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ABSTRACT: Acriflavine (ACF) has been known for years as an
antibacterial drug. The identification of key oncogenic mechanisms has
brought, in recent years, a significant increase in studies on ACF as a
multipurpose drug that would improve the prognosis for cancer
patients. ACF interferes with the expression of the hypoxia inducible
factor, thus acting on metastatic niches of tumors and significantly
enhancing the effects of other anticancer therapies. It has been
recognized as the most potent HIF-1 inhibitor out of the 336 drugs
approved by the FDA. This work presents up-to-date knowledge about
the mechanisms of action of ACF and its related prodrug systems in the
context of anticancer and SARS-CoV-2 inhibitory properties. It explains
the multitask nature of this drug and suggests mechanisms of ACF’s
action on the coronavirus. Other recent reports on ACF-based systems
as potential antibacterial and antiviral drugs are also described.

■ INTRODUCTION
Acriflavine (ACF) is an acridine dye, first synthesized in 1912
by German scientist Paul Ehrlich and recognized as one of the
first used antibacterial drugs, which was later replaced upon the
discovery of penicillin. It was used extensively during World
War I as an antiseptic and for treatment of coma. In addition, it
has been also approved by the U.S. Food and Drug
Administration (FDA) as a safe drug for the topical treatment
of wounds.1 ACF is a mixture of 3,6-diamino-10-methyl-
acridine chloride (trypaflavine) and 3,6-diaminoacridine
(proflavine) (Figure 1).2 Its biological activity is attributed

to the fact that it effectively intercalates with deoxyribonucleic
acid (DNA).3−6 As a result, it has the ability to interfere with
many cellular functions. ACF is a multidirectional drug, as it
acts as an inhibitor of protein kinases, topoisomerases I and II,
and hypoxia-induced factor 1α (HIF-1α) and reduces the
expression of oncogenic STAT5 signaling.1 ACF is a potent

epithelial-to-mesenchymal transition (EMT) inhibitor that
lowers metabolic pathways, especially the mitochondrial
oxidative phosphorylation system (OXPHOS) and MYC/cell
proliferation,7,8 blocks eukaryotic initiation factor 2α (eIF2α)
phosphorylation, and reduces activating transcription factor 4
(ATF4) translation by inhibiting the PERK/eIF2α/ATF4 UPR
pathway9 and AKT and RSK2 phosphorylation.10 ACF also
leads to upregulation of genes, especially long non-coding
ribonucleic acids (lncRNAs).11

Recently its antimalarial,12 antibacterial,13 antiviral (HIV),14

antituberculosis,15 fungicidal,16 and anticancer activities have
been recognized.17 Currently, ACF has been suggested as a
potential drug for SARS-CoV-2, showing activity against the
PLpro enzymes involved in the reproduction of the
coronavirus.18

Its anticancer effects deserve particular attention. It was first
described over 60 years ago,19 but the breakthrough came only
in 2009 with the research published by the research group of
Gregg L. Semenza.17 Several mechanisms of ACF antitumor
activity have been proposed, related to inhibition of top-
oisomerases I and II and HIF-1α. HIF-1α factor determines
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Figure 1. Chemical structure of acriflavine (ACF).
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the aggressiveness of the tumor; therefore, its destruction may
have a significant antitumor effect. ACF is also involved in
inactivating this factor, which is an important action in therapy
against the SARS-CoV-2 coronavirus. ACF sensitizes drug-
resistant cancer cells; therefore, its effectiveness has been
proven in combination therapy with other drugs to which the
body has already developed resistance. It was indicated that
ACF constitutes the most potent HIF-1 inhibitor out of the
336 FDA-approved drugs.17 Currently, ACF has been shown
to be effective against a broad spectrum of cancers
(osteosarcoma, breast, brain, lung, liver, colon, ovarian, and
pancreatic cancers, and leukemia). The pharmaceutically
significant factor is that ACF shows no side effects even
when used extensively for several months.20

In addition to its anticarcinogenic role, ACF is being applied
in other fields, e.g., for the development of a DNA sensor,21 a
semiconductor biosensor for the detection of Sudan I−IV azo
dyes,22 and a biosensor for detection of staphylococcal
enterotoxin B (SEB),23 for treatment of seawater,24 as well
as in optoelectronics and solar cells,25,26 as a contrast agent for
imaging the upper- and lower-GI mucosa,27 and for
determining drug concentrations (e.g., ketoprofen, diclofenac
sodium, olsalazine).28,29

This Perspective concentrates on the current knowledge on
the anticancer properties of ACF as well as its effectiveness
against SARS-CoV-2.

1. FORMATION OF CANCER
Cancer is a multistage process involving the uncontrolled
growth of cells and inactivation of apoptotic mechanisms as a
result of the integration of a tumor microenvironment
composed of immune, stromal, and vascular cells. This process
begins in a single mutant cell and is usually associated with the
activation of oncogenes and the inactivation of suppressor
genes.30−32 Normal tissue homeostasis is disrupted as a result
of factors such as cytokines, and tumor growth factors are
secreted. Tumor progression is related to the tumor stroma, an
important component of which are innate immune cells
(macrophages, dendritic cells, neutrophils, NK cells, innate
lymphoid cells, myeloid suppressor cells) and acquired
immunity cells (T and B lymphocytes). Cytokines in the
tumor microenvironment influence immune functions, sup-
pressing immune responses.33

