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Proallergic type 2 helper T (Th2A) cells are a subset of memory Th2 cells

confined to atopic individuals, and they include all the allergen-specific Th2

cells. Recently, many studies have shown that Th2A cells characterized by

CD3+ CD4+ HPGDS+ CRTH2+ CD161high ST2high CD49dhigh CD27low play a

crucial role in allergic diseases, such as atopic dermatitis (AD), food allergy (FA),

allergic rhinitis (AR), asthma, and eosinophilic esophagitis (EoE). In this review,

we summarize the discovery, biomarkers, and biological properties of Th2A

cells to gain new insights into the pathogenesis of allergic diseases.
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Introduction

Allergic diseases are the greatest prevalent chronic immunological diseases, including

AD, asthma, and AR, which are estimated to affect more than 230 million, 330 million,

and 400 million people worldwide, respectively (1–3). The prevalence of allergic diseases

is increasing in both industrial and developing countries, making it a global epidemic (4).

Notably, people with allergic diseases are more likely to have a family disposition known

as atopy, defined by Coca and Cooke in 1923 (5). Many studies show that the progression

of allergic diseases occurs in a predictable time sequence and is widely distributed to

various organs, which is referred to as the atopic march (6). It is known that AD and FA

in infancy gradually develop into asthma and AR in childhood, even EoE (7). However,

the mechanism of the atopic march remains unclear.

It is known that allergic diseases are mainly driven by type 2 inflammation, mediated

by Th2 cells (8). When atopic individuals are exposed to allergens, their epithelial cells

start to secrete IL-25, IL-33, and TSLP, leading to the activation of dendritic cells, which

promote the differentiation of allergen-specific Th2 cells (9, 10). The activated allergen-

specific Th2 cells can not only favor B cells to produce allergen-specific IgE, but also

recruit and activate basophils, mast cells, and eosinophils by secreting IL-4, IL-5, and IL-

13 (11, 12). Thus, allergen-specific Th2 cells play a crucial role in the allergic response.
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Recently, pMHCII tetramer staining was widely used to study

the allergen-specific Th2 cells (10, 13–17). However, the

allergens in most allergic diseases are unclear. It is noted that

Erik Wambre et al. defined a subset of memory Th2 cells

confined to atopic individuals that include all allergen-specific

Th2 cells as Th2A cells, which are characterized by CD4+

CRTH2+ CD161high HPGDS+ CD27low CD49dhigh ST2high,

providing a novel approach to study the allergen-specific Th2

cells (18). Here, we review the discovery, biomarkers, and

biological properties of Th2A cells to gain new insights into

the pathogenesis of allergic diseases.
Discovery of Th2A cells

In type 2 inflammation, Th2 cells mainly trigger an

inflammatory response, in which a subset of pathogenic

effector Th2 cells (peTh2) are characterized by secreting high-

level IL-5 cytokines (19, 20). After antigen elimination, most

peTh2 cells are induced to undergo cell apoptosis, and part of

them differentiate into memory-type Th2 cells (21). The

memory-type Th2 cells in allergic diseases are activated by

exposure to various allergens, which contribute to the

recurrence of diseases. For instance, Kurokawa et al.

demonstrate that the expression of ST2 in T cells is

responsible for the pathogenesis of asthma (22). In addition,

Calman Prussin et al. found that IL-5+ Th2 cells are highly

differentiated Th2 cells that demand repetitive allergen exposure

to generate, demonstrating that Th2-dominant diseases

characterized by recurrent allergen stimulation possibly

promote the generation of IL-5 Th2 cells, leading to the

occurrence of eosinophilic inflammation (23). Moreover,

Mitson et al. found that the CRTH2+ CD161high HPGDS+

memory Th2 cells play a central role in AD and eosinophilic

gastrointestinal disease (EGID) (20). Numerous studies

demonstrate that the CD45ROhigh CD69high ST2high

IL17RBhigh memory Th2 cells are the primary pathogenic

subset in eosinophilic chronic rhinosinusitis (24–26).

Meanwhile, Stephen Till et al. proposed that IL-17RB+ CD4+

Th2 cells may represent a subset that co-expresses ST2 during

activation and may be pathogenic for chronic rhinosinusitis with

nasal polyposis via the IL-25/IL-33 axis (27).

In 2012, Wambre et al. found the pathogenicity of allergen-

specific CD4+ T cells to be associated with the CRTH2+ CD27low

phenotype (13). Wambre et al. proposed the Th2A cells, which

can evaluate the severity of allergic diseases and the therapeutic

effect of the allergen-specific immunotherapy (AIT) (28). In

2015, Wambre et al. clarified the importance of Th2A cells for

allergic diseases and the possibility of Th2A cells as a target in

AIT (29). Importantly, in 2017, Wambre et al. defined a subset of

memory Th2 cells confined to atopic individuals that include all

allergen-specific Th2 cells as Th2A cells, characterized by the

expression of CD4+ CRTH2+ CD161high HPGDS+ CD27low
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CD49dhigh ST2high (18). Wambre et al. discovered that

expression of a cardinal Th2 cytokine by peanut-reactive T

cells was mainly restricted to allergic individuals and the Th2A

cell subset and that a decrease in Th2A cells is also associated

with peanut desensitization, confirming that Th2A cells are

involved in the pathogenesis of FA (18, 30–32). Chiang et al.

found the heterogeneity of effector Th2 subsets in food allergies

(33). On the other hand, Renand et al. show that a decrease in

grass pollen–specific CD4+ T cell frequency most closely

paralleled the transient clinical outcome of allergen

immunotherapy via either the subcutaneous or sublingual

route (34). In 2020, Luce et al. found a decrease in Th2A cells

after a period of food oral immunotherapy (OIT), but the

frequency of DCs and ILCs remained, confirming the

possibility of Th2A frequency as a new marker for OIT (35).

