicate that increasing the marker
density increased the prediction ability of the models for most
trait–environment combinations. It is clear that prediction for all
traits under both marker densities is always more problematic under
SS than under WW conditions. This effect is clearer for a complex
trait such as GY under stress conditions (GY-SS or GY-LOW),
compared with GY under optimum conditions (GY-WW or GY-
HIGH). This result confirms the importance of improving field
evaluations under stress conditions (that is, drought and/or heat) by
using appropriate experimental designs and statistical models that
account for uneven soil characteristics and other environmental
trends occurring during the crop cycle.

For more simple traits, such as male and female flowering, the
effect of stress conditions decreased prediction ability, but this ability
was higher when using higher marker density than with intermediate
marker density. Another trend that emerged from these results is that
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with low-density markers and for simple traits (FFL and MFFL), the
predictive ability of the linear model (BL) surpassed those of the
nonlinear models (RKHS and RBFNN), whereas with high-density
markers, nonlinear models always showed better prediction ability
than the linear models. One can speculate that nonlinear models can
capture small cryptic epistatic effects better with high marker density,
and they cannot be captured with low marker density. Colinearity
between high-density markers is another possible reason for the
poorer prediction of the linear model compared with the nonlinear
model. These results indicate that imputation from low marker
density to high marker density, shown by Hickey et al. (2012) to be
very accurate in maize, is important in the practical implementation
of GS, because imputation from low to high marker density will
generate economic savings during the breeding cycles while increasing
prediction accuracy.

Wheat. The summary in Table 2 shows the prediction ability of two
wheat data sets for grain yield measured in various environments.
Here, the number of genotypes in each data set is 306 and 599, and
the number of markers is 1717 and 1279, respectively (Pérez et al.,
2012; Burgueño et al., 2012). Prediction accuracies were highly
consistent in both sets of experiments, with BL with markers and

pedigree (PMBL), and RKHS with pedigree and markers (PMRKHS)
giving the best predictions on the data set of 599 wheat lines and with
models MRKHS and MRBFNN as the best predictors on the data set

Table 1 Mean correlations between predicted and observed values

of the three models, BL, RKHS regression and RBFNN for four

traits (female flowering, FFL; male flowering, MFL; grain yield,

GY: anthesis-silking interval, ASI) measured in the following

environments: WW, SS, HIGH and LOW in 284 maize inbred lines

genotyped with 55000 and 1148 SNPs

Trait–environment (heritability) BL RKHS RBFNN

55000 SNPsa

FFL-WW (0.89) 0.814 0.836 0.834

FFL-SS (0.81) 0.754 0.763 0.757

MFL-WW (0.88) 0.817 0.841 0.832

MFL-SS (0.83) 0.776 0.782 0.780

ASI-WW (0.79) 0.582 0.586 0.594

ASI-SS (0.77) 0.612 0.621 0.605

GY-WW (0.49) 0.557 0.548 0.529

GY-SS (0.38) 0.326 0.330 0.288

GY-HI (0.50) 0.633 0.663 0.653

GY-LOW (0.40) 0.410 0.402 0.393

1148 SNPsb

FFL-WW 0.781 0.588 —

FFL-SS 0.774 0.648 —

MFL-WW 0.790 0.607 —

MFL-SS 0.778 0.674 —

ASI-WW 0.513 0.547 —

ASI-SS 0.517 0.572 —

GY-WW 0.525 0.514 —

GY-SS 0.415 0.453 —

GY-HI — — —

GY-LOW — — —

Abbreviation: BL, Bayesian LASSO; HI, optimum; LOW, stress; RBFNN, radial basis function
neural network; RKHS, reproducing kernel Hilbert space; SNP, single-nucleotide polymorphism;
SS, severe drought stress; WW, well-watered.
The best prediction model for each trait-environment combination in the data set is underlined.
aExtracted from Gonzalez-Camacho et al. (2012).
bExtracted from Crossa et al. (2010).

Table 2 Mean correlations between observed and predicted values

for GY using GBLUP; P; Bayesian LASSO with markers, and with

markers þ pedigree (MBL, PMBL, respectively); RKHS regression

with markers, and with marker þ pedigree (MRKHS and PMRKHS,

respectively); MRBFNN, and MBRNN models in two data sets, one

with 306 wheat lines genotyped with 1717 DArTs markers and

evaluated in seven environments, and the other with 599 wheat lines

genotyped with 1279 DArTs and evaluated in four environments

Model

Trait Environment GBLUP MBL MRKHS MRBFNN MBRNN

306 lines and 1717 DArT markersa

1 0.43 0.48 0.51 0.51 0.50

2 0.41 0.48 0.50 0.43 0.43

GY 3 0.29 0.20 0.37 0.42 0.32

4 0.46 0.45 0.53 0.55 0.49

5 0.56 0.59 0.64 0.66 0.63

6 0.67 0.70 0.73 0.71 0.69

7 0.50 0.46 0.53 0.54 0.50

Model

Trait Environment P MBL MRKHS PMBL PMRKHS

599 lines and 1279 DArT markersb

1 0.45 0.52 0.60 0.54 0.61

2 0.42 0.49 0.49 0.50 0.49

GY 3 0.42 0.40 0.45 0.45 0.40

4 0.45 0.46 0.52 0.50 0.46

Abbreviations: BRNN, Bayesian regularized neural networks; GBLUP, genomic best linear
unbiased predictor; GY, grain yield; MBRNN, Bayesian regularized neural networks with
markers; MRBFNN, radial basis function neural networks with markers; P, pedigree; RBFNN,
radial basis function neural networks; RKHS, reproducing kernel Hilbert space.
The best prediction model for each environment in the data set is underlined.
aExtracted from Pérez et al. (2012).
bExtracted from Crossa et al. (2010).