1.1. Angiogenesis. Neoplastic cell proliferation may
become limited as it requires the supply of oxygen and
nutrients and removal of waste products. Therefore, angiogenic
processes are activated in order to create blood vessels in the
tumor microenvironment from the host’s capillaries. The
process of angiogenesis begins after neovascularization, i.e.,
destabilization of the membrane that protects the endothelial
cells. Then, these cells are activated by angiogenic factors,
thanks to which they gain migratory, proliferative, and
stabilizing abilities to create new immature blood vessels.34,35

Angiogenesis is regulated by numerous signaling pathways
(including VEGF, HIF, PDGF, SDF-1, CXCR4, and MMP9)
and by the balance between activators and inhibitors (Table
1).36

1.2. Hypoxia. Oncological treatment of a tumor involves
not only impeding the development of the blood vessel
network but also destroying cancer cells that survive
malnutrition, hypoxia (lack of oxygen),37 and immune cell
attacks. Cancer cells are equipped with appropriate mecha-
nisms to avoid antitumor immune responses and can develop

mechanisms of adaptation to hypoxia, as a result of which the
hypoxia-inducible factor (HIF-1) is activated. HIF-1 is a
transcription factor composed of α (HIF-1α, HIF-2α, and
HIF-3α) and β subunits.38 Under hypoxic conditions, HIF-1α
is stable and interacts with HIF-1β, resulting in the formation
of a heterodimer that induces the transcription of many genes,
regulates the expression of factors involved in tumor
metabolism and vascularization, and activates the expression
of the factor promoting angiogenesis (VEGF), as well as
glucose transporters (e.g., GLUT-1) and glycolytic enzymes
(e.g., hexokinase) that are required for high levels of glucose
absorption and metabolism.39,17 In addition, HIF-1 is involved
in the maintenance of cancer stem cells (CSCs) that are self-
renewing, chemically resistant, and involved in metastasis and
promoting EMT.40

HIF-1 plays the key role in activating more than 100 genes
that regulate glucose metabolism (Warburg effect), cell
proliferation, migration, and angiogenesis. It promotes meta-
stasis through the transcriptional activation of oncogenic
growth factors (TGF-β, EGF). Activation of the major hypoxic
factors (HIF-1) supports the creation of a cancer-promoting
microenvironment. Hypoxia mainly affects solid tumors;
however, pancreatic cancer differs from most solid tumors in
its high stromal content, and therefore it is characterized by a
particular hypoxia and is able to survive in a changed
microenvironment thanks to the mechanisms of interaction
between pancreatic cancer cells and stromal cells and the
activation of many signaling pathways, such as AKT, STAT3,
and ERK.41

Table 1. Endogenous Regulators of Angiogenesis

activators inhibitors

VEGF − vascular endothelial growth factor
family

IL-10 − interleukin-10

aFGF, bFGF − acidic and basic fibroblast
growth factors

IL-12 − interleukin-12

TGF-β − transforming growth factor β TIMP − tissue inhibitor
metalloprotease

TNF-α − tumor necrosis factor α PAI-1 − prasminogen
activator-inhibitor-1

PDGF − plated-delivered endothelial growth
factor

zinc

HGF − hepatocyte growth factor Ang2 − angiopoietin-2
placental growth factor angiotensin
GM-CSF − granulocyte-macrophage colony-
stimulating factor

AT2 − angiotensin-2

angiogenin CAV-1, CAV-2 − caveolin-
and -2

IL-1 − interleukin-1 endostatin
IL-6 − interleukin-6 INF-α − interferon-α
IL-8 − interleukin-8 platerat factor 4
cathepsin
MMP9 − matrix metallopeptidase 9
copper
CD51/CD61 antibodies − alpha 5 beta 3
integrin angiopoitin-1

AT1 − angiotensin-1
endothelin
erythropoietin
HIF-1α − hypoxia-inducing factor
NO − nitric oxide
plated-activating factor
PGE − prostaglandin E
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Severe hypoxia, oxidative stress, and endoplasmic reticulum
stress engage additional signaling pathways such as unfolded
protein response (UPR) that leads to inhibition of eIF2α
through phosphorylation and activation of EMT-associated
ATF4 and drug resistance.9,42

Hypoxia also leads to the induction of reactive oxygen
species (ROS) which is involved in the activation of
poly[ADP-ribose]polymerase 1 (PARP-1), which stabilizes
and activates HIF-1α.43 HIF-1α up-regulates PDK1 and
increases glucose uptake by GLUT1 transporters.44 HIF-1α
can specifically induce increased expression of lysyl oxidase
(LOX) and glycolytic enzymes. HIF-2α, on the other hand, is
involved, inter alia, in the TGF-α, Oct-3/4, and Sox-2
pathways.45 HIF-1α can also be activated under non-hypoxic
conditions. It is possible through activation of the PI3K/AKT/
mTOR pathway in which eIF-2α participates.10,46

1.3. Epithelial-to-Mesenchymal Transition (EMT).
Formation of new tumor blood vessels and the mutual
regulation of neoplastic and stromal cells enable the promotion
of metastasis. The metastasis process is related to the activation
of EMT, which gives cancer cells the ability to migrate and
further invade.47,48 In this process, changes in cell morphology
and physiology occur: cells lose their epithelial features,
polarization, and E-cadherin-dependent intercellular junctions
(dependent on the expression of vascular endothelial growth
factor (VEGF) and epidermal growth factor receptor
(EGFR)).49,50 As a consequence, cells acquire a mesenchymal
phenotype. As a result, these cells acquire migration properties
that allows them to move to other places in the body. These
cells then go through the opposite process, called the
mesenchymal-to-epithelial transition (MET), settle down,
and form metastases (Figure 2).51−53 Multiple signals from
the tumor microenvironment can initiate EMT, including
TGF-β, HIF-1α, epidermal growth factor (EGF), WNT, and
Notch.52 The course of EMT is also influenced by other
cytokines, including hepatocyte growth factor (HGF) and
fibroblast growth factor (FGF).52 Studies have shown that
EMT is associated primarily with the activation of the
transforming growth factor beta (TGF-β)/Smad pathway,
causing upregulation of EMT-promoting transcription factors
(Snail, Twist, Slug, and ZEB); epithelial gene expression is
suppressed in favor of activation of mesenchymal gene
expression.54,55 Such activities favor the formation of
metastases related to the mechanisms of cytoskeleton
reorganization, basement membrane degradation (through