In 2021, Bangert et al. found that Th2A cells were persistently

maintained in the tissues of AD patients, suggesting that Th2A

cells may be responsible for AD recurrence (36). Meanwhile,

Luce et al. observed the frequency of CD38+ Th2A cells to be

only significantly decreased in patients who received the

treatment of HDM tablets, demonstrating the potential value

of CD38+ Th2A cells as the new biomarker of asthma (37). In the

meantime, Morgan et al. found that Th2A cells are enriched in

esophageal tissue from EoE patients and associated with the

recruitment of eosinophils to the esophageal tissue, indicating

that Th2A cells are the pathogenic cells for EoE (38). A recent

study by Vandamme et al. using TCR and transcriptomic

analysis of dog allergen–specific T cell responses in allergic

subjects revealed a close relationship between Th2-like, Th2,

and Th2A cells (39).
Biomarkers of Th2A cells

HPGDS

Unlike conventional Th2 cells, Th2A cells have a high

expression of hematopoietic prostaglandin D2 synthase

(HPGDS). HPGDS is a glutathione transferase expressed

mainly in mast cells and antigen-presenting cells (40). Upon

the stimulation of allergens, arachidonic acid is liberated from

phospholipids under the mediation of phospholipase A2

(PLA2), and some arachidonic acid can be transformed into

PGH2 by the action of COX (41). HPGDS then catalyzes the

conversion of arachidonic acid–derivative PGH2 to PGD2 with

the assistance of GSH and Mg2+ (42). PGD2 acts on the G-

protein coupled receptor DP1 and receptor DP2/CRTH2

expressed in Th2 cells to promote inflammation by the

secretion of IL-4, IL-5, and IL-13 cytokines (43) (Figure 1).

Thus, the high-level expression of HPGDS in Th2A cells helps to

promote the type 2 inflammatory response. The study shows

that the HPGDS inhibitor improved AD symptoms, possibly due

to a reduction in PGD2 production, indicating that HPGDS
frontiersin.org
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might be a potential therapeutic target for allergic diseases

(44, 45).
CRTH2

The chemoattractant receptor homologous molecule

expressed on T-helper-type-2 cells (CRTH2) is a g-protein–

coupled receptor of prostaglandin (PG) D2, mainly expressed in

Th2 cells, eosinophils, basophils, and ILC2 (46–48). Many

studies show that CRTH2 is one of the biomarkers of Th2A

cells (18, 20). The combination of CRTH2 with PGD2 can

induce the chemotaxis of Th2 cells, basophils, and eosinophils,

recruiting circulating inflammatory cells from blood vessels to

the site of inflammation (49–51). CRTH2 activated by PGD2

restrains adenylate cyclase (AC) activity through the Gia protein

subunit, reducing the intracellular cAMP level, which can reduce

the transcriptional activity of NF-kB and induce the

phosphorylation of CREB protein to inhibit inflammation (52,

53). CRTH2 also activates the Gbg complex to provoke the
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formation of PIP2 hydrolyzed by phospholipase Cb, leading to

the production of DAG and IP3 (52, 54). DAG can activate

PKCq and the MAPK/ERK pathway, activating the transcription

factors NF-kB and AP-1, respectively (55). IP3 can induce the

release of Ca2+ from the endoplasmic reticulum to activate

transcription factor NFAT by the phosphatase calcineurin (52,

55) (Figure 1). As is known, CRTH2 is a significant marker of

ILC2, which promotes the effector function in ILC2 (48). More

importantly, the activation of CRTH2 stimulates Th2 cells to

produce IL-4, IL-5, and IL-13 (56, 57). Moreover, CRTH2+ Th2

cells express more CD200R, which strongly correlates with

Th2A pathology (58, 59).
CD161

CD161, namely, NKR-P1, is a C-type lectin-like receptor

mainly expressed in ILC2, NK cells, TH17 cells, and circulating

memory T cells (48, 60). As the most significant biomarker in

Th2A cells, CD161 is commonly regarded as the co-signaling
FIGURE 1

The signaling pathway of Th2A cells. The interaction of ST2 with IL-33 recruits MYD88 to activate TRAF6 by IRAK, leading to the activation of
NF-kB released from the IKK complex. After CD161 combination with LLT1, aSMase is recruited to catalyze SM into ceramide, resulting in the
aggregation in the membrane and inside the cells to mediate distinct functions. CRTH2 activated by PGD2 reduces cAMP production, thereby
inhibiting NF-kB activity and phosphorylates CREB protein. Meanwhile, the same as TCR, CRTH2 also activates PKCq, ERK/MAPK, and Ca2+

calcineurin signaling pathways to mediate cell survival, proliferation, and cytokine production through the transcription factor NF-kB, AP-1, and
NFAT. Arachidonic acid derived from phospholipids is converted to PGH2 by COX-1/2, which can then be catalyzed into PGD2 by HPGDS. IKK,
IkB kinase; ZAP70, z-chain associated protein kinase of 70 kDa; PLCg, phospholipase Cg; PIP2, phosphatidylinositol bisphosphate; DAG,
diacylglycerol; PKCq, protein kinase Cq; RASGRP, RAS guanyl nucleotide–releasing protein; MAPK, mitogen-activated protein kinase; ERK,
extracellular signal-regulated kinase; IP3, inositol trisphosphate; cAMP, cyclic adenosine 3, 5′-monophosphate; PKA, protein kinase A; COX-1/2,
cyclooxygenases I and II; ASM, acid sphingomyelinase; CaN, calcineurin.
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receptor in T cells, the expression of which is related to memory

phenotype (61). The binding of CD161 to LLT1 may recruit

aSMase, which can upregulate Bcl-XL expression by mediating

IL-2 secretion, resulting in the reduction of susceptibility to

apoptosis, leading to the prolonged survival of effector memory

T cells (62, 63). More importantly, aSMase catalyzes

sphingomyelin (SM) to generate ceramide (64) (Figure 1).