Figure 1 Heat map of the G matrix for the data set with 306 wheat lines

genotyped with 1717 DArTs markers.
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of 306 wheat lines. Figures 1 and 2 depict the heatmap of the genomic
(G) matrix for data on 306 and 599 wheat lines, respectively. The 306
lines comprise three groups, one large population (top left), one small
subset unrelated to either of the other two and another large
population that is closely related to the first large one, apparently
with two closely related subgroups (Figure 1). The 599 wheat lines
formed two clear large groups, each with several subgroups closely
related to each other (Figure 2); the two large subgroups overlap
slightly.

The prediction problem addressed in this research concerned the
prediction of the entire population. It is interesting to note that
markers consistently increased prediction ability over the baseline
pedigree-derived model in all environments of both data sets. Another
clear result emerging from these two data sets is that considering
markers and pedigree together consistently increased the prediction
ability of all models, as compared with models with markers only
or pedigree only. For other problems (such as prediction between
subpopulations), a decrease in prediction ability was expected,
especially for subpopulations that are not related, for example,
those shown in Figure 1. When one of the large subpopulations in
Figure 2 was predicted based on the other large subpopulation,
prediction accuracy decreased, as expected (de los Campos, personal
communication).

Predicting genetic values of lines between populations or
subpopulations
Wheat. In a recent study, we used a stem rust data set from five
wheat populations (PBW343/Juchi, PBW343/Pavon76, PBW343/Muu,
PBW343/Kingbird and PBW343/K-Nyangumi) for genomic predic-
tion (Ornella et al., 2012). Resistance to stem rust is known to be
affected by several major genes and also influenced by slow-rusting
genes with small additive effects. All populations were derived from
crosses between resistant parents (Juchi, Pavon76, Muu, Kingbird
and K-Nyangumi) and PBW343, a moderately susceptible parent.
The parents and the F6 generation recombinant inbred lines were
evaluated for reaction to stem rust at different locations. The sample
sizes of the five wheat populations were 92 genotypes in PBW343/
Juchi, 176 individuals in PBW343/Pavon76, 148 genotypes in

PBW343/Muu, 90 individuals in PBW343/Kingbird and 176
genotypes in PBW343/K-Nyangumi. Genotypes were molecularly
characterized using 1400 Diversity Arrays Technology Pty. Ltd
(http://www.diversityarrays.com/) (DArT markers).

As depicted in Figure 3, there are five clearly distinct yet related
(half-sib) populations; however, lines in the Juchi population do not

Figure 2 Heat map of the G matrix for the data set with 599 wheat lines

genotyped with 1279 DArTs markers.
Figure 3 Heat map of the genomic relationship matrix G of five wheat popu-

lations: PBW343/Pavon76, PBW343/Juchi, PBW343/Kingbird, PBW343/
K-Nyangumi and PBW343/Muu. The numbers indicate the average values

of the corresponding elements of G within and between populations (from

Ornella et al., 2012).

Table 3 Pair-wise correlations between observed and predicted stem

rust values of two models, Bayesian LASSO and the GBLUP, trained

in one population and evaluated in the other population for five

populations (adapted from Ornella et al., 2012)

Traininga

PBW343/

Juchi

PBW343/

Kingbird

PBW343/K-

Nyangumi

PBW343/

Muu

PBW343/

Pavon76

Testing

PBW343/

Juchi

— 0.48 0.14 0.28 0.31 Bayes

LASSO

PBW343/

Kingbird

0.53 — 0.29 0.25 0.54

PBW343/

K-Nyangumi

0.14 0.30 — 0.28 0.28

PBW343/

Muu

0.18 0.30 0.33 — 0.29

PBW343/

Pavon76

0.37 0.51 0.22 0.33 —

GBLUP

There are five related populations: PBW343/Juchi, PBW343/Kingbird, PBW343/K-Nyangumi,
PBW343/Muu and PBW343/Pavon76.
aThe triangle on the upper-right shows the prediction ability (correlation) of Bayes LASSO, with
the rows indicating the training population (that is, PBW343/Juchi) and the columns the
testing population (that is, PBW343/Kingbird, 0.48); the triangle on the lower-left gives the
prediction ability of GBLUP, with the columns indicating the training population (that is,
PBW343/Juchi) and the rows the testing population (that is, PBW343/Kingbird, 0.53).
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seem to be closely related. Results of the pairwise prediction of one
population using the other are shown in Table 3. The accuracy of
predictions of one population using another population was relatively
high, except for PBW343/K-Nyangumi when predicted by PBW343/
Juchi (using BL, 0.14) and PBW343/Juchi when predicted by
PBW343/K-Nyangumi (using GBLUP, 0.14). Furthermore, Table 4
indicates that prediction of stem rust data in each individual
populations using stem rust data from the other four populations
gave relatively high correlations, except for population PBW343/Juchi,
which, as shown by Ornella et al. (2012), does not have lines that are
closely related among themselves or to lines in other populations.

It is interesting to point out that even under the population
structure existing in this wheat data set, stem rust prediction between
populations, and also within the meta-population comprising all five
populations (Table 4), was relatively high. The architecture of the
traits has an important role that may help to explain these results. For
more complex traits, such as grain yield, this prediction result may
not hold; thus population structure could become the main driving
force for increasing the prediction accuracy of the meta-population,
while prediction between populations significantly decreases.

