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Abstract: Hepatitis C virus (HCV) accounts for 15%–20% of cases of acute infection, and chronic
HCV infection is developed in about 50%–80% of HCV patients. Unfortunately, due to the lack of
proper medical care, difficulty in screening for HCV infection, and lack of awareness resulted in
chronic HCV infection in 71 million people on a global scale, and about 399,000 deaths in 2016. It is
crucial to recognize that the effective use of antiviral medicines can cure more than 95% of HCV
infected people. The Global Health Sector Strategy (GHSS) aim is to reduce the new HCV infections
and the HCV associated mortality by 90% and 65%, respectively. Therefore, the methods that are
simple, yet powerful enough to detect HCV infections with high sensitivity, specificity, and a shorter
window period are crucial to restrain the global burden of HCV healthcare. This article focuses on
the technologies used for the detection of HCV in clinical specimens.
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1. Introduction

Hepatitis C virus (HCV) is an RNA virus of the family Flaviviridae that accounts for 15%–20% cases
of acute infection, and chronic HCV infection is developed in about 50%–80% of HCV patients. About
15%–30% of patients with chronic HCV infection have a risk of cirrhosis within 20 years. There are 71
million people with chronic hepatitis C virus infection on a global scale, and about 399,000 people
died due to hepatitis C in 2016 as shown in Figure 1 [1,2]. Most of the chronically infected patients
are asymptomatic and can lead a healthy life. However, the disease develops into fibrosis, cirrhosis,
and possibly hepatocellular carcinoma (HCC) in about 20% of chronically infected patients during the
period of 10–30 years [3–6].

The World Health Assembly endorsed the Global Health Sector Strategy (GHSS) on viral hepatitis
2016–2021 in 2016, which targets for the elimination of viral hepatitis as a public threat by 2030. The aim
is to reduce the new infections and the associated mortality by 90% and 65%, respectively. The effective
use of antiviral medicines can cure more than 95% of HCV infected people, thereby reducing the
mortality associated with cirrhosis and liver cancer. However, the limited access to early and accurate
screening, diagnosis, and treatment [7–9] is the most significant barrier to achieve the goal outlined in
the GHSS. A method that allows, rapid, accurate, and highly efficient method for the detection of HCV
is crucial for mass screening. Such a technique can prove vital to avoid the transmission of infection
and to help physicians to begin the antiviral therapy [10,11].
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Figure 1. Viral hepatitis C in the world (adopted from the global hepatitis report, 2017. 
https://www.who.int/hepatitis/news-events/global-hepatitis-report2017-infographic/en/). 
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screening is that the 90%–100% of patients can be treated with current drugs if the infected 
individuals are identified before the chronic HCV is developed into the advanced fibrosis, cirrhosis, 
or hepatocellular carcinoma [12,13]. It is vital to notice that the reduction in all-cause mortality is 
highly associated with the sustained virologic clearance for more than six months after the treatment 
[14]. Therefore, it is crucial to identify individuals with hepatitis C infection before they develop the 
symptoms of the disease. 

It appears that HCV detection methods are based on molecular assays and serological assays. 
The molecular assays are RT-PCR based nucleic acid amplification tests (NAT’s) for detection HCV 
RNA in samples, including blood and other body fluids [15–17]. However, the NAT-based assays 
are not cost-effective, and usually they are not suitable for screening of HCV in a large population 
for rapid diagnosis [18]. On the contrary, the serological assays are often designed for the detection 
of HCV antigens, and anti-HCV antibodies in the serum or plasma are quickly taken from 
venipuncture. Hence, the serological tests are suitable for the mass screening of HCV in the general 
population. Further, the serological assays are highly applicable to the treatment monitoring and for 
the confirmation of the virologic clearance [19]. 
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The most common drawbacks including patient’s anxiety while waiting for test results, adverse
effects of treatment and complications related to liver biopsy limit screening for hepatitis C. However,
the benefits of HCV screening outweigh these drawbacks. The primary benefit of HCV screening
is that the 90%–100% of patients can be treated with current drugs if the infected individuals are
identified before the chronic HCV is developed into the advanced fibrosis, cirrhosis, or hepatocellular
carcinoma [12,13]. It is vital to notice that the reduction in all-cause mortality is highly associated
with the sustained virologic clearance for more than six months after the treatment [14]. Therefore,
it is crucial to identify individuals with hepatitis C infection before they develop the symptoms of
the disease.