Ceramide aggregates into a platform, which leads to the

permeability alternation of the membrane (65–68).

Intracellular ceramide affects the multifarious cellular

processes and protein kinase activation (Ras/PKC), mediating

the Akt-mTOR and MAPK cellular pathways downstream of

CD28 and CD3 to regulate cell apoptosis, proliferation, and

differentiation (62, 69, 70). Similar to Th2A, CD161 and CRTH2

co-expression are characteristic of ILC2 as well (48).
ST2

Serum stimulation-2 (ST2), known as IL1RL1, is an orphan

receptor mainly expressed in Th2 cells, Treg cells, Th9 cells, and

ILC2s (71, 72). ST2 expression on peripheral allergen-specific

CD41 T cells is confined to allergy individuals and restricted to

Th2A cells and, on circulating CD4+ T cells, represents a transient

phenotype associated with Th2A cell activation, allowing these

cells to sense locally elicited tissue cytokines (73, 74). ST2 exists in

two ways, which are different in signal transduction: a

membrane-bound form and a soluble form (sST2) (71). After

ST2 binds to its only ligand IL-33, the myeloid differentiation

factor 88 (MyD88) is recruited to the intracellular domain,

activating TRAF6 signaling via IL-1R-associated kinase (IRAK)

(71, 75). Downstream MAPK kinases and the IKK complex

activated by TRAF6 regulate the activation of AP-1 and the

release of NF-kB from the complex, respectively (72) (Figure 1).

However, sST2 inhibits IL-33/ST2 signaling by isolating free IL-

33 (71). IL-33 selectively amplifies pathogenic Th2 cell effector

functions, suggesting a tissue checkpoint that may regulate

adaptive allergic immunity (73). Many studies show that ST2 in

Th2A cells presents a transient phenotype related to cell

activation, leading to the expression of IL-5 and IL-13 (71, 73, 76).
PPAR

Peroxisome proliferator–activated receptor (PPAR) is a

member of the nuclear receptor superfamily that is mainly

expressed on macrophages and Th2A cells (77, 78). Activated

PPAR forms a heterodimer with the retinoid X receptor (RXR),

which can combine with the upstream PPAR response element

to regulate the transcription of the target genes included in

adipogenesis, lipid metabolism, inflammation, and metabolic

homeostasis (79). PPARG can directly regulate the generation of

IL-5 and the expression of ST2 both in vitro and in vivo (80). As
Frontiers in Immunology 04
mentioned, the IL-33/ST2 axis can strongly accelerate the Th2

cell function, indicating that PPARG might be a potential target

for the treatment of allergic diseases (73, 80).
Biological properties of Th2A cells

In the type 2 inflammatory response, epithelial cells and

keratinocytes secrete IL-25, IL-33, and TSLP to activate ILC2,

APCs, and Th2A cells, which induce the Th2 response to secrete

IL-4, IL-5, IL-9, IL-10, and IL-13 in response to allergen

stimulation (10, 11, 48). It is known that Th2A cells play a

significant role in allergic diseases, but the mechanism remains

unclear (18). We believe that, after exposure of atopic individuals

to allergens, APCs present allergens to the tissue-resident Th2A

cells, inducing cell activation (81). The activated Th2A cells may

produce IL-5 and IL-9 to favor the recruitment and activation of

eosinophils, which is supported by the fact that the Th2A subset

presents a significant positive correlation with the number of

eosinophils in the peripheral blood of atopic individuals (19, 20,

82). Meanwhile, Th2A cells may secrete IL-4 and IL-13,

stimulating B cells to produce allergen-specific IgE antibodies

that sensitize mast cells and basophils (11). In addition, Th2A

cells may produce IL-4, IL-9, and IL-10 to activate the sensitized

mast cells and basophils (11) (Figure 2). PGD2 secreted by the

activated mast cells, in turn, acts on CRTH2 in Th2A cells, further

promoting the activation of Th2A cells (83). Besides this, Th2A

cells can survive in the tissues and blood for years, reserving the

ability of allergen memory (73). Notably, ILC2s can induce tissue

repair and result in the recruitment and activation of eosinophils

and mast cells, which are functionally like Th2A cells and also

essential to triggering the type 2 response but differ in that ILC2s

have no TCR and allergen specificity (19, 84).
Th2A cells in Allergic Diseases

Th2A cells in AD

AD is the most common chronic inflammatory skin disease

characterized by severe pruritus, recurrent eczema, and

fluctuating course, which would gradually develop into FA,

asthma, and even EoE (1). In 2021, Bangert et al. analyzed

samples from the antecubital fossa of AD patients who had

received the treatment of IL-4Ra blockers for 16 weeks and a

year with single-cell RNA sequencing (scRNA-seq). Notably, a

cluster of cells with IL17RB+ CRTH2+ CD161+ CD27low

phenotype most in accord with Th2A cells was found in the

tissues of AD patients. Moreover, it is shown that even after a

year of treatment, Th2A cells persistently existed in the patient

tissues but were not present in healthy skin, indicating that

Th2A cells are the main pathogenic subset for AD, possibly

resulting in recurrent AD (36).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.916778
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2022.916778
Th2A cells in FA

FA is an adverse immune response induced by food allergens,

including peanuts, milk, soy, and fish et al. (85, 86). Studies

indicate that FA is caused by allergen-specific TH2 cells through

the mediation of IgE switching and expansion of lymphocytes (87).