Maize. Recently, Windhausen et al. (2012) investigated various
aspects of genomic prediction within and between populations, and
discussed the potential uses of genomic prediction in maize hybrid
development. The authors used 255 diverse maize lines tested in
six trials (almost all identical to those used by Crossa et al. (2010)),
and classified them into eight breeding populations differing in mean
performance. The authors examined the problem of separately
predicting each breeding population based on marker effects esti-
mated in the other populations; prediction ability was nearly zero.
Results suggest that in the current study, prediction comes mainly
from pedigree (subpopulation structure within the global set), with
negligible contributions from the relationship between the training
and validation sets or from LD between markers and causal variants
underlying the predicted traits. Potential uses of genomic prediction
in maize hybrid development are discussed, emphasizing the need to
define the breeding scenario in which genomic prediction should be
applied (that is, prediction across or within populations) and the

size of the training sets with a strong genetic relationship to the
validation set.

Prediction within breeding populations incorporating GE, pedigree
and genomic information
Pedigree- and genomic-derived additive predictions. Previous results
referred to genomic predictions of models for a single environment
and did not consider correlated environmental structures due to GE.
Crossa et al. (2010) evaluated the predictive ability of pedigree,
genomics and pedigreeþ genomic information in single-environment
models such as those used for the wheat multi-environment data set.
Here, we summarize results from Burgueño et al. (2012), who, using
the same data set as Crossa et al. (2010), were the first to evaluate the
impact of modeling GE covariance structures for multi-environment
trials. The data comprise 599 wheat lines genotyped with 1279 DArTs
and evaluated in four wheat mega environments. Crossa et al. (2010)
used pedigree, genomic and pedigreeþ genomic-derived models
for a wheat multi-environment trial comprising four environments
(E1–E4) with different genetic correlations, E1 not being genetically
correlated with the others, and E2 and E4 with intermediate to high
genetic correlations. Crossa et al. (2010) assessed prediction problems
relevant to plant breeders: (1) predicting the performance of
genotypes that have not been evaluated in any environment (assessed
by cross-validation CV1), and (2) predicting the performance of
genotypes that have been evaluated in some environments, but not in
others (assessed by cross-validation CV2). Prediction was performed
for lines within environments and across environments.

Burgueño et al. (2012) found that the predictive ability of genomic-
based models was higher than that of pedigree-based models. Their
results confirmed the superiority of pedigreeþ genomic models for
GS over pedigree-based predictions or genomic-based predictions
alone. Predicting the performance of newly developed lines that have
never been evaluated in the field (CV1) is more challenging than
predicting the performance of lines that have been evaluated in
different but correlated environments (CV2). Figure 4 shows correla-
tions obtained from multi-environment models that model GE using
the FA model in two cross-validations schemes (CV1 and CV2).

Table 4 Correlations between predicted and observed stem rust

values for five wheat populations, when four of them, with different

numbers of individuals in the training set, predict each of the others

in the testing set using the GBLUP and the Bayesian LASSO (BL)

models

Population Number of

lines in the

training set

Number of

lines in the

testing test

GBLUP BL

Four populations predicting one population

PBW343/Muu 534 148 0.59 0.60

PBW343/K-Nyangumi 506 176 0.52 0.53

PBW343/Kingbird 592 90 0.79 0.82

PBW343/Juchi 590 92 0.41 0.39

PBW343/F6Pavon 506 176 0.59 0.62

All populations 50 random partitions with 90:10

All populations 612 70 0.62 0.64

Mean correlations when considering all five populations combined with a prediction design that
considers 50 random partitions with a split of 9:1 for the training set: testing set proportion.

Figure 4 Mean correlations (across four environments) between predicted

and observed grain yield values derived from models using only pedigree,

only genomics and pedigreeþ genomic for two cross-validation schemes

(CV1 and CV2) (adapted from Burgueño et al., 2012). Cross-validation CV1

predicts genotypes that have never been evaluated in any environment, and

cross-validation CV2 predicts genotypes that were evaluated in some

environments but not in other environments.
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Correlations for CV1 do not change much and those in CV2 were 31,
17.5 and 21.8% greater than those obtained in CV1, indicating the
importance of having information from correlated environments
when predicting performance.

Figure 5 shows that the impact of modeling GE in CV2 is marked
in environments E2–E4, but not in E1; this is because genetic values
in E2–E4 have high genetic correlations, whereas genetic values in E1
exhibit low genetic correlations with those from E2–E4. For correlated
environments E2–E4, the benefits in predictive ability come from
borrowing information from correlated environments by modeling
GE and by using information regarding pedigree and genomic
relationships. Interestingly, Burgueño et al. (2012) also examined
the predictive accuracy of models without using pedigree and
genomic relationships, and showed that to predict the environments
that cause a great deal of the GE, such as environment E1 (and E4),
modeling GE using information on genomic relationships and/or
pedigree gives better prediction accuracy than when the GE is not
modeled and the information on genomic and pedigree is ignored.

In general, these results also agree with those reported by Burgueño
et al. (2011), who demonstrated, without any pedigree and genomic
information, that modeling GE based solely on phenotypic data is a
good thing, as it always gives better predictions than simple linear
mixed models without modeling GE.

Pedigree- and genomic-derived additive and additive� additive predic-
tions. As proposed by Burgueño et al. (2007), pedigree-derived
additive and additive� additive relationship information can be
combined into a single model that will model GE using the FA
model with two random effects: one is a regression on pedigree
additive relationships, and the other, a regression on pedigree epistasis
additive� additive relationships (see Appendix). Thus, genomic-
derived additive and additive� additive relationships can be com-
bined into a single model by extending them into one with two

random effects: one with regression on genomic additive relation-
ships, and the other, regression on genomic epistasis additive�
additive relationships. We have assessed these predictions to examine
whether the inclusion of epistasis will improve prediction ability as
compared with using additive effects alone.