activation of matrix metalloproteinases (MMPs)), and
avoiding apoptosis.56,57 Recent studies have shown that not
all cancer cells undergo the full EMT process or gradually
acquire mesenchymal features. This applies to such cancers as
breast, kidney, colon, lung, and pancreatic, among others.58,59

There are also cancer stem cells (CSCs) in the EMT cell
population that exhibit cellular characteristics similar to those
of EMT cells. It has been reported that there is an association
between EMT and CSCs promoting drug resistance and tumor
malignancy.47,60,61

2. PHYSICAL AND BIOLOGICAL PROPERTIES OF
ACRIFLAVINE

ACF is a mixture of trypaflavine (C14H14ClN3, molar mass =
259.74 g·mol−1) and proflavine (C13H11N3, molar mass =
209.25 g·mol−1), which mutually stabilize each other.1,12 The
water solubility of ACF makes it potentially injectable. ACF is
a planar molecule containing three aromatic rings with a
polycyclic arrangement.13 The planar layout and the positive
charge allow ACF to intercalate between nucleotide base pairs
in the DNA helix.62−66 Proflavine, as a component of ACF, has
a recognized role in the intercalation of DNA, and its activity is
based on the mechanism of release of ROS, which was
described by N. Imrana’s team. Proflavine changes the
structure of the DNA strand and binds to topoisomerases I
and II, loosening or splitting the double-stranded DNA and
intercalating between adjacent layers of nucleotide pairs.11,67

This leads to a series of mutations in the genetic material or
apoptosis. Proflavine has been found to bind better to
alternating purine−pyrimidine DNA sequences than
ACF.63,64 Other studies highlight the toxicity of ACF after
exposure to light at 448 nm, also related to the induction of
DNA damage.68 In addition, adding ACF to the treatment of
infections of the urinary tract with methanamine and
methylene blue resulted in an increase in the number of side
effects.69 There are also reports of the effectiveness of ACF
(e.g., against HIV1) with little to no toxicity.14,70

ACF is an effective inhibitor of HIF-1α aimed primarily at
the treatment of solid tumors.39 ACF interferes with HIF-1α
(or HIF-2α) dimerization with HIF-1β, inhibiting the
transcriptional activity of HIF-1.17,39 ACF also sensitizes
drug-resistant cancer cells by inhibiting EMT. It has has also
been shown to be effective in, e.g., treating chronic myeloid
leukemia (CML) and acute myeloid leukemia (AML).71 It
exhibits anti-neoplastic activity against a broad spectrum of

Figure 2. Morphological and physiological changes associated with the epithelial-to-mesenchymal transition (EMT). Reprinted with permission
from ref 60. Copyright 2017 Springer Nature.
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cancers, including colorectal,38,72 periapharyngeal bile duct,73

breast,74 pancreatic,7 liver,75 cervical,76 and brain cancers39 and
melanoma.10

The use of many anticancer drugs can increase HIF-1α levels
as a result of increased levels of ROS in cancer cells. HIF-1
inhibition by ACF can increase the effectiveness of these drugs
by preventing chemoresistance. In addition, ACF may facilitate
the penetration of chemotherapeutic agents because it binds to
the cell surface membrane and leads to the inhibition of
protein kinase C.72

ACF is more effective than other inhibitors of factors
involved in tumor cell proliferation (e.g., VEGF, GLUT-1, PD-
L1) because a greater antitumor effect can be achieved by
direct inhibition of HIF-1 rather than by inhibiting, e.g.,
VEGF.17 When targeting VEGF, HIF-1α will further dimerize
with HIF-1β to form HIF-1 and re-initiate downstream gene
transcription.
Recent studies (RNA sequencing, Figure 3) show that

treating endothelial cells with ACF leads to a strong change in
the expression of hundreds of genes, regardless of normoxia or

hypoxia, and that it elicits a unique expression response of long
non-coding RNAs (lncRNAs). These studies also suggest that
the mechanism of action of ACF on endothelial cells may not
be related to HIF inhibition, as only about 10% of ACF-
responsive genes have been shown to be HIF-dependent. ACF
promotes topoisomerase inhibition independently of HIF-1.
This effect is different from the effect on cancer cells that are
more sensitive to ACF. But ACF has been suggested as a link
between lncRNA expression and cancer therapy.11

Other RNA sequencing data are also available that provide
information on EMT regulation and metabolic pathways
following ACF use.7,8 This study shows that ACF down-
regulates metabolic pathaways, especially OXPHOS and
MYC/cell proliferation pathways in pancreatic cancer xeno-
grafts.