Wambre et al. completed a longitudinal study on patients with

peanut allergies who underwent characterized oral desensitization

immunotherapy in 2017 (CODIT). In this randomized, double-

blind, placebo-controlled experiment, most of the CD4+ T cells

responding to peanuts were verified to be Th2A cells by a CD154

upregulation assay, which can observe the quantity of peanut-

specific T cells in vitro. Furthermore, it is shown that a decrease in

Th2A cell frequency is positively correlated with peanut

desensitization, demonstrating the association of Th2A cells with

the pathogenesis of FA (18). In 2020, Luce et al. recruited 60

desirable patients to be treated with omalizumab at weeks 1 to 16

andmulti-OIT that included two to five kinds of allergens at weeks

8 to 30, and the patients received a food challenge at week 30.

Fluorescent antibody labeling revealed a decrease in Th2A cell

frequency at week 30 compared with the baseline. Inversely, no

changes in ILC and DC frequency were observed through flow

cytometry, indicating the value of Th2A frequency as a new

marker for OIT (35). Meanwhile, Monian et al. subdivided the

observed cells into six subsets through single-cell RNA-Seq and
Frontiers in Immunology 05
paired T cell receptor a/b sequencing, where inhibition of the Th2

signature in the Th2A subpopulation correlates with clinical

outcomes of OIT (32). Moreover, Chiang et al. discovered that

Tregs activated by IL-2 could partially inhibit the Th2 response,

but the heterogeneous Th2 response was not significantly inhibited

(33). Then, Lozano-Ojalvo found that IL-2 produced by allergen-

specific cells can induce the activation of Treg cells with

suppressive properties during an oral food challenge (88). In

2022, Bajzik et al. demonstrated that, during an experiment, the

Th2A cell level observed in the peripheral blood of peanut-allergic

patients is associated with not only T-cell reactivity to peanuts but

also serum peanut-specific IgE and IgG4 levels (89).
Th2A cells in Asthma

Asthma is a chronic allergic inflammatory disease characterized

by multiple respiratory symptoms, airflow limitation, and reversible

airway obstruction (2). A study was performed in 2021 by Luce et al.

on 182 patients with allergies to house dust mites (HDM) to

indicate the role of Th2A cells in allergic diseases. During the

randomized, double-blind, placebo-controlled trial, these patients

were treated with daily either 300 IR (n = 58), 500 IR (n = 63) HDM,

or placebo (n = 61) tablets for 12 months. Flow cytometry was used

to examine the changes in Th2A cell frequency between baseline
FIGURE 2

Th2A cells’ biological function. After allergen stimulation, epithelial cells secrete IL-25, IL-33, and TSLP to activate APCs and Th2A cells. APCs
present allergens to activate tissue-resident Th2A cells. Th2A cells that have been activated secrete IL-5 and IL-9, which aid in the recruitment
and activation of eosinophils. Th2A cells produce IL-4 and IL-13, stimulating B cells to produce allergen-specific IgE antibodies. Meanwhile,
Th2A cells secrete IL-4, IL-9, and IL-10 to activate mast cells and basophils.
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and the end of AIT. Because both the active and placebo groups

showed a decrease in Th2A cells, the same analysis was performed

with CD38, which is upregulated in Th2A cells. The results suggest

that a significant reduction in CD38+ Th2A was observed only in all

active groups, confirming the potential value of CD38+ Th2A cells

as the new clinical biomarker of asthma (37). Meanwhile, Blinova,

EA et al. observed that, after treatment, the proportion of TH2A/

Th2 cells decreased in the peripheral blood of asthma patients (90).

Interestingly, in the ovalbumin-induced asthma mouse model, the

expression of pathogenic Th2 cells in ST2-/- and IL33-/- mice is

reduced significantly compared with ST2+/+ and IL33+/+ mice,

resulting in observable improvement of pulmonary fibrosis,

collagen deposition, and the prominent decrease in fibrosis-

related gene expression, which indicates that ST2hi memory

pathogenic Th2 cells are involved in the establishment of airway

fibrosis (91).
Th2A cells in EoE

EoE is a chronic esophageal inflammatory disease

characterized by pathological eosinophil infiltration, leading to

dysphagia, food impaction, and impaired esophagus function (92,

93). In 2019, Rothenberg et al. utilized scRNA-seq to discover the

specific enrichment of HPGDS+ CRTH2+ IL-17RB+ FFAR3+

CD4+ Th2 cell in EoE (94). In 2021, Morgan et al. collected

biopsy tissue from the esophagus and duodenum of 10 patients

with EoE (n = 6 active disease, n = 4 remission disease) and

enzymatically hydrolyzed the patient tissues into a single-cell
Frontiers in Immunology 06
suspension for scRNA-seq. Th2A cells were prominently higher

in the patients with active diseases due to the calculation of the

two-sided Wilcoxon rank-sum test and enriched in the

esophageal tissue of patients with EoE. In addition, the result of

ligand-receptor pathway analysis shows that receptors selectively

expressed on eosinophils are matched with the ligands on Th2A

cells, indicating that Th2A cells may be related to the recruitment

of eosinophils to the esophageal tissue (38).
Immunotherapy targeting Th2A cells

It is known that, with insight into the immune mechanism,

many targeted drugs are now applied to treat moderate and severe

allergic diseases. As Th2A cells are pathogenic for allergic diseases,

relative monoclonal antibodies are widely used, such as IL-4

monoclonal antibody (Pitrakinra, Dupilumab) (95–97), IL-5

monoclonal antibody (Mepolizumab, Reslizumab, Benralizumab)