Results in Table 5 are for cross-validation CV2 that predicts the
genetic performance of 599 lines that were tested in some

Figure 5 Correlations between predicted and observed performance in environment 1 (E1) and average of environments 2, 3 and 4 (E2 3 4) obtained in

CV2 using only pedigree (a), only genomics (b) or using pedigreeþ genomics (c)-based models with different specifications for the residual and genetic

covariance matrices (FA¼GE modeled using the factor analytic model; no FA¼GE not modeled) (adapted from Burgueño et al., 2012).

Table 5 Mean correlations between the predicted and observed

values of genotypes for individual environments (E1, E2, E3 and E4),

and for three environments combined (E2, E3 and E4) using five

different factor analytic models (FA) for a cross-validation

scheme (CV2), each with 10-fold cross-validation

FA additive

pedigree

(G0P)

FA additive

genomic

(G0M)

FA pedigree

additive

(G0P),

FA genomics

additive (G0M)

FA pedigree

additive (G0P),

FA pedigree

additive�
additive

(G0PP)

FA genomic

additive (G0M),

FA genomic

additive�
additive

(G0MM)

E1 0.460 0.552 0.469 0.512 0.554

E2 0.623 0.609 0.638 0.612 0.637

E3 0.633 0.581 0.612 0.634 0.603

E4 0.533 0.513 0.448 0.540 0.465

E2, E3, E4 0.596 0.571 0.566 0.598 0.568

The best predictive model for each environment or environment combination is underlined.
Data used were extracted from Crossa et al. (2010) and Burgueño et al. (2012).
Factor analytic-pedigree for G0P; factor analytic-genomic for G0M; factor analytic-pedigree
(G0P) and factor analytic-genomic (G0M); factor analytic-pedigree additive (G0P) and factor
analytic-pedigree additive� additive (G0PP); factor analytic-genomic additive (G0M) and
factor analytic-genomic additive� additive (G0MM).
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environments but not in others. Results show that including pedigree
additive relationships and pedigree epistasis additive� additive rela-
tionships did improve prediction in some environments or combina-
tions of environments. Also, genomic additive relationships and
genomic epistasis additive� additive relationships did improve pre-
dictions in most environments (and their combinations), as com-
pared with models that only include pedigree additive or genomic
additive relationships. These results indicate that modeling additive�
additive epistasis along with GE is important for increasing the
accuracy of predictions in wheat breeding populations. These findings
agree with those recently reported by Wang et al. (2012), who found
that modeling epistasis did increase predictive ability.

Prediction within bi-parental maize populations
One of the key ways in which GS can be used in a maize breeding
program is to improve source populations from which candidate inbred
lines can be predicted and selected as parents for the next generation; in
this manner, genetic gains in a closed multi-parent population derived
from three or more elite lines are maximized. It is important to know
whether greater gains per year could be achieved at a lower cost and in
less time using this approach than using the conventional pedigree
breeding approach for the same investment. Prediction within full-sib
families is the most favorable situation for GS, with very high LD and
no pedigree, family or group structure; therefore, we consider the
accuracies estimated for the bi-parental populations as the maximum
obtainable in closed rapid-cycle marker-only selection.

In this study, we show results of two bi-parental populations
comprising 249 and 250 F2 test-cross individuals, respectively, that
were genotyped with 238 and 271 SNPs, respectively, and evaluated
under different drought and optimum environmental conditions.
Table 6 shows the predictive ability for grain yield across environ-
ments measured as a Pearson correlation between the observed value
(y) and the predicted value (ŷ) averaged over all 50 validation runs for
each of the different combinations of number of individuals and
number of markers for two maize bi-parental populations. Broad-
sense heritability for grain yield was 0.57 for bi-parental population 1
and 0.28 for bi-parental population 2 when all drought and optimum
environments were combined. Prediction accuracy in these
bi-parental populations reached around 0.4 at most, when
90 individuals were randomly taken (50 times) as the training
population from the entire sample of bi-parental population 2. When
50 individuals were sampled, prediction accuracy dropped to around
0.3. Although research is needed to balance the genotypic and
phenotypic costs, it is possible to speculate that these accuracies can
still be considered adequate, as they will save costs when large
numbers of bi-parental populations are evaluated in the field, and
have the additional benefit of potentially increasing selection intensity.
Predictions in Table 6 indicate that decreasing the number of markers
also has a negative impact on prediction accuracy. However, this effect
is much more drastic in bi-parental population 1 (with a heritability
for grain yield of 0.27) than in bi-parental population 2 (with a
heritability for grain yield of 0.57). Prediction accuracy can be
computed by dividing the prediction ability by the square root of
the broad-sense heritability of the target trait evaluated in the
respective set of environments.

DISCUSSION

GS has a number of uses in a breeding program; however, its greatest
potential use is at points in the breeding program where selection
using traditional methods (for example, through the generation
of phenotypes via replicated trials) is too expensive, time consuming,

or not biologically or logistically possible. The most important
questions relating to the applicability of GS in the CIMMYT maize
and wheat global breeding programs are which prediction problem
will better help breeders predict: (1) breeding values of individuals for

Table 6 Mean correlations between the predicted grain yield values

for three models (BL, RKHS regression and GBLUP) when the

numbers of individuals in the training sets randomly taken from the

entire population (50 different times) are 30, 40, 50, 70 and 90 for

different numbers of SNPs

Model_ number of individuals

in the training population

Number of SNPs

238 SNPs 100 SNPs 50 SNPs

Bi-parental population 1(249 F2individuals; 238 SNPs)