3. ANTICANCER PROPERTIES OF ACRIFLAVINE
ACF was found to be more effective against HCC liver cancer
than the currently used sorafenib (see Table 3, below).75,77 In
vitro studies have shown that the IC50 of ACF (1 μM) is almost

Figure 3. Acriflavine (ACF) strongly changes gene expression. (A, B) Heatmaps of RNA-seq after treatment of HUVECs with ACF. (C) Volcano
plot of RNA-seq after treatment of HUVECs with ACF. (D) Chromosomal distribution and percentage of protein-coding genes up- or
downregulated with ACF. (E) Correlation analysis of protein-coding genes up- or downregulated with ACF of HUVECs and murine lung
endothelial cells. (F) Venn diagram. (G) Number of protein-coding genes up- or downregulated with ACF. (H) GO enrichment analysis with
KOBAS2.0. (I) deeptools2: overlaying the RNA-seq reads with the transcription start sites of all genes. Reprinted with permission from ref 11.
Copyright 2022 The Authors. Published Open Access by Elsevier under a Creative Commons CC BY license.
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10 times lower than the IC50 of sorafenib (13.4 μM). In an
animal model, ACF treatment has been shown to reduce tumor
size in nude mice.75

ACF enhances the antitumor activity of sunitinib in a breast
cancer model78 and of 5-fluorouracil used in the treatment of
colorectal cancer much better than irinotecan.79 It acts on
HIF-1 by reducing the expression of LOX and LOXL proteins
(responsible for metastases), destroying the metastatic niches
of breast cancer.80 It was also proven that the synergistic effect
of ACF and ABT-263 drugs strongly exerted triple negative
breast cancer (TNBC) apoptosis. The action of these drugs
compensated for each other by inhibition of BCL-2, BCL-XL,
and BCL-1 due to the action of ABT-263 and by inhibition of
MCL-1 independently of the HIF-1 pathway with ACF.81

It was shown that ACF loaded into poly(lactic-co-glycolic
acid) (PLGA) microparticles resulted in an in vitro release of
the drug for up to 60 days, which may be of importance in the
treatment of choroidal neovascularization (NV).82 The cause
of this disease is, among others, hypoxia resulting from the
action of HIF-1 and HIF-2. Unlike PLGA-ACF microparticles,
free ACF is potent but short-lived because, as a small molecule,
it is quickly cleared from the eye. In vivo studies showed that
intravitreal injection of the PLGA-ACF MPs complex with
ACF in mice inhibited choroidal NV for at least 9 weeks.
Moreover, supravascular injection of these microparticles in
rats inhibited choroidal NV for at least 18 weeks.
The necessity of encapsulating ACF was also highlighted by

comparison of the action of free ACF with that of ACF loaded
in lipid nanocapsules (LNCs).83 The higher antitumor efficacy
of ACF-loaded nanoparticles in an orthotopic mouse model of
breast cancer (4T1 cells) was confirmed as a result of HIF-1
inhibition. This led to a reduction in the number of drug
administrations from 12 to 2. It was also shown that paclitaxel
(PTX) was more effective against cancer-associated fibroblasts
(CAFs) when encapsulated in LNCs.84 The recent studies by

Morteza Eskandani’s research group also suggested the need to
incorporate ACF into solid lipid nanoparticles (SLNs).85 ACF-
SLN cytotoxicity studies against A549 human epithelial
carcinoma cells showed that ACF-SLN was more effective
than free ACF. It turned out that the use of ACF in
photodynamic therapy (PDT) with liposomal zinc phthalo-
cyanine enhanced the therapeutic effect (Figure 4).86 PDT is a
minimally invasive method of treating various solid neoplasms,
leading to accumulation of a photosensitive drug (photo-
sensitizer) in the tumor that, on irradiation, is activated,
generating ROS. It causes a state of stress hyperoxidation and,
as a consequence, leads to the death of neoplastic cells. PDT
leads to tumor hypoxia, but it may be ineffective for tumors
that have developed a hypoxic survival system associated with
the activation of HIF-1 and the promotion of the transcription
of genes encoding P-glycoprotein.87 Consequently, the tumor
is resistant to PDT. This is often the case of bile duct cancer of
the nasopharynx and epidermal cancer. Therefore, the
introduction of ACF as a HIF-1 inhibitory drug leads to
better results of PDT and death of human epidermal
carcinoma (A431) cells86 and perihilar cholangiocarcinoma
(SK-ChA-1).73

The created multitask nanoplatform based on ACF,
porphyrins, and manganese dioxide (ACF@PCN‑222@
MnO2-PEG) effectively reduced the expression of HIF-1α,
and then GLUT-1 and VEGF, which gave anticancer effects
both in vitro and in vivo. The action of this system is related to
the joint operation of both the PCN-222 nanoparticles,
reducing the self-quenching of porphyrins and increasing the
ability to produce singlet oxygen, and ACF. The latter can be
released in a controlled manner, depending on the H2O2
overexpression in the tumor, as the MnO2 layer on the surface
of the carrier decomposes into Mn2+ and O2, releasing the
drug.76 Additionally, the oxygen released during the decom-

Figure 4. Diagram of ACF action in photodynamic therapy. Reprinted with permission from ref 86. Copyright 2016 Springer Nature.

Journal of Medicinal Chemistry pubs.acs.org/jmc Perspective

https://doi.org/10.1021/acs.jmedchem.2c00573
J. Med. Chem. 2022, 65, 11415−11432

11419

https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c00573?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c00573?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c00573?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c00573?fig=fig4&ref=pdf
pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.2c00573?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


position of MnO2 may promote the effect of PDT against
hypoxia (Figure 5).