(98), IL-9 monoclonal antibody (MEDI-528) (99), IL-13

monoclonal antibody (Lebrikizumab, Tralokinumab) (100, 101),

IL-33 monoclonal antibody (Etokimab, AMG 282) (102, 103),

TSLP monoclonal antibody (Tezepelumab) (104), and IgE

monoclonal antibody (Omalizumab, Ligelizumab) (105, 106).

Importantly, JAK can regulate the full activation of Th2A cells,

thus, JAK inhibitors also play an indispensable role in allergic

disease treatment (107–114) (Table 1).

Moreover, Th2A cells have the possibility to be deleted

selectively. Studies demonstrate that a persistent high dose of

allergen cumulation in AIT might lead to the selective functional
TABLE 1 Drugs targeting Th2A cells.

Target Agent Name Indications Status Reference

IL-4 Pitrakinra asthma Phase 2 (95)

Dupilumab AD, asthma, EoE, FDA-approved (96, 97)

IL-5 Mepolizumab asthma FDA-approved (98)

Reslizumab asthma FDA-approved (98)

Benralizumab asthma, EoE FDA-approved (98)

IL-9 MEDI-528 asthma Phase 2 (99)

IL-13 Lebrikizumab AD, asthma Phase 3 (100, 101)

Tralokinumab AD, asthma Phase 3 (100)

IL-33 Etokimab (ANB020) AD, asthma, peanut allergy Phase 2 (102)

AMG 282 chronic rhinosinusitis with nasal polyps, asthma Phase 1 (103)

TSLP Tezepelumab asthma Phase 3 (104)

IgE Omalizumab asthma Phase 3 (105)

Ligelizumab asthma Phase 3 (106)

JAK1 Upadacitinib AD Phase 3 (107)

Abrocitinib AD FDA-approved (108)

Oclacitinib Canine AD FDA-approved (109)

JAK1/2 Baricitinib AD FDA-approved (110, 111)

JAK1/JAK2/JAK3/TYK2 Delgocitinib AD Phase 3 (112)

Gusacitinib AD Phase 1 (113)
fro
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deletion of proallergic Th2 cells, which permits the occurrence of

other T cell responses (29). Moreover, this chronic stimulation

of high-dose allergens may induce autocrine IL-10 generation,

which is the salient mediator of T cell exhaustion and the

methylation of the GATA-3 promoter related to the decrease

in Th2 cell activity (115, 116).
Conclusion

Th2A cells are a subset of memory Th2 cells confined to

atopic individuals, including all the allergen-specific Th2 cells.

Notably, Th2A cells are characterized by the expression of CD4+

CRTH2+ CD161high HPGDS+ CD27low CD49dhigh ST2high, which

exhibit multiple biological properties leading to cell survival,

activation, and cytokine secretion. After allergen exposure,

APCs involve in allergen presentation to activate Th2A cells

which can secrete IL-4, IL-5, IL-9, IL-10, and IL-13, leading to

the activation of mast cells, basophils, and eosinophils. It is known

that Th2A cells are demonstrated to be the central pathogenic cells

in various allergic diseases, including AD, FA, asthma, and EoE.

The frequency of Th2A cells can be used to assess the efficacy of

allergic disease treatment, and selective Th2A cell deletion may

result in long-term clinical benefits. Subsequently, Th2A cells are

expected to be the focal point of research into the pathogenesis of

allergic diseases and a critical target for disease treatment.
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69. Pozo D, Valés-Gómez M, Mavaddat N, Williamson SC, Chisholm SE,
Reyburn H. CD161 (human NKR-P1A) signaling in NK cells involves the
activation of acid sphingomyelinase. J Immunol (2006) 176(4):2397–406.
doi: 10.4049/jimmunol.176.4.2397

70. Bai A, Guo Y. Acid sphingomyelinase mediates human CD4+ T-cell
signaling: Potential roles in T-cell responses and diseases. Cell Death Disease
(2017) 8(7):e2963. doi: 10.1038/cddis.2017.360

71. Griesenauer B, Paczesny S. The ST2/IL-33 axis in immune cells during
inflammatory diseases. Front Immunol (2017) 8:475. doi: 10.3389/
fimmu.2017.00475

72. Baumann C, Bonilla WV, Fröhlich A, Helmstetter C, Peine M, Hegazy AN,
et al. T-Bet- and STAT4-dependent IL-33 receptor expression directly promotes
antiviral Th1 cell responses. Proc Natl Acad Sci USA (2015) 112(13):4056–61.
doi: 10.1073/pnas.1418549112

73. Calise J, Garabatos N, Bajzik V, Farrington M, Robinson D, Jeong D, et al.
Optimal human pathogenic TH2 cell effector function requires local epithelial
cytokine signaling. J Allergy Clin Immunol (2021) 148(3):867–75. doi: 10.1016/
j.jaci.2021.02.019

74. Van Dyken SJ, Nussbaum JC, Lee J, Molofsky AB, Liang H-E, Pollack JL,
et al. A tissue checkpoint regulates type 2 immunity. Nat Immunol (2016) 17
(12):1381–7. doi: 10.1038/ni.3582

75. Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel
biomarker. Nat Rev Drug Discov (2008) 7(10):827–40. doi: 10.1038/nrd2660

76. Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat
Rev Immunol (2016) 16(11):676–89. doi: 10.1038/nri.2016.95

77. Takano H, Hasegawa H, Zou Y, Komuro I. Pleiotropic actions of PPARg
activators thiazolidinediones in cardiovascular diseases. Curr Pharm Design (2004)
10(22):2779–86. doi: 10.2174/1381612043383719

78. Bonvalet M, Moussu H, Wambre E, Ricarte C, Horiot S, Rimaniol AC, et al.
Allergen-specific CD 4+ T cell responses in peripheral blood do not predict the
early onset of clinical efficacy during grass pollen sublingual immunotherapy. Clin
Exp Allergy (2012) 42(12):1745–55. doi: 10.1111/cea.12015

79. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARg.
Annu Rev Biochem (2008) 77:289–312. doi: 10.1146/annurev.biochem.77.061307.
091829

80. Nobs SP, Natali S, Pohlmeier L, Okreglicka K, Schneider C, Kurrer M, et al.
PPARg in dendritic cells and T cells drives pathogenic type-2 effector responses
in lung inflammation. J Exp Med (2017) 214(10):3015–35. doi: 10.1084/
jem.20162069

81. Holt PG, Stumbles PA. Regulation of immunologic homeostasis in
peripheral tissues by dendritic cells: the respiratory tract as a paradigm. J Allergy
Clin Immunol (2000) 105(3):421–9. doi: 10.1067/mai.2000.105010

82. Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, et al. Eosinophil-
derived neurotoxin acts as an alarmin to activate the TLR2–MyD88 signal pathway
in dendritic cells and enhances Th2 immune responses. J Exp Med (2008) 205
(1):79–90. doi: 10.1084/jem.20062027

83. Bischoff SC. Role of mast cells in allergic and non-allergic immune
responses: comparison of human and murine data. Nat Rev Immunol (2007) 7
(2):93–104. doi: 10.1038/nri2018
Frontiers in Immunology 09
84. Halim TY. Group 2 innate lymphoid cells in disease. Int Immunol (2016) 28
(1):13–22. doi: 10.1093/intimm/dxv050

85. Bruijnzeel-Koomen CA, Ortolani C, Aas K, Bindslev-Jensen C, Björksten B,
Wüthrich B. Adverse reactions to food: Position paper of the European academy of
allergy and clinical immunology. Allergy (1995) 50:623–35. doi: 10.1111/j.1398-
9995.1995.tb02579.x

86. Sicherer SH, Sampson HA. Food allergy. J Allergy Clin Immunol (2010) 125
(2):S116–25. doi: 10.1016/j.jaci.2009.08.028

87. Tordesillas L, Berin MC, Sampson HA. Immunology of food allergy.
Immunity (2017) 47(1):32–50. doi: 10.1016/j.immuni.2017.07.004

88. Lozano-Ojalvo D, Tyler SR, Aranda CJ, Wang J, Sicherer SH, Sampson HA,
et al. Allergen recognition by specific effector Th2 cells enables IL-2-dependent
activation of regulatory T cell responses in humans. medRxiv (2022). doi: 10.1101/
2022.05.17.22275017

89. Yii A, Tay TR, Choo X, Koh M, Tee A, Wang DY. Precision medicine in
united airways disease: a “treatable traits” approach. Allergy (2018) 73(10):1964–78.
doi: 10.1111/all.13496

90. Blinova EA, Galdina VA, Pashkina EA, Makarova AE, Demina DV, Kozlov
VA. Proportion of TH2A/Th2 cells in the peripheral blood of patients with asthma
decreases after therapy. Allergy: European Journal of Allergy and Clinical
Immunology Supplement (2021) 76(S110):133. doi: 10.1111/all.15095

91. Morimoto Y, Hirahara K, Kiuchi M, Wada T, Ichikawa T, Kanno T, et al.
Amphiregulin-producing pathogenic memory T helper 2 cells instruct eosinophils
to secrete osteopontin and facilitate airway fibrosis. Immunity (2018) 49(1):134–50.
doi: 10.1016/j.immuni.2018.04.023

92. Furuta GT, Katzka DA. Eosinophilic esophagitis. N Engl J Med (2015) 373
(17):1640–8. doi: 10.1056/NEJMra1502863

93. Davis BP, Rothenberg ME. Mechanisms of disease of eosinophilic
esophagitis. Annu Rev Pathol: Mech Dis (2016) 11:365–93. doi: 10.1146/annurev-
pathol-012615-044241

94. Wen T, Aronow BJ, Rochman Y, Rochman M, Kiran K, Dexheimer PJ, et al.
Single-cell RNA sequencing identifies inflammatory tissue T cells in eosinophilic
esophagitis. J Clin Invest (2019) 129(5):2014–28. doi: 10.1172/JCI125917

95. Hambly N, Nair P. Monoclonal antibodies for the treatment of refractory
asthma. Curr Opin Pulm Med (2014) 20(1) :87–94. doi : 10.1097/
MCP.0000000000000007

96. Kraft M, Worm M. Dupilumab in the treatment of moderate-to-severe
atopic dermatitis. Expert Rev Clin Immunol (2017) 13(4):301–10. doi: 10.1080/
1744666X.2017.1292134

97. Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, et al.
Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med
(2013) 368(26):2455–66. doi: 10.1056/NEJMoa1304048