It appears that HCV detection methods are based on molecular assays and serological assays.
The molecular assays are RT-PCR based nucleic acid amplification tests (NAT’s) for detection HCV
RNA in samples, including blood and other body fluids [15–17]. However, the NAT-based assays are
not cost-effective, and usually they are not suitable for screening of HCV in a large population for rapid
diagnosis [18]. On the contrary, the serological assays are often designed for the detection of HCV
antigens, and anti-HCV antibodies in the serum or plasma are quickly taken from venipuncture. Hence,
the serological tests are suitable for the mass screening of HCV in the general population. Further,
the serological assays are highly applicable to the treatment monitoring and for the confirmation of the
virologic clearance [19].

In general, the enzyme immunoassays are used to detect the anti-HCV antibodies, antigens in the
HCV screening settings. The testing for HCV RNA is then used for the confirmation of HCV infection
and identification of specific HCV genotype is standard practice for the diagnostic evaluation of HCV
infection, as shown in Figure 2 [20].

At present, various serological tests based on enzyme immunoassay (EIA), chemiluminescence
immunoassay (CIA), rapid immunoassays (RA) including agglutination (AGL) and immune-filtration
(IMF), recombinant immunoblot assay (RIBA), electrochemical immunosensor HCV detection (EI),
nano-metal technology (NT) including gold nanoparticles (GNP) and quantum dots (QDs), and lateral
flow assay (LFAs) are widely used for the HCV screening in clinical specimens. In many cases,
the longer turn-around time, cost, size of the instrument, and necessity of highly trained technicians
limits the use of currently available methods in the resource-limited settings [21,22]. Therefore, a low
cost, rapid, simple, and accurate method are crucial for sizeable population-based HCV screening. The
development of a highly sensitive point-of-care (POC) test for screening of HCV in resource-limited
settings is crucial to provide a lower cost of healthcare in developing countries. In this critical
review, we have discussed various technologies used for qualitative and quantitative detection of
HCV, as shown in Figure 3. This article also elaborates the advantages and disadvantages of the
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Figure 3. Various methods used for the qualitative and quantitative detection of hepatitis C
virus (HCV) antigens, and anti-HCV antibodies for HCV screening. EIA, enzyme immunoassay;
CIA, chemiluminescence immunoassay; RIA, rapid immunoassays; AGL, agglutination; IMF,
immune-filtration; RIBA, recombinant immunoblot assay; EI, electrochemical immunosensor; NT,
nano-metal technology; GNP, gold nanoparticles; QDs, quantum dots; LFA, lateral flow assay.

2. HCV Proteins and Their Functions

The genome of HCV encodes a single polyprotein, which is a characteristic of the members of the
Flaviviridae family [23]. An HCV polyprotein containing 3010 amino acids is processed by cellular and
viral proteases to generate ten polypeptides, as shown in Figure 4 [24].

As shown in Figure 4, the HCV genome consists of four regions, including 5’UTR, structural
proteins (S), nonstructural proteins (NS), and 3’UTR. A single polyprotein is representing ten different
sections for structural proteins C (core), E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B. The
processing of polyprotein by host endoplasmic reticulum (ER) signal peptidase(s) enzymes generates
structure proteins. Whereas, the cleavage of polyprotein by HCV proteases generates nonstructural
proteins [25]. The information on the structural and non-structural proteins with respect to their
genetic stability, function, molar mass, and their applications in HCV screening by detecting them as
antigens or their corresponding antibodies are summarized in Table 1.
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Table 1. HCV protein, their functions, molar mass, and their applications in HCV screening by detecting
them as antigens or their corresponding antibodies.

HCV Proteins Genetic
Stability Function Molar Mass

HCV
Antigen

Detection?

Anti-HCV
Antibody
Detection?