Another example presenting evidence for ACF activity in
PDT was provided by the release system involving zinc(II)
phthalocyanine (ZnPc), ACF, and Fe3+. Fe3+ catalyzes the
conversion of H2O2 → O2, promoting the synergistic activity
of ZnPc and ACF in in vitro tests against HT29 cells and in
vivo.88

It is also possible to enhance the effect of radiotherapy in
cancer treatment by using ACF. In radiotherapy one
encounters problems due to resistance induced by hypoxia.89

To counteract this, several methods have been developed,
including the method of oxygen supply. Unfortunately, this
method is not fully effective, as it does not induce complete
degradation of HIF-1α due to the rapid consumption of
oxygen by proliferating cancer cells.90,91 Even small amounts of
HIF-1α will dimerize with HIF-1β to form HIF-1. Therefore,
the use of ACF may be of key importance to enhance the effect
of radiotherapy. A nanoplatform was synthesized consisting of
MnO2 and ACF, which enhanced the effect of radiotherapy
and significantly reduced metastatic lesions in lung and liver
tissues (Figure 6).92

The importance of using ACF in radiotherapy was further
confirmed by studies exploiting the new type of yolk−shell

Cu2−xSe@PtSe (CSP) nanosensitizer functionalized with
ACF.74 Electrostatic drug−vehicle interactions were shown
to be involved in tumor cell cycle arrest, making cancer cells
more susceptible to X-rays.
ACF can be helpful not only in radiotherapy but also in

chemotherapy. As in PDT, cytostatics therapy increases the
level of ROS in tumors, HIF-1α stabilizes, and the level of
proteins associated with resistance (glycoproteins, GLUT-1,
MMP-9) increases, which in turn leads to drug resistance. An
example of therapeutic resistance is evident in the use of
DOXIL (FDA approved in 1995) for treatment of cancer,
which was found to be an improvement over the use of free
doxorubicin (DOX), which caused cardiotoxicity.93 The
formation of ROS and consequently the development of
drug resistance after the use of DOXIL are associated with the
formation of semiquinone in the DOX ring system.94 To
counteract this, the use of ACF in liposomal DOX chemo-
therapy has been described, and formation of a DOX-ACF@
Lipo complex turned out to be effective in the treatment of
colorectal cancer.95 ACF has been encapsulated in the
hydrophilic core of the lipid bilayer together with DOX.
Microporous silica-coated cisplatin nanoparticles with

absorbed ACF were found to inhibit HIF-1, which led to
increased antitumor efficacy against A549 lung cancer cells
both in vitro and in vivo.96,97

Apart from hypoxia, also in normoxia, ACF exhibited high
antitumor activity. Under normoxic conditions, HIF-1α levels
are low and proteasomal degradation of HIF-1α occurs, but
there are other stimuli capable of expressing HIF-1 in tumors
under these conditions. These are, for example, cytokines or
TLR proteins that induce tumor progression. Therefore, it is
important to use ACF in order to inhibit not only TLR3
signaling but also HIF-1, leading to increased effectiveness in
breast cancer treatment.98 Melanoma can also activate hypoxia
response pathways even under normoxic conditions, indicating
the participation of HIF-1α enabling survival under oxidative
stress.99 The influence of ACF on the metabolism and
progression of melanoma under normoxic conditions was
described (Figure 7).10 It was proven that inhibition of HIF-1α
with ACF in melanoma can be an effective cure against this
tumor, regardless of the tumor’s hypoxic state. The
proliferation of melanoma cells under conditions of reduced
glucose concentration causes activation of a rescue path, i.e., an
increase in the expression of the transcription factor ATF4,
which is involved in cancer progression and resistance to
therapy.
ACF inhibits the phosphorylation of RSK2 in the PDPK1/

RSK2 pathway, which destabilizes ATF4. As a result, it
weakens the effect of ATF4, leading to degradation of
proteasomes (Figure 7B). Glucose restriction also activates
the AKT pathway in melanoma cells, which contributes to the
activation of HIF-1α. The action of ACF inhibits AKT
phosphorylation, possibly due to excessive ROS production
(resulting from inhibition of PDK1 transcription) and blockage
of the PI3K/PDPK1 pathway. This consequently leads to the
death of melanoma cells (Figure 7A).10

Other studies also suggest the role of ACF in inhibiting the
translation of ATF4, which is the major transcription factor in
the UPR (limits cell damage during stress and is induced by
hypoxia). This is made possible by blocking elF2α phosphor-
ylation by inhibiting the PERK/eIF2α/ATF4 UPR pathway.
As a result, ACF resensitizes the tumor to anticancer therapy.9

Figure 5. Scheme of the synthesis of the ACF@PCN‑222@MnO2-
PEG nanoplatform and its anticancer activity in photodynamic
therapy. Reprinted with permission from ref 76. Copyright 2021
Elsevier.

Figure 6. Use of the ACF@MnO2 nanoplatform to enhance
radiotherapy. Reprinted with permission from ref 92. Copyright
2018 ACS.
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It has been demonstrated that ACF induces autophagy in
the absence of stress related to hypoxia via HIF-1α-dependent
as well as HIF-1α-independent pathways, using the MG-63
human osteosarcoma cell lines as an in vitro model. It was
shown that ACF administered at a dose above 5 μM inhibited
cells’ growth and promoted apoptosis of MG-63 cells through
the cleavage of PARP-1 (proteins involved in DNA repair) and
activation of caspases, responsible for cell destruction during
apoprosis, depending on the dose of the drug. It causes the
rupture of the mitochondrial membrane, initiating mitochon-
drial apoptosis. ACF also upregulates Beclin1, Atg5, and LC3-
II that have been suggested to inhibit topoisomerases I and II
involved in HIF-1α translation.100 Similarly, in relation to liver
cancer and A549 lung adenocarcinoma,75 ACF acts through
the caspase-3 activation pathway and cleaves PARP-1.
Despite ample evidence of the effectiveness of ACF, an

adequate therapy with this drug is still being sought, e.g.,
toward pancreatic ductal adenocarcinoma (PDAC). PDAC is
characterized by a high degree of hypoxia and a system that
protects against drug invasion. Recently a cell culture model
was suggested to assess ACF toxicity. It was demonstrated that,
in the moderately differentiated PDAC model, ACF inhibited
tumor growth; however, unfortunately, it was not observed in
the rapidly growing model with high EMT. Moreover, a new
metabolic activity of ACF related to the reduction of
OXPHOS pathways was detected.7