BL_30 0.1348 0.1009 0.0640

RKHS-KA_30 0.1520 0.1144 0.0703

GBLUP_30 0.1643 0.1173 0.0672

BL_40 0.1539 0.1286 0.0899

RKHS-KA_40 0.1685 0.1380 0.0925

GBLUP_40 0.1789 0.1441 0.0906

BL_50 0.2093 0.1598 0.0918

RKHS-KA_50 0.2004 0.1555 0.0944

GBLUP_50 0.2165 0.1612 —

BL_70 0.2236 0.1814 0.1152

RKHS-KA_70 0.2153 0.1756 0.1147

GBLUP_70 0.2338 0.1839 —

BL_90 0.2484 0.2000 0.1251

RKHS-KA_90 0.2386 0.1952 0.1284

GBLUP_90 0.2574 0.2024 —

Bi-parental population 2 (250 F2individuals; 271 SNPs)

271 SNPs 100 SNPs 50 SNPs

BL_30 0.2994 0.2765 0.2165

RKHS-KA_30 0.2924 0.2725 0.2136

GBLUP_30 0.2982 0.2770 0.2161

BL_40 0.3367 0.3156 0.2447

RKHS-KA_40 0.3371 0.3172 0.2471

GBLUP_40 0.3378 0.3146 —

BL_50 0.3471 0.3264 0.2585

RKHS-KA_50 0.3486 0.3271 0.2621

GBLUP_50 0.3467 — —

BL_70 0.3717 0.3549 0.2818

RKHS-KA_70 0.3770 0.3605 0.2866

GBLUP_70 0.3714 — —

BL_90 0.3919 0.3725 0.2998

RKHS-KA_90 0.4066 0.3859 0.3199

GBLUP_90 0.3903 — —

Abbreviations: BL, Bayesian LASSO; RKHS, reproducing kernel Hilbert space;
SNP, single-nucleotide polymorphism.
For each bi-parental population and for each number of markers (columns) the best
predictive model is underlined.
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rapid selection cycling or (2) genotypic values of advanced lines that
are in the last stages of testing. While predicting breeding values
require a precise estimation of additive effects, predicting genetic
values of advance lines requires using models that account for additive
as well as epistatic genetic effects. Results of analyzing vast amounts of
data in both CIMMYT breeding programs indicate that pedigree and
markers offer opportunities for achieving prediction than can be
exploited in the breeding pipeline. However, questions on where and
how to use this information remain open. Questions that require
further research are, among others, how many individuals and
markers are needed per bi-parental population? And can related
bi-parental families (half-sibs or quarter-sibs) increase prediction
accuracy? The impact of these factors on the prediction accuracy of
genomic breeding values on which selection decisions are made can
be evaluated by computer simulation.

At CIMMYT, we are placing increasingly greater emphasis on the
design of the validation population. In CIMMYT breeding programs,
genomic information may be useful for (1) predicting the effect
of an unknown population structure, (2) predicting unrecorded
pedigree structure, (3) correcting incorrect pedigree and (4) making
predictions about the genetic value of Mendelian sampling terms.
Each of these four uses of genomics in the breeding programs has
different economic value; therefore, design validation schemes should
sometimes partition the overall accuracy of a genomic breeding value
into the accuracy of these different components.

Genetic and environmental structure
Genetic structure (family or breeding populations) brings up ques-
tions such as which prediction problem needs to be assessed when
applying GS in real plant breeding populations, predicting between
families or within family, or both. Likewise, do distantly related (that
is, quarter-half-sibs) families contribute (or not) to prediction ability
compared with families (that is, half-sibs or full-sibs) that are more
closely related and therefore can be better predicted? Experimental
maize data indicate that prediction of unrelated lines has low
accuracy, and that we can predict between families only if they have
some degree of relatedness.

The initial prediction results of CIMMYT maize and wheat
breeding trials indicate that promising accuracy can be achieved. In
this prediction assessment case, all markers will inherently consider
substructures (as the pedigree model does). De los Campos et al.
(2010) showed that regressing phenotypic values on all available
markers is equivalent to regressing phenotypic values on all principal
components, thus considering all subpopulations. Furthermore, when
combining data from different experiments and populations with
different levels of performance, the mixed model will automatically
adjust for differences in the mean of these populations and/or
experiments. A different prediction problem arises when predicting
between subpopulations that are not related. In this case, prediction
accuracy dropped significantly and some becomes negligible.
However, when all subpopulations are related and form one large
global population with a clear structure, the prediction of one
population based on the others can be done with relatively high
accuracy, as shown by the prediction of stem rust in wheat. However,
for a complex trait such as grain yield, these relatively high predictions
may not be obtained. A different prediction assessment is concerned
with predicting within bi-parental populations; in maize, a prediction
ability of around 0.4 with low marker density was achieved. This
could save resources during phenotyping.

Although GE has an important role in genomic prediction
(Burgueño et al., 2012), genomic information can only be used if

the G matrix from bi-parental populations consisting of an F2 crossed
with a tester (that has no structure) and obtained from around 200
SNP markers contains information that will allow borrowing geno-
typic information from other individuals in other environments.
Increasing the number of markers and/or the sample size might
further increase prediction ability. Initial results of bi-parental
populations should be assessed in more F2 populations that have
been evaluated using different crosses (related and unrelated) tested in
different environmental conditions.

Breeding value components in GS
Formally, a breeding value can be partitioned into two components:
(1) the parent average (that is, one individual receives 50% of its
genome from each of its two parents) and (2) Mendelian sampling,
which is the random sampling of the genome of each parent.
In efficient breeding programs, genetic progress is primarily driven
by the time taken to evaluate the Mendelian sampling term accurately.
In the absence of performance on an individual itself or on its
descendants, traditional breeding value estimation methods have no
ability to evaluate the Mendelian sampling term. Plant breeders
have traditionally evaluated the genetic potential of the Mendelian
sampling term using replicated field trials of the candidates for
selection that are both expensive and time consuming.