Structural Proteins

Core (C): P22 Stable
A significant component of viral
nucleocapsid, Binds viral RNA

during assembly
20 KDa [26] Yes [27] Yes [28]

E: gp 35 envelope
glycoproteins

A high degree
of genetic
diversity

Receptor binding and HCV entry into
target cells

31 kDa [26] Yes [27] -

E2: gp 70 envelope
glycoproteins 62 kDa [26] Yes [29,30] -

Non-Structural Proteins
NS1: p7 small
polypeptide Stable Ion channel localized to plasma membrane 7 KDa [24] - -

NS2: p23 - Component of NS2-3 proteinase 21 KDa [24] - -
NS3: p70 - Serine protease and RNA helicase 69 KDa [24] Yes [31] Yes [7]
NS4A: p8 Stable Protease cofactor 6 KDa [24] - Yes [32]
NS4B: p27 Stable Proteins 27 KDa [24] - Yes [7]

Components of the viral replicase complex
NS5A:p56/58 Stable Cofactor for NS5B 56 KDa [24] Yes [33] Yes [7]

Regulate response to INF-α treatment
NS5B: p68 Stable RNA dependent polymerase 68 KDa [24] - Yes [7]

The core protein is an RNA-binding protein that forms a viral nucleocapsid, and it is cleaved from
the C-terminus of polyprotein by a host signal peptidase [34]. The HCV core antigen, a phosphoprotein
containing 191 amino acids, is one of the potential diagnostic markers. HCV antibody-based
technologies find it challenging to identify the individuals who have resolved their infection and
individuals with active disease. However, HCV core antigen tests are designed to detect the circulating
HCV core antigen, and thus, these test can diagnose an active infection in patients. Therefore, most
HCV screening methods are directed towards the detection of the HCV core antigen [35–38].

The HCV glycoproteins, E1 and E2, are cleaved from the polyprotein by a host signal peptidase [39].
These glycoproteins are type-I transmembrane proteins with a large N-terminal ectodomain and a
C-terminal transmembrane domain [40]. The primary function of E1 and E2 is to bind with the receptor
and allowing the entry of HCV into the host cells. Thus these proteins are detected as antigens. The p7
polypeptide is at the junction between the region of the structural and nonstructural protein of the
HCV polyprotein, and it acts as an ion channel by localizing on the plasma membrane [41]. The host
signal peptidase cleaves the p7 from the HCV polyprotein [39]. The NS2 is an integral membrane
protein that is not essential for the formation of the replication complex [42,43]. However, from the
structure of NS2, it is revealed that it is a dimeric cysteine protease with two active sites [44]. The NS3
is co-expressed with NS4A, and it is found in association with ER or ER-like membranes. When NS3 is
expressed alone, it is distributed in the cytoplasm and nucleus [45]. Further, it is found that the NS3 is
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a bifunctional protein with serine protease and RNA helicase activity. The NS4A acts as a protease
cofactor and contributes one beta-strand to the N-terminal protease domain [46].

The NS4B is a highly hydrophobic nonstructural protein, possibly containing four transmembrane
regions. The N-terminal and C-terminal of NS4B are known to be localized in the cytosol. Whereas,
a fraction of the N-terminal is also being found in the ER lumen [61,62]. NS4B functions as a component
of the viral replicase complex. The NS5A functions as a cofactor for NS5B, and it is found to regulate
the response to INF-α treatment. The NS5A is a membrane-associated protein that contains an α-helical
structure at its N-terminal, which serves as an anchor to attach on the cell membranes. Similar to most
of the HCV proteins, the NS5A is detected in association with ER or ER-derived membranes [63,64].
NS5B is a membrane-associated protein. However, in contrast with the NS5A, the transmembrane
region of the NS5B is on the C-terminal [65], and it plays a vital role during the RNA replication in cell
cultures [66]. Analogous to NS5A and most HCV proteins, the NS5B is also detected in association
with ER or ER-derived membranes [67].

Shown in Table 2 are various technologies that are used for the detection of HCV antigens and
anti-HCV antibodies in clinical specimens. The advantages and disadvantages of these technologies
are discussed in the following sections.

Table 2. The technologies used for the detection of HCV proteins either as HCV antigen or the anti-HCV
antibodies for the HCV screening.