In the case of a brain tumor, there is also a clear association
between hypoxia-induced gene overexpression, increased
tumor cell invasion, and chemical resistance associated with
resistance to apoptosis.101 Therefore, also in this case,
molecular therapy targeting HIF-1α can be an effective
therapeutic option.102,103 This is further evidence that HIF-1
plays a significant role in determining the size of brain tumor
invasion and, as well, its relapse. Moreover, HIF-1α promotes
stabilization of glioblastoma stem cells (GSCs) (Figure 8).39

Thus, inhibition of hypoxia is crucial in anti-GSC therapy,

especially in the combination therapy with digoxin and
ACF.104 Considering the poor permeability of the blood−
brain barrier for hydrophilic agents, attention was also drawn
to the coupling of ACF with the biodegradable polymer
poly(1,3-bis[p-carboxyphenoxy]propane-co-sebacic acid) (p-
[CPP:SA, 20:80]). In this combination, ACF proved to be
effective, being released for over 100 days and achieving almost
100% success in in vivo studies in rats with 9L gliosarcoma.39

The targeting of tumor stem cells related to the HIF-1
pathway has been noted by Giulia Cheloni et al.105 Since CML
is caused by hematopoietic stem cells (HSCs) and increased
expression of the BCR/Abl tyrosine kinase,1 the studies were
devoted to a search for effective inhibitors of this kinase and
for drugs targeting leukemia stem cells (LSCs), responsible for
relapse. In vitro tests have shown that greater anti-leukemic
efficacy can be achieved by targeting HIF-1α than by blocking
the expression of tyrosine kinase. The use of ACF as the main
inhibitor of HIF-1 in a mouse CML model resulted in the
inhibition of tumor and stem cell growth.105

Figure 7. Mechanism of ACF’s action on melanoma under normoxic conditions. (A) ACF inhibits AKT phosphorylation. (B) ACF inhibits the
phosphorylation of ATF4, mediated by RSK2. Reprinted with permission from ref 10. Published 2020 Open Access by MDPI.

Figure 8. Pathways involved in HIF-1α-mediated glioma tumor
formation. Reprinted with permission from ref 39. Copyright 2017
The Authors. Published Open Access by Springer Nature under a
Creative Commons CC BY license.
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Research on the treatment of leukemia also revealed that
HIF-1 is activated not only by hypoxia but also by the
regulation of STAT3 and STAT5 (signal transducer and
activator of transcription 3 and 5).106,107 Since ACF targets
both STAT5 and HIF-1 simultaneously, leading to apoptosis of
cancer cells, it could create a novel therapeutic approach
against leukemia relapse.71

Inflammation of the colon caused by hypoxia and the
infiltration of macrophages involved in promoting oncogenesis
markedly increase the progression of colon cancer (CAC).
Relevant studies confirmed the activity of ACF against this
type of tumor in immunocompetent mice. Using the tumor
allograft model, it was confirmed that ACF treatment inhibited
tumor growth through HIF-dependent mechanisms.38

ACF was tested against colorectal cancer (CRC) and ovarian
cancer (OC) cells, and results were compared with those
obtained with standard drugs such as 5-FU, irinotecan, and
oxaliplatin in tumor samples from patients.72 Table 2 shows

that ACF was more active against CRC, OC, and chronic
lymphocytic leukemia (CLL), compared to other drugs. Unlike
ACF, these drugs are also cytotoxic to normal mononuclear
cells. It was found that ACF showed also low cross-resistance.
It turns out that the intravenous (i.v.) route of ACF

administration is not the only solution in anticancer therapy.
The intramuscular route may be a better method of ACF
administration in the form of a mixture with guanosine (molar
ratio 1:1) (Figure 9), which enhances the anticancer effect of

some drugs.108 The suggested effectiveness of the combined
use of ACF together with guanosine was presented already in
1996.109 The hypothesis that the combined treatment of ACF
with guanosine may enhance the antitumor effect was
confirmed. ACF interacts with the plasma membrane and
modifies the permeability, while guanosine interferes with the
production of ATP in the tumor. Research on the ACF-
guanosine system was further continued on animal models
with subcutaneous Ehrlich carcinoma and intraperitoneal (i.p.)
implantation of an Ehrlich ascitic tumor.109

ACF may revolutionize the approach not only in the field of
radiotherapy or chemotherapy but also in cancer immuno-
therapy.110 The therapeutic benefits of ACF in combination
therapy with TRP-2 and anti-PD-1 antibodies have been
reported in the treatment of melanoma. The use of this triple-
drug system resulted in complete tumor remission, contrary to
the data obtained for anti-PD-1 + TRP-2 only.111

4. ACRIFLAVINE AS A DRUG INHIBITING SARS-CoV-2
The coronavirus COVID-19 pandemic broke out in 2019,
when the infectious SARS-CoV-2 virus caused acute
respiratory distress syndrome (ARDS) and many other side
effects, often leading to death. The identified coronavirus
(SARS-CoV-2) is much more contagious compared to other
previously identified coronaviruses: SARS-CoV and MERS-
CoV. To date, several vaccines and antiviral drugs targeting the
coronavirus RNA polymerase (e.g., Remdesivir) have been
suggested. Despite the implemented therapies, there is still an
intensive search for an effective drug for COVID-19 therapy
that will be effective against the mutating SARS-CoV-2
virus.112