98. Ridolo E, Pucciarini F, Nizi MC, Makri E, Kihlgren P, Panella L. Mabs for
treating asthma: omalizumab, mepolizumab, reslizumab, benralizumab,
dupilumab. J Hum Vaccin Immunother (2020) 16:2349–56. doi: 10.1080/
21645515.2020.1753440

99. Parker J, Oh C, LaForce C, Miller S, Pearlman D, Le C, et al. MEDI-528
clinical trials group: Safety profile and clinical activity of multiple subcutaneous
doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two
randomized phase 2a studies in subjects with asthma. BMC Pulm Med (2011)
11:14. doi: 10.1186/1471-2466-11-14

100. Gandhi NA, Pirozzi G, Graham NM. Commonality of the IL-4/IL-13
pathway in atopic diseases. Expert Rev Clin Immunol (2017) 13(5):425–37.
doi: 10.1080/1744666X.2017.1298443

101. Corren J, Lemanske Jr.RF, Hanania NA, Korenblat PE, Parsey MV, Arron
JR, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med (2011) 365
(12):1088–98. doi: 10.1056/NEJMoa1106469

102. Chen YL, Gutowska-Owsiak D, Hardman CS, Westmoreland M,
Mackenzie T, Cifuentes L, et al. Proof-of-concept clinical trial of etokimab shows
a key role for IL-33 in atopic dermatitis pathogenesis. Sci Transl Med (2019) 11
(515):eaax2945. doi: 10.1126/scitranslmed.aax2945

103. Chen Y, Wang W, Yuan H, Li Y, Lv Z, Cui Y, et al. Current state of
monoclonal antibody therapy for allergic diseases. Engineering (2021) 7(11):1552–
6. doi: 10.1016/j.eng.2020.06.029

104. Menzies-Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME,
et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N
Engl J Med (2021) 384(19):1800–9. doi: 10.1056/NEJMoa2034975

105. Holgate S, Djukanovic R, Casale T, Bousquet J. Anti-immunoglobulin e
treatment with omalizumab in allergic diseases: an update on anti-inflammatory
activity and clinical efficacy. Clin Exp Allergy (2005) 35(408):e16. doi: 10.1111/
j.1365-2222.2005.02191.x

106. Gauvreau GM, Arm JP, Boulet L-P, Leigh R, Cockcroft DW, Davis BE,
et al. Efficacy and safety of multiple doses of QGE031 (ligelizumab) versus
omalizumab and placebo in inhibiting allergen-induced early asthmatic
frontiersin.org

https://doi.org/10.1111/sji.13090
https://doi.org/10.3389/fimmu.2011.00036
https://doi.org/10.1016/s1471-4906(01)02091-9
https://doi.org/10.4049/jimmunol.1100911
https://doi.org/10.2174/156652410791608225
https://doi.org/10.1016/j.bbamcr.2005.09.001
https://doi.org/10.1074/jbc.M101207200
https://doi.org/10.1016/s1043-6618(03)00052-5
https://doi.org/10.1038/sj.onc.1207146
https://doi.org/10.4049/jimmunol.176.4.2397
https://doi.org/10.1038/cddis.2017.360
https://doi.org/10.3389/fimmu.2017.00475
https://doi.org/10.3389/fimmu.2017.00475
https://doi.org/10.1073/pnas.1418549112
https://doi.org/10.1016/j.jaci.2021.02.019
https://doi.org/10.1016/j.jaci.2021.02.019
https://doi.org/10.1038/ni.3582
https://doi.org/10.1038/nrd2660
https://doi.org/10.1038/nri.2016.95
https://doi.org/10.2174/1381612043383719
https://doi.org/10.1111/cea.12015
https://doi.org/10.1146/annurev.biochem.77.061307.091829
https://doi.org/10.1146/annurev.biochem.77.061307.091829
https://doi.org/10.1084/jem.20162069
https://doi.org/10.1084/jem.20162069
https://doi.org/10.1067/mai.2000.105010
https://doi.org/10.1084/jem.20062027
https://doi.org/10.1038/nri2018
https://doi.org/10.1093/intimm/dxv050
https://doi.org/10.1111/j.1398-9995.1995.tb02579.x
https://doi.org/10.1111/j.1398-9995.1995.tb02579.x
https://doi.org/10.1016/j.jaci.2009.08.028
https://doi.org/10.1016/j.immuni.2017.07.004
https://doi.org/10.1101/2022.05.17.22275017
https://doi.org/10.1101/2022.05.17.22275017
https://doi.org/10.1111/all.13496
https://doi.org/10.1111/all.15095
https://doi.org/10.1016/j.immuni.2018.04.023
https://doi.org/10.1056/NEJMra1502863
https://doi.org/10.1146/annurev-pathol-012615-044241
https://doi.org/10.1146/annurev-pathol-012615-044241
https://doi.org/10.1172/JCI125917
https://doi.org/10.1097/MCP.0000000000000007
https://doi.org/10.1097/MCP.0000000000000007
https://doi.org/10.1080/1744666X.2017.1292134
https://doi.org/10.1080/1744666X.2017.1292134
https://doi.org/10.1056/NEJMoa1304048
https://doi.org/10.1080/21645515.2020.1753440
https://doi.org/10.1080/21645515.2020.1753440
https://doi.org/10.1186/1471-2466-11-14
https://doi.org/10.1080/1744666X.2017.1298443
https://doi.org/10.1056/NEJMoa1106469
https://doi.org/10.1126/scitranslmed.aax2945
https://doi.org/10.1016/j.eng.2020.06.029
https://doi.org/10.1056/NEJMoa2034975
https://doi.org/10.1111/j.1365-2222.2005.02191.x
https://doi.org/10.1111/j.1365-2222.2005.02191.x
https://doi.org/10.3389/fimmu.2022.916778
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2022.916778
responses. J Allergy Clin Immunol (2016) 138(4):1051–9. doi: 10.1016/
j.jaci.2016.02.027