Technology HCV Proteins Core E1 E2 NS1 NS2 NS3 NS4A NS4 NS5A NS5B Reference

EIA
Ab X X X X X X [31,47,48]
Ag X X

CIA
Ab X X X X X [28,35,49,50]
Ag X

RA
Ab X X X X [21,51]
Ag

RIBA
Ab X X X X X X X [30,52]
Ag

EI
Ab [52]
Ag X X

NT
Ab X X X [53–56]
Ag X X X

LFA
Ab X X X [57,58]
Ag X

ABA
Ab [29,59,60]
Ag X X

Ag: HCV-antigen; Ab: Anti-HCV antibody.

3. Enzyme Immunoassay (EIA)

As of now, the assays for the detection of the HCV antigen and anti-HCV antibody have evolved
through four generations of HCV immunoassays to identify HCV infected patients as shown in
Figure 5 [7].

Since 1989 with the beginning of first-generation immunoassays, wherein the recombinant c100-3
epitope from the NS4 region was used for the identification of HCV infected patients. However,
the window period (WP) from the incident infection to the detection of the protein was 4–6 months.
The first-generation assays lacked the sensitivity and the specificity. The second generation assays
were developed to overcome the drawbacks of the first generation assays. The second generation
assays developed in 1992 incorporated epitopes c22-3, c33c, c200, and HC-31 from the HCV core, NS3,
NS4, and NS4 regions, respectively. The window period was successfully reduced to 10–24 weeks.
The sensitivity of second-generation assays for HCV detection was significantly improved, making
them applicable in clinically relevant settings [7,68–70]. The third-generation assays were developed
in 1996 with a basic principle of detection of anti-HCV antibodies in plasma or serum against several
HCV protein epitopes. The third-generation assays were multi-target format and included detection of
antigens from the core (c22p), NS3 (c33c), NS4 (c100-3, 5-1-1p), and NS5 regions. The multi-target based
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assays demonstrated enhanced performance than the previous generations and were more effective
with the ability to reduce the window period to 7–8 weeks [7,68,71,72]. However, the drawback of
the assays in this generation was that the low positive predictive values in a low prevalence of HCV
infection (<10%) [73,74].
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The fourth-generation assays, more commonly known as the antigen–antibody combo assay,
simultaneously detect the HCV antigen and antibody. These assays are more convenient as two
HCV markers are identified in the same test. The fourth-generation assays provide a single platform
for the detection of antigen and antibodies in human sera. Hence, they are highly applicable in
resource-constrained settings. Further, it is essential to notice that the fourth-generation assays are very
sensitive as the window period is reduced to an all-time low of 26 days. Recently, a fourth-generation
assay was reported to increase reactivity for the detection of antigens derived from the core, NS3, NS4A,
NS4B, and NS5A regions for the detection of HCV genotypes 1a and 1b. Moreover, the improved
detection of NS3 and NS4 antigens allows highly sensitive detection of HCV genotypes 2 and 3a [28].
There are several reports on the detection of anti-HCV antibodies using enzyme immunoassays for
hepatitis C testing, as shown in Figure 6 [75–78].
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antigen detection.
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3.1. Anti-HCV Antibody Detection

Lopes et al. reported the evaluation of an EIA for anti-HCV antibody detection using single
antigen [79]. A recombinant c22 antigen was localized on the solid-phase and allowed to complex with
anti-HCV antibodies in serum samples to detect anti-HCV IgG. The complexes were detected by using
horseradish peroxidase goat anti-human IgG. This method demonstrated sensitivity and specificity
of 95% and 97%, respectively, in a study of 145 healthy controls and 106 patients with confirmed
HCV infection.

Tests for anti-HCV antibodies are usually qualitative with either a positive or a negative result.
However, several studies have found that the specimen with low signal/cutoff (S/C) ratios commonly
assigned false-positive results. Dufour et al. investigated specimens with low positive results (S/C ratios
≤ 3.7) with recombinant immunoblot assay and found that 86% of the samples were HCV negative.
Therefore, they recommended that the laboratories should report the S/C ratio for anti-HCV EIA results.
Moreover, supplemental RIBA testing should be performed for the specimens with low-positive values
to avoid reporting false-positive results [48].