The lungs, heart, kidneys, intestines, and other organs have
ACE2 enzymes on the surface of the cell membrane that act as
a receptors, facilitating the entry of SARS-CoV-2 (SARS-CoV-
2 S protein interacts with ACE2). Virus multiplication is
mediated by Mpro and PLpro proteases�coronavirus enzymes.
In addition to ACE2, there is also TMPRSS2, a serine protease
that facilitates binding of ACE2 to the viral protein. Targeting
the Mpro and PLpro enzymes could be a major therapeutic
pathway for combating coronavirus disease (Figure 10).113−115

Mpro inhibitors have already undergone clinical trials
(NCT04535167, NCT04627532), while the inhibitor of
PLpro, ACF, has been proposed recently as an effective anti-
COVID drug.18

Out of 11 compounds chosen for the studies, ACF turned
out to be the most active against PLpro (IC50 = 1.66 μM).
However, such activity was not observed for Mpro. ACF
specifically inhibits the active site of the PLpro enzyme by
blocking viral infection in the assay of cell lines: A549 with
ACE2 overexpression (CC50 = 3.1 μM, IC50 = 86 nM), Vero
(CC50 = 3.4 μM, IC50 = 64 nM), HCT-8 (CC50 = 2.1 μM),
and HSF (primary human fibroblasts, CC50 = 12 μM).18

It was also noticed that, compared to the currently used
remdesivir, ACF is more effective in inhibiting SARS-CoV-2.
But in combination therapy of the two drugs, a study on Vero
lines showed increased efficacy against SAR-CoV-2 compared
to free drugs. Similarly, the superiority of the use of ACF was
confirmed in an ex vivo human epithelial culture model (HAE)
study, while the use of remdesivir requires much higher doses.
Moreover, ACF can be administered orally, achieving good
therapeutic effectiveness in the lungs.18

The proposed mechanism of action of ACF suggests that
this drug inhibits the virus at all stages of infection because it
affects the replication process and not only the entry of the
virus into the host cell.18 However, with reference to other
literature data, it appears that the effect of ACF on SARS-CoV-
2 can be explained not only by targeting the PLpro enzyme but
also by the effect on the hypoxia-induced factor HIF-1α (see
section 1). This factor can stimulate a “cytokine storm” that
leads to organ failure.116 When cells become infected with
SARS-CoV-2, there is increased expression of HIF-1α, which
targets ACE2 and controls viral entry into cells.117 There are
also suggestions that the stabilization or even activation of

Table 2. IC50 (μM) Study for Anti-cancer Drugs against
Colorectal Cancer (CRC), Ovarian Cancer (OC), and
Chronic Lymphocytic Leukemia (CLL) Tumors72

drug CRC OC CLL mononuclear cells

ACF 1.4 4.2 2.6 1.4
5-FU 755.2 562.8 658.2 429.8
irinotecan 89.6 75.3 29.3 25.4
oxaliplatin 26.1 10.9 7.6 2.9

Figure 9. Structure of guanosine.
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HIF-1α, leading to a reduction in SARS-CoV-2 invasiveness, is
associated with lowering ACE2 levels as a result of hypoxia
(Figure 11).116,118 It was ultimately proven that this factor is
responsible for the inflammatory process that occurs after
infection with the virus.119 On the other hand, ACF has been
proven to exert HIF-1α-inactivating effect, which may account
for the satisfactory results and positively affect COVID-19
therapy.18

In addition, it has been proven that PLpro suppresses
interferon type I responses, while ACF has properties that
engage interferon in the induction of antiviral genes (see
section 5),3 which may be another pathway accounting for the
effectiveness of this drug against COVID-19 and its multi-
tasking nature.

5. OTHER USES OF ACRIFLAVINE
Malaria is an infectious disease caused by Plasmodium parasites
that attacks red blood cells. The problem in the effective
treatment of this disease is resistance to the drugs used so
far.120 The antimalarial activity of ACF was first demonstrated
in 2014 by scientists from India, who based their conclusion on
previous studies reporting the antimalarial properties of
acridine derivatives.12,121 ACF was found to kill Plasmodium
falciparum malaria parasites in vitro, including those resistant to
chloroquine, and to act in vivo in a mouse model system
against the rodent-specific parasite Plasmodium berghei. Addi-
tionally, ACF was active at all three stages of the P. falciparum
life cycle. It has also been shown to be specifically accumulated
in infected red blood cells and not in the uninfected ones,
possibly due to the presence of some parasite-specific
transporters that capture ACF.12 The effectiveness of ACF in
combating other parasitic diseases, e.g., Centrocestus formosanus
and Trichodia centrosrigeata affecting the gills of Oreochromis
niloticus fish,122 has also been confirmed.
ACF also works against Acanthamoeba, which is a protozoan

that causes an infection of the cornea of the eye and even
granulomatous encephalitis.123 Acanthamoeba causes infection,
and it remains in the form of a trophozoite and undergoes
mitosis. It shows high resistance to drugs, with the ability to
transform into a dormant form of cysts.124 Studies were also
devoted to the action of ACF against three strains of
Acanthamoeba of different pathogenicity and showed that
ACF works even on resistant protozoan cysts and destroys
trophozoite within 24 h.123