Genomic information offers the possibility of accurately estimating
the genetic potential of Mendelian sampling terms without having to
evaluate individual candidates for selection in the field. This has a
great time- and cost-saving potential. While the major benefit of
genomic information in an efficient breeding program will likely be
its ability to accurately evaluate the Mendelian sampling term,
genomic information also has other valuable uses. For example,
it can be used to overcome the effect of incorrectly recorded or
unrecorded pedigree information, thereby helping to increase the
ability to accurately evaluate the parent average component in a
breeding value. In some breeding programs, such as those with very
low levels of pedigree recording, there may be major population
subgroups or structures hidden within the data that could be captured
and revealed by the genomic information.

While making selection decisions based on breeding values that
contain these pedigree or structure components (as well as some
Mendelian sampling components) may be useful, breeders need to be
cautious, as the family or population structure with the highest
genetic merit could come to dominate the breeding population over
time, and useful genetic variation within other families or population
subgroups could be lost. These are well-known results using classic
BLUP methodology, as BLUP uses both within- and between-family
information, and with low heritability traits, between-family selection
is dominant. For this reason, methods to control inbreeding in BLUP
selection programs are used, so that individuals from more families
are chosen.

Therefore, for the reasons mentioned above, when validating the
performance of GS within breeding programs, one needs to be aware
of the different components possibly contained within a genomic
breeding value and evaluate the benefits of genomic information
regarding these components. For example, when structure is known,
genomic information may not be needed to evaluate its genetic merit;
pedigree information is reasonably powerful for evaluating the genetic
merit of the parent average component, yet only genomic information
or field trials on the selection candidates or their descendants can
evaluate the genetic potential of the Mendelian sampling term.
Validation of the usefulness of genomic information should place
major emphasis on the latter comparison.
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Ornella L, Singh S, Pérez P, Burgueño J, Singh R, Tapia E et al. (2012).
Genomic prediction of genetic values for resistance to wheat rusts. The Plant Genome
5: 136–148.

Park T, Casella G (2008). The Bayesian LASSO. J Am Stat Assoc 103: 681–686.
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APPENDIX

Pedigree model (P)
In this model, the vector of genetic values g¼ {gi} was assumed to
follow a multivariate normal density centered at zero and with a
(co)variance matrix proportional to the numerator relationship
matrix (A), computed from the pedigree, that is, g � N 0;As2

a

� �
.

Here, s2
a is the variance of additive effects on the base population and

the unknowns are g; s2
a; s

2
e

� �
. Independent scaled-inverse w2 densi-

ties, w� 2 s2
:

��df:; S:
� �

, were assigned to variance parameters. Therefore,
the joint posterior density of model unknowns is
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where H denotes the collection of hyperparameters, and df and S are
prior degree-of-freedom and scale parameters set to one and four,

respectively. Inferences were based on samples from the above
posterior density obtained using a Gibbs sampler.

Linear regression models
GBLUP. One of the first penalized regression methods used in
genomic selection was Ridge Regression (RR). This marker-based
model (RR-BLUP) is expressed as

y¼Xbþ e

where X is the genotype matrix for the bi-allelic markers

(coded as 0, 1 and 2) and e � Nð0; Is2
eÞ. The marker effects

are obtained by solving the optimization problem

b̂¼ arg minbf
Pn

i¼ 1 yi� x0ib
� �2þ ~l

Pp
j¼ 1 b

2
j g, where ~l � 0 is a reg-

ularization parameter. It can be shown that the solution to this

problem is given by b̂¼ ½lIþX0XÞ��1X0y. GEBV can be obtained

(1A)
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from model (1A) by setting g¼Xb such that the equation 1A can be
written as

y¼ gþ e ð2AÞ

Assuming that b � Nð0; s2
bIÞ, it can be shown that

g � Nð0;Ks2
gÞ, where K¼XX0. When G¼K/c¼XX0/c with

c¼
P

j 2pj 1� pj

� �
and pj being the minor allele frequency, then

s2
g ¼ s2

bc and is called GBLUP, and the G matrix is the genomic-

derived relationship matrix, with ĝ¼XX0[XX0 þ lI]�1y.

Linear mixed models with genotype � environment interaction. For
simplicity, we will use the same notation as in Burgueño et al. (2012).
The basic linear mixed model for the phenotypic response of g
individuals evaluated in J environments is

y¼XhþZgþ e ð3AÞ

with y¼ (y01,y,y0J)
0,g¼ (g01,y,g0J)

0, e¼ (e01,y,e0J)0, where yj¼ {yij}
(i¼ 1,2,y,g) is a column vector of g phenotypic records (or means)
collected in each of the jth environments (j¼ 1,y,J), Xj and Zj are
incidence matrices vectors of systematic effects, hj, and random
genetic effects gj, for each environment.

Pedigree and genomic linear mixed models. The vector of random
effects had a covariance structure Cov(g,g0)¼G0#A, Cov(e,e0)¼
R0#I and Cov(g,e0)¼ 0, where G0 is a J� J variance–covariance of
the genetic effect on environments, # is the Kronecker product,
A¼ {a(i,i0)} is a numerator relationship matrix, R0¼ {Cov(eij,ei0j)} is a
g� g covariance matrix (within-environments, across-genotypes) of
model residuals and I is an identity matrix of size J. This model can
easily be extended to accommodate heterogeneous residual variances.

The marginal density of the data is multivariate normal with mean
and variance–covariances as

yjh;R0;G0½ � � N Xh;Z G0 � Að ÞZ0 þR0 � I½ � ð4AÞ

In the previous models, A¼ {a(i,i0)} represents a matrix of additive
relationships derived from a pedigree (AP). Alternatively, this matrix
can be derived from molecular marker information, that is, AM¼G
(the genomic relationship matrix in GBLUP; see VanRaden (2008) for
more details).