3.2. Core Antigen Detection

An immunoassay that detects and quantifies the total HCV core protein in serum was reported
to detect the core antigen in the antibody-negative early phase of hepatitis C infection specimens.
Hence, this assay is highly applicable for HCV screening blood banks for the screening of blood
products [80,81]. Massaguer et al. reported on the application and the performance of HCV core
antigen immunoassay for the monitoring of a viral load after liver transplantation [82]. It is known
that the measurement of HCV-RNA concentration provides crucial information on viral load in the
liver transplantation settings. However, besides being expensive, HCV-RNA testing is not routinely
available in all laboratories. Massaguer et al. found that the quantification of HCV core antigen is
appropriate for monitoring the viral load in HCV-infected patients undergoing liver transplantation.
Alzahrani et al. also reported that the screening of blood donors by HCV core antigen assays has high
potential in minimizing the risk of using HCV positive blood from a patient with the early phase of
hepatitis C infection [83].

3.3. Multiple Antigen Detection

The current standard in diagnosing HCV infection is a two-step approach that requires screening
with an anti-HCV antibody test followed by HCV-RNA detection to confirm the infection [84]. One
of the reasons behind this two-step approach was the low specificity and sensitivity of currently
available HCV core antigen assays [85,86]. Therefore, to improve the sensitivity and specificity of the
HCV antigen assays so that they can be applied for the one stem detection of HCV infection, Hu et
al. proposed the use of a test that simultaneously detects HCV core antigen and HCV nonstructural
proteins [87,88]. The assay for the detection of multiple HCV antigens showed 98.9% specificity and
100% sensitivity compared to serum anti-HCV antibody assay and HCV-RNA detection assays.

4. Chemiluminescence Immunoassay (CIA)

The CIA uses a luminescent molecule, which serves as an indicator of the analytic reaction by
emitting the visible or near-visible (λ = 300–800 nm) radiation. In many cases the enzymes used in CIA
convert a substrate to a reaction product that emits photons. The CIA test is an epitope-specific antibody
detection test and generally shows a very similar sensitivity and specificity to the third-generation EIA
test [89].

A principle behind the diagnostic testing of antibodies by using CIA is depicted in Figure 7.
The antigens specific to the anti-HCV antibodies are coated on the magnetic beads. The addition of
samples to the solution containing magnetic bead coated with antigens allows capturing the anti-HCV
antibodies. The captured anti-HCV antibodies are then detected with the tracer antibody labeled
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with isoluminol. Upon enzymatic reactions catalyzed by peroxidase, the substrate is converted
into a reaction product that emits photons, and then the emitted photons are detected by using a
detector [90]. The CIA method is successfully applied for the screening of HCV infected patients
by detecting anti-HCV antibodies. The automated CIA assays show high precision, high reliability,
short turn-around time, and are technically simple due to full automation [89].
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4.1. Anti-Hcv Antibody Detection

Currently, various commercial automatic CIA assays are available for the detection of anti-HCV
antibodies in clinical laboratories [49]. These assays are replacing the conventional EIAs, particularly in
high-volume clinical laboratories because of the automation and high sensitivities. The CLA exhibited
considerably increased sensitivity and specificity, high positive predictive value compared to those
of EIA for the detection of anti-HCV antibodies [91]. Various commercial assays available for the
detection of the anti-HCV antibodies based on the CIA method are listed in Table 3.

Table 3. Characteristics of automated anti-HCV antibody assays approved for in vitro diagnostics.

Assay Assay Principle Solid Phase HCV Antigen Reaction Time (min)