107. Blauvelt A, Teixeira HD, Simpson EL, Costanzo A, De Bruin-Weller A,
Barbarot S, et al. Efficacy and safety of upadacitinib vs dupilumab in adults with
moderate-to-severe atopic dermatitis: a randomized clinical trial. JAMA
Dermatology (2021) 157(9):1047–55. doi: 10.1001/jamadermatol.2021.3023

108. GooderhamMJ, Forman SB, Bissonnette R, Beebe JS, ZhangW, Banfield C,
et al. Efficacy and safety of oral janus kinase 1 inhibitor abrocitinib for patients with
atopic dermatitis: a phase 2 randomized clinical trial. JAMA Dermatol (2019) 155
(12):1371–9. doi: 10.1001/jamadermatol.2019.2855

109. Cosgrove SB, Wren JA, Cleaver DM, Walsh KF, Follis SI, King VI, et al. A
blinded, randomized, placebo-controlled trial of the efficacy and safety of the J anus
kinase inhibitor oclacitinib (A poquel®) in client-owned dogs with atopic
dermatitis. Vet Dermatol (2013) 24(6):587–e142. doi: 10.1111/vde.12088

110. Guttman-Yassky E, Silverberg JI, Nemoto O, Forman SB, Wilke A,
Prescilla R, et al. Baricitinib in adult patients with moderate-to-severe atopic
dermatitis: a phase 2 parallel, double-blinded, randomized placebo-controlled
multiple-dose study. J Am Acad Dermatol (2019) 80(4):913–21.e9. doi: 10.1016/
j.jaad.2018.01.018

111. Simpson E, Lacour JP, Spelman L, Galimberti R, Eichenfield L, Bissonnette
R, et al. Baricitinib in patients with moderate-to-severe atopic dermatitis and
inadequate response to topical corticosteroids: results from two randomized
Frontiers in Immunology 10
monotherapy phase III trials. Br J Dermatol (2020) 183(2):242–55. doi: 10.1111/
bjd.18898

112. Szalus K, Trzeciak M, Nowicki RJ. JAK-STAT inhibitors in atopic
dermatitis from pathogenesis to clinical trials results. Microorganisms (2020) 8
(11):1743. doi: 10.3390/microorganisms8111743

113. Bissonnette R, Maari C, Forman S, Bhatia N, Lee M, Fowler J. The oral
JAK/SYK inhibitor ASN002 demonstrates efficacy and improves associated
systemic inflammation in patients with moderate-to-severe atopic dermatitis:
results from a randomised, double-blind, placebo-controlled study. Br J
Dermatol (2019) 181(4):733–42. doi: 10.1111/bjd.17932

114. Ross JA, Nagy ZS, Cheng H, Stepkowski SM, Kirken RA. Regulation of T
cell homeostasis by JAKs and STATs. Arch Immunol Ther Exp (2007) 55(4):231–
45. doi: 10.1007/s00005-007-0030-x

115. Saraiva M, Christensen JR, Veldhoen M, Murphy TL, Murphy KM,
O'Garra A. Interleukin-10 production by Th1 cells requires interleukin-
12-induced STAT4 transcription factor and ERK MAP kinase activation by
high antigen dose. Immunity (2009) 31(2):209–19. doi: 10.1016/j.immuni.2009.
05.012

116. Mondoulet L, Dioszeghy V, Puteaux E, Ligouis M, Dhelft V, Plaquet C,
et al. Specific epicutaneous immunotherapy prevents sensitization to new allergens
in a murine model. J Allergy Clin Immunol (2015) 135(6):1546–57.e4. doi: 10.1016/
j.jaci.2014.11.028
frontiersin.org

https://doi.org/10.1016/j.jaci.2016.02.027
https://doi.org/10.1016/j.jaci.2016.02.027
https://doi.org/10.1001/jamadermatol.2021.3023
https://doi.org/10.1001/jamadermatol.2019.2855
https://doi.org/10.1111/vde.12088
https://doi.org/10.1016/j.jaad.2018.01.018
https://doi.org/10.1016/j.jaad.2018.01.018
https://doi.org/10.1111/bjd.18898
https://doi.org/10.1111/bjd.18898
https://doi.org/10.3390/microorganisms8111743
https://doi.org/10.1111/bjd.17932
https://doi.org/10.1007/s00005-007-0030-x
https://doi.org/10.1016/j.immuni.2009.05.012
https://doi.org/10.1016/j.immuni.2009.05.012
https://doi.org/10.1016/j.jaci.2014.11.028
https://doi.org/10.1016/j.jaci.2014.11.028
https://doi.org/10.3389/fimmu.2022.916778
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Th2A cells: The pathogenic players in allergic diseases
	Introduction
	Discovery of Th2A cells
	Biomarkers of Th2A cells
	HPGDS
	CRTH2
	CD161
	ST2
	PPAR

	Biological properties of Th2A cells
	Th2A cells in Allergic Diseases
	Th2A cells in AD
	Th2A cells in FA
	Th2A cells in Asthma
	Th2A cells in EoE

	Immunotherapy targeting Th2A cells
	Conclusion
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