Burgueño et al. (2012) outlined how pedigree and marker
information can be combined in a single model by extending (3A)
to a model with two random effects, one of which,
gPBN(0,G0P#AP), represents a regression on pedigree additive
relationships, and the other represents a regression on marker additive
relationships, gmBN(0,G0M#AM). Thus, (3A) and (4A) become

y¼XhþZðgPþ gMÞþ e ð5AÞ

and

yjh;G0P;G0MR;0

	 

� N Xh; Z G0P � APþG0M � AMð ÞZ0 þR0 � I½ �

ð6AÞ

Similar to Burgueño et al. (2007), pedigree-derived additive and
additive � additive relationship information can be combined into a
single model by extending (5A) to a model with two random effects,
one of which, gPBN(0,G0P#AP), is a regression on pedigree additive
relationships. The other represents a regression on pedigree epistasis
additive � additive relationships, gpp � N 0;G0PP � ÃP

� �
, where

ÃP¼AP#AP (where # is the element-wise multiplication operator, that
is, Hadamard product). Therefore (5A) and (6A) become

y¼XhþZðgPþ gPPÞþ e ð7AÞ

and

yjh;G0P;G0PPR0½ � � N Xh; Z G0P � APþG0PP � ÃP

� �
Z0 þR0 � I

	 

ð8AÞ

Habier et al. (2007) have shown that AM approaches AP; therefore
it is possible to assume that ÃM tends to ÃP. Thus, the genomic-
derived additive and additive � additive relationships can be
combined into a single model by extending (5A) to a model with
two random effects, one with gMBN(0,G0M#AM), representing a
regression on genomic additive relationships, and the other represent-
ing a regression on genomic epistasis additive � additive relation-
ships, gMM � N 0;G0MM � ÃM

� �
. Thus (7A) and (8A) become

y¼XhþZðgMþ gMMÞþ e ð9AÞ
and

yjh;G0M;G0MMR0½ � � N Xh; Z G0M � AMþG0MM � ÃM

� �
Z0 þR0 � I

	 

ð10AÞ

Modeling genotype � environment covariance structures using the
factor analytic model. The factor analytic (FA) model that defines
matrices for gP and gM in (5A) and (6A) is ðKPK

0

PþWPÞ �
AP¼ ½FAðkÞ�P � AP for pedigree and ðKMK

0

MþWMÞ �
AM¼ ½FAðkÞ�M � AM for markers where KP (or KM) is a matrix of
order J� k, with the kth column containing the environment loadings
for the kth latent factor, and W being a diagonal matrix
(s2

d1
; s2

d2
; :::;s2

dJ
) of the order J� J. When only one factor is

considered, k¼ 1, the model has one multiplicative term and is
denoted as FA(1); for k¼ 2, FA(2) has two multiplicative compo-
nents, and so on.

The factor analytic model that defines (gPþ gPP) in (7A) and (8A)
is ðKPK

0

PþWPÞ � APþðKPPK
0

PPþWPPÞ � ÃP¼ ½FAðkÞ�P � AP

þ ½FAðkÞ�PP � ÃP. Similarly, the factor analytic model that defines
(gMþ gMM) in (9A) and (10A) is ðKMK

0

MþWMÞ � AMþ
ðKMMK

0

MMþWMMÞ � ÃM¼ ½FAðkÞ�M � AMþ ½FAðkÞ�MM � ÃM.
In this model, only one of WM or WMM(WP or WPP) can be estimated
in order to make the parameter identifiable.

Bayesian LASSO (BL). Marker effects in (1A) are assumed indepen-
dent and identically distributed a priori. The BL assigns the same
double exponential distribution to all marker effects (conditionally on
a regularization parameter), that is pðbj j l; seÞ¼DEðbj j 0; l

s2
e
Þ,

where lX0 is a regularization parameter. Compared with the Normal
distribution, the DE assigns a bigger mass near 0, shrinking small
marker effects. The joint posterior density of models unknowns is
given by:

p b; s2
e ; l j y;X

� �
/
Yn

i¼ 1
N yi j

Xp

j¼ 1

xijbj; s
2
e

 !

�
Yp

j¼ 1
DE bj j 0;

l
s2

e

� �
pðs2

e Þpðl
2Þ:

It is usual to assign a prior distribution to the square of the
regularization parameter (l2); for example, it can be a beta or a
gamma distribution (de los Campos et al., 2009) but it also can be
estimated by using cross-validation (Park and Casella, 2008). It is
also usual to assign a scaled-inverse w2 distribution, w�2(dfe,Se) to s2

e .
The DE distribution does not conjugate with the normal distribution,
but it can be expressed as a mixture of scaled normal densities, which
allows us to represent the original problem as a hierarchical model
(Park and Casella, 2008) and then the posterior distributions can be
obtained using a Gibbs sampler.
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The BL is explained in detail in several articles, such as Park and
Casella (2008), de los Campos et al. (2009), Crossa et al. (2010; 2011),
Pérez et al. (2010) and Gonzalez-Camacho et al. (2012). Guidelines
for setting the hyperparameters for the prior distributions for the
regularization parameters and s2

e are given in Pérez et al. (2010) and
Gonzalez-Camacho et al. (2012).

Principal component regression––lower-dimension representation
of matrices K and G
De los Campos et al. (2010) showed that the symmetric matrix K and
the rectangular marker matrix X can be represented using spectral
decomposition and singular value decomposition, respectively. Based
on these eigen analyses, the authors show that the regression of the
phenotypes on the markers is equivalent to the regression of the
phenotypes on the principal components. Thus, a model that includes
all the markers implicitly considers there may be potential population
structures in the data.