Architect Anti-HCV, Abbott
Laboratories ECIA Paramagnetic

Particles Core, NS3, NS4 29

The LIAISON®XL murex
HCV Ab, DiaSorin CIA Paramagnetic

Particles Core, NS3, NS4 46

Vitros Anti-HCV, Ortho
Clinical Diagnostics CIA Microwell Core, NS3, NS4,

NS5 55

Elecsys Anti-HCV, Roche
Diagnostics ECA Paramagnetic

Particles Core, NS3, NS4 18

ADVIA Centaur HCV Assay,
Siemens CIA Magnetic Particles C22-3 (core), NS3,

c200, NS5 58

Access HCV Ab PLUS,
Bio-Rad Laboratories CIA Paramagnetic

Particles
Core, NS3, NS4,

NS5 55

Kim et al. evaluated the performance comparison of four anti-HCV CIAs, including the Architect
Anti-HCV assay, the Vitros Anti-HCV assay, Access HCV Ab PLUS assay, and the Elecsys Anti-HCV
assay. According to their report, these assays showed good agreement for anti-HCV antibody detection
with a range of 94.5% to 98.1%. The specificities of 98.8%, 96.5%, 98.2%, and 98.2% were found for
Architect, Vitros, Access, and Elecsys assays, respectively [92]. Ismail et al. evaluated the performance
of fully automated, enhanced CIA assay for the detection of anti-HCV antibody and found the
sensitivity and specificity of 98.9% and 97.2%, respectively [91]. Tang et al. reported a systematic
review and meta-analysis to evaluate the diagnostic accuracies of EIA based assays [93]. Feng et al.
assessed the HISCL Anti-HCV assay, which is based on CIA technology and found that this assay
showed 98.97% and 100% sensitivity and specificity, respectively, for the detection of HCV infections in
clinical samples [94].
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4.2. Core Antigen Detection

It is crucial to notice that the HCV core antigens can be detected in clinical samples during the
window period with an automated CIA. Therefore, the development of highly sensitive CIA methods
for the detection of HCV antigens is crucial for the identification of the HCV in the early stage of
infection. A typical CIA based method used for the detection of HCV core antigen is depicted in
Figure 8.
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There are limited research reports on the use of CIA for the detection of HCV antigens in order to
identify the people with HCV infections. Muerhoff et al. detected HCV core antigen in human serum
and plasma with an automated CIA and showed a 99.9% specificity and sensitivity [35]. Morota et al.
reported the microparticle CIA for the quantitative determination of HCV core antigen and found
the specificity of 99.8% by testing 5403 specimens [50]. Rockstroh et al. reported the results of
HCV core antigen CIA assay in comparison with the HCV RNA test. They found the concordance
of 99.5% and 99.24% between the HCV core antigen and HCV RNA in pre-treatment samples and
post-treatment week 12 samples. The specificity in anti-HCV positive HCV RNA negative samples
tested was 100% [95]. Liu et al. used the p-phenol derivative, 4-(1,2,4-triazol-1-yl)phenol (4-TRP) as an
efficient enhancer of the luminol–hydrogen peroxide (H2O2)–horseradish peroxidase (HRP) in the CIA
system for detection of the HCV core antigen. Their method showed a good linear relationship for
the HCV core antigen concentration in the range of 0.6–3.6 pg/mL [96]. There are no reports on the
detection of multiple HCV antigens using the CIA method.

5. Rapid Immunoassays (RIA)

Rapid immunoassays are defined as those that have the following characteristics, (i) turn-around
time till the result is less than 30 minutes, (ii) moderately complex assays that do not need to follow
the Clinical Laboratory Improvement Amendments of 1988 (CLIA’88), and (iii) an assay that does not
require specialized equipment [97,98]. The majority of rapid immunoassays (RIA) assays are applicable
in point-of-care settings, and they are manual single-use devices. The RIA designs that are used these
days are latex agglutination, immunofiltration (flow-through), immunochromatographic (lateral flow),
and optical immunoassays (OIA) [99]. The agglutination and immunofiltration assays will be briefly
introduced in this article, and the lateral flow assays will be described in a separate section. The RIA
tests are developed for the detection of anti-HCV antibodies associated with core, NS3, NS4, and NS5
regions as well as antigens of the virus [98]. The RIA is suitable where the infrastructure and the
laboratory expertise are limited [100].

The agglutination (AGL) based method uses particles that are coated with an analyte-specific
capture antibody. The analyte in a test sample triggers the formation of aggregates that can be visible to
the naked eye. The lack of sensitivity and specificity are the major drawbacks of the agglutination-based
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assays. However, due to their rapid nature, low cost, and requirement of minimal reagents, they are
used widely [101]. The agglutination based RIA are reported for the detection of antibodies only.

Immunofiltration (IMF) assays, commonly known as flow-through immunoassays, developed for
the detection of anti-HCV antibodies. The antigens specific to the anti-HCV antibody are immobilized
on the porous immunofiltration membrane. When a sample is applied to the membrane, it passes
through the membrane, and the anti-HCV antibodies in the samples bind to the immobilized antigens.
The captured antibodies are then detected with the anti-HCV antibody specific immunoglobulin G
that are designed to produce distinct colors on the region.