ACF intercalates DNA, which may contribute to the fight
against Trypanosoma cruzi. It leads to changes in the kDNA
structure of this protozoan, which results in the formation of
dyskinetoplastic (Dk) strains and, consequently, inhibition of
infection.125

There was also suggested a different mechanism of action of
ACF on pathogens. Based on conclusions from several
previous studies,126−128 it was shown that in vivo injection of
ACF induced interferon-like activity in the serum of mice.
Further studies have shown that other acridines engage type I
interferon signaling and protect infected cells from infection,
thanks to the interferon gene stimulator (STING) that is
involved in detection of cytosolic DNA and promotes the
induction of antiviral genes. It has been shown that the mixture
of acriflavine and proflavine, which causes low levels of DNA
damage and cytoplasmic DNA leakage, activates cGAS-
dependent STING and thus has antiviral properties in
human cells.3 ACF clinical trials demonstrating its antiviral
properties were already known in the 1990s in the context ofT
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anti-HIV activities, when used in commbination with other
drugs.14,70,129,130

The action of ACF may be also significant in combating the
fungal infections from Trichophyton rubrum (fungus affecting
keratinized tissues)16 and Candida utilis yeasts.131,132 Recent
studies suggest that ACF induces changes in the structure of
the catalase enzyme, which in turn cause apoptosis and yeast
necrosis.133

ACF also exhibits antibacterial properties. ACF was reported
to be effective against Rhinoscleroma in the 1980s,134 and in the
late 1990s, its antiseptic properties for mouthwash were
demonstrated.135 The renewed interest in this acridine
derivative is associated with an increase in drug-resistant
bacterial infections. Research results show that ACF hydro-
chloride may be effective in treatment of Helicobacter pylori
infection. This pathogen increases the risk of stomach cancer
and is resistant to most antibiotics used.136 ACF·HCl binds to
the proteins of the pathogen’s cell membrane and inhibits its
growth.137 This translates into sensational research results that
suggest the complete elimination of H. pylori from the stomach
tissues of ACF·HCl-treated mice in in vivo. A strong synergistic
effect of ACF hydrochloride with clarithromycin on inhibiting
the growth of these bacteria has also been demonstrated.137

Other studies describe the effectiveness of the ACF delivery
system using the carrier poly(maleic anhydride-alt-acrylic acid)
copolymer (MAAA). ACF was covalently bound to the carrier.
In this combination, it showed a stronger antibacterial activity
against enterohemorrhagic Escherichia coli (EHEC) and
Staphylococcus aureus compared to free ACF (Figure 12).138

Today, ACF is still used in Asia as a topical antiseptic against
Gram-positive and Gram-negative bacteria.20

Figure 10. Graphical illustration of the SARS-CoV-2 attack on host cells. Reprinted with permission from ref 113. Copyright 2022 Elsevier.

Figure 11. Diagram of SARS-CoV-2 virus entry into the cell after
activation of hypoxia-related pathway cells. Reprinted with permission
from ref 116. Copyright 2022 Springer Nature.

Figure 12. Scheme of synthesis of acriflavine conjugate with poly(maleic anhydride-alt-acrylic acid) copolymer (MAAA).
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Unfortunately, it turns out that some bacteria have
developed a defense mechanism against ACF.139 An example
is Staphylococcus aureus, from which a particular mutant is
derived, 209P, which shows a significant thickening of the cell
walls after ACF treatment.140 There are also reports
concerning drug-developed resistance to other bacteria, such
as E. coli K-12.141 Due to reports describing the development
of resistance by some bacteria to ACF, ACF is more and more
often referred to in the context of its strong anticancer and
antiviral properties and as a potential drug against SARS-CoV-
2.

■ CONCLUSION
In the present work, the latest research directions involving
acriflavine (ACF), its complexes and conjugates, and their
mechanism of action have been presented. For years such
systems were and still are known as antibacterial drugs and
prodrugs. However, currently most of the research efforts
concentrate on prodrug systems to be applied in anticancer
therapy as well as potential antiviral agents, e.g., inhibiting
SARS-CoV-2.
As far as anticancer properties of ACF are regarded, one

should notice its tumor-reducing action via caspase-3
activation in lung cancer cases, but the whole spectrum of its
superior activity was proven against colorectal, ovarian, breast,
and cervical cancer cells. ACF effectively intercalates with
DNA. As a result, it has the ability to interfere with many
cellular functions. ACF acts as an inhibitor of protein kinases,
topoisomerases I and II, and hypoxia-induced factor 1α (HIF-
1α) and also leads to upregulation of genes, especially long
non-coding RNAs (lncRNAs). ACF was also found to be
effective in combination therapy, e.g., with doxorubicin,
cisplatin, and 5-fluorouracil, as well as in radiotherapy and
PDT. The free ACF is a potent but short-lived species due to
its fast metabolism, and as a small molecule, it is relatively
quickly cleared from the body. A number of nanoplatforms
have been studied, including liposomes, polymers, and
nanosilica, allowing its in vitro for release up to 60 days.
It was recently found that, compared to the currently used

remdesivir, ACF is more effective in inhibiting SARS-CoV-2,
and in combination therapy with the two drugs, a study on
Vero lines showed increased efficacy against SAR-CoV-2
compared to free drugs. The efficacy of ACF was also
confirmed in an ex vivo human epithelial culture model (HAE)
study, while the use of remdesivir requires much higher doses.
Moreover, ACF is active as an antimalarial, antibacterial,
antiviral (HIV), antituberculosis, and fungicidal. Thus,
although we are dealing with an old drug structure, it appears
as a newly revisited field of application against most serious
contemporary diseases.
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inositide 3-kinases; PD-L1, programmed cell death ligand 1;
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