A general prediction model can be represented as

y¼Kaþ e ð11AÞ

where y is the phenotypic response (centered), K is an incidence
matrix that could be the same as the realized relationship matrix (G),
or the same as XX0 or the same as matrix X; e � Nð0; Is2

e Þ, and
aBN(0,K� 1s2

g ). This last assumption helps obtain results related to
the spectral decomposition and singular value decomposition of K
and X (de los Campos et al., 2010). However, a, as previously defined,
does not strictly denote the effects of the markers.

Defining g¼Ka, de los Campos et al. (2010) showed that

ĝ¼Kâ¼KðKþ lIÞ� 1y

Note that this is similar to equation. 2 of vanRaden (2008), that is,
ĝ¼ â (â denotes the GEBV according to vanRaden (2008) and, in
this case, K¼G. According to de los Campos et al. (2010),
â¼ðKþ lIÞ� 1y.

Spectral decomposition. Following the previous line of reasoning,
and as g¼Ka, then equation. 11A can be written as y¼ gþ e. Owing
to the fact that K¼G is a symmetric matrix, it can be expressed as

K¼DCD0, where D contains the eigenvectors of K(DD0 ¼ I), and
W¼ {Cj} is a diagonal matrix with the eigenvalues of K(with j¼ 1,2,
y,g). Then model y¼ gþ e can be reformulated as

y¼Ddþ e

where d¼WD0aBN(0,Ws2
g) and VarðDdÞ¼Ks2

g . Evidently, as
dBN(0,Ws2

g ), then DdBN(0,Ks2
g ).

Singular value decomposition. Note that y¼Kaþ e, y¼ gþ e
and y¼Ddþ e are not generally used in GS. Usually, in GS
the model expressing the regression of phenotype on markers is
defined in equation 1A, where X was already defined and
bBN(0,Is2

b) is the vector with the marker effects. Then, the singular
value decomposition of X is X¼UDV0, where U and V denote the
left and right eigenvectors of matrix X, and D¼fx2

j g is the
diagonal matrix with the singular values of matrix X. Defining d¼
DV0b, it can be shown that (1A) can be written as in de los Campos
et al. (2010):

y¼Udþ e

where d¼DV0bBN(0,Ds2
g). This indicates that regressing pheno-

types on all markers is equivalent to regressing phenotypes on all
principal components. This reparameterization of the original model
based on eigenvalue decomposition accounts for possible unrevealed
population structures existing in the training set.

Nonlinear models
Single hidden layer feed-forward neural network (NN). We follow the
symbols and sequence outlined by Pérez et al. (2012) with the
structure of the NN depicted in Figure A1 (originally presented by
Gonzalez-Camacho et al. (2012), and later adapted by Perez et al.
(2012)) This NN can be thought of as a two-step regression (for
example, Hastie et al., 2009). In the first step, in the hidden layer,
input variables xi¼ (xi1,...,xip) (j¼ 1,y,p markers) are combined for
each neuron (k¼ 1,y,S neurons), using a linear function,

u
½k�
i ¼ bkþ

Pp
j¼ 1 xij b

½k�
j , and subsequently transformed using a non-

linear activation function, yielding a set of inferred scores,

z
½k�
i ¼ gkðu½k�i Þ, where gk(.) is the activation function that maps the

inputs into the real line in the closed interval [�1,1]. One computes

z
½k�
i ¼ gkðbkþ

Pp
j¼ 1 xij b

½k�
j Þ, where bk is an intercept, and (b1

[1],y,

bp
[1];y; b1

[S],y, bp
[S])’ is a vector of regression coefficients

or ‘weights’ of each neuron k in the hidden layer. In the
second step, these scores are used in the output layer as
basis functions to regress the response using the linear activation
function on the data-derived predictors, such that

yi¼
PS

k¼ 1 wkz
½k�
i þ ei¼

PS
k¼ 1 wkgkðbkþ

Pp
j¼ 1 xijb

½k�
j Þþ ei:

Radial Basis Function Neural Network (RBFNN). The architecture of
a single hidden layer RBFNN with S nonlinear neurons is similar to
that of the single hidden layer feed-forward neural network. The only
difference is that each nonlinear neuron in the hidden layer has a
Gaussian RBF defined as z

½k�
i ¼ exp½ � hk xi� ckk k2�, where xi� ckk k

is the Euclidean norm between the input vector, xi, and the
center vector, ck, and hk is the bandwidth of the Gaussian RBF.
Then, in the linear output layer, phenotypes are regressed on the
data-derived features, fz½k�i g; thus the response phenotype is
yi¼

PS
k¼ 1 wkz

½k�
i þ ei, where ei is a model residual.

Reproducing Kernel Hilbert Spaces (RKHS) Regression. RKHS
models have been suggested as an alternative to multiple linear
regressions for capturing complex interaction patterns that may be

Figure A1 Structure of a single-layer feed-forward neural network (from

Pérez et al., 2012; originally presented by Gonzalez-Camacho et al.,

2012).
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difficult to account for in a linear model framework (Gianola et al.,
2006). In a RKHS model, the regression function takes the following
form:

g xið Þ¼
Xn

i0 ¼ 1

ai0K xi; xi0ð Þ

where xi¼ (xi1,yxip)0 and xi0 ¼ (xi01,yxi0p)0 are input vectors of
marker genotypes in individuals i and i’, ai are regression coefficients,

and K xi; xi0ð Þ ¼ exp � h xi� xi0k k2� �
is the reproducing kernel

defined (here) with a Gaussian basis function, where h is a bandwidth
parameter and xi� xi0k k is the Euclidean norm between pairs of
input vectors. The strategy termed ‘kernel averaging’ for selecting
optimal values of h within a set of candidate values was implemented
using the Bayesian approach described in de los Campos et al. (2010).
Similarities and connections between the RKHS and the RBFNN are
given in Gonzalez-Camacho et al. (2012).
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