5.1. Anti-HCV Antibody Detection

Daniel et al. reported the RIA that was intended for the detection of anti-HCV antibodies.
In comparison to EIA, RIA demonstrated sensitivity and specificity of 99.3% and 99.0%,
respectively [102]. Firdaus et al. evaluated the performance of RIA in clinical samples. Around 15.74%
of these samples were HCV seropositive by ELISA, and 11.02% were RNA positive by nested RT-PCR.
Therefore, the results of their study showed that the RIA alone could not be relied on as an absolute
diagnostic tool for screening HCV [103].

5.2. Core Antigen Detection

Mikawa et al. reported a rapid one-step immunochromatographic assay for the detection of HCV
core antigen detection. For this method, they expressed in the HCV core antigen in Escherichia coli a
recombinant fusion protein with glutathione S-transferase (GST). The expression of a correct protein
was confirmed by immunological detection with HCV positive serum. This method was capable of
detecting 0.25–12.0 µg of the recombinant protein [57].

6. Recombinant Immunoblot Assay (RIBA)

The recombinant immunoblot assay can detect the anti-HCV antibodies present in the blood of HCV
infected patients. RIBA was mainly used as a secondary confirmation test when the first-line screening
test for HCV showed positive or indeterminate results. However, the use of RIBA based assays was
discontinued because of the improved sensitivities of other methods used for HCV detection. However,
before its discontinuation, RIBA detected anti-HCV antibodies using the recombinant antigens and
synthetic peptides from a core, NS3, and NS5 proteins for immobilization onto a membrane [104,105].
Due to its robust specificity, this method was used as additional serological testing, and it became
clinically obsolete with the availability of molecular tests [106]. Even though there are several reports
on the application of RIBA for the detection of HCV infected patients, other immunoassays with higher
sensitivity and specificity took precedence [107–110].

7. Electrochemical Immunosensors (EI)

Similar to any other immunoassay, the sensitivity and specificity of EI based assays depend
on the highly specific molecular recognition between antigens and antibodies. The EI based assays
have attracted massive attention from the scientific community for their fast and highly sensitive
detection antigens [111,112]. The advantages of EI are high sensitivity, short turn-around time,
and cost-effectiveness [113,114].

Figure 9 depicts a typical fabrication method of an EI and its application in the detection of an
analyte. As shown in Figure 9, the nanocomposites of AuNPs/ZrO2-Chits and AuNPs/SiO2-Chits were
used for the detection of the HCV core antigen. The primary HCV core antibodies are immobilized on the
AuNPs/ZrO2-Chits nanocomposite modified on glassy carbon electrode (GCE). Whereas, the secondary
antibodies are immobilized on the AuNPs/SiO2-Chits nanocomposite. Cyclic voltammetry is used to
detect the formation of the sandwich-type complex upon addition of the sample. The EI based assays
are known to exhibit high sensitivity, selectivity, and good reproducibility [115].
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7.1. Anti-HCV Antibody Detection

Zhao et al. recently reported a portable EI assay for the multiplexed detection of antibodies against
the HIV core antigen and HCV core antigen in serum [116]. The EI assay used microfluidic paper-based
electrochemical immunosensor for detection of antibodies in eight samples at a time within 20 min.
The portable, low-cost, easy to use, and high-throughput are the few advantages of this method.

7.2. Core Antigen Detection

Ma et al. reported an ultrasensitive and selective EI for the detection of the HCV core antigen.
For the development of EI, they used graphitized mesoporous carbon–methylene blue (GMCs–MB)
nanocomposite as an electrode. The horseradish peroxidase-DNA-coated carboxyl multi-wall carbon
nanotubes (CMWNTs) were used as a secondary antibody layer. Under optimum conditions, the EI
exhibited a detection limit of 0.01 pg mL−1 with high selectivity [117]. Valipour et al. reported a
label-free EI for ultrasensitive detection of HCV core antigen in serum samples. With the help of a
modified glassy carbon electrode, the linear detection range of 0.08–110 pg mL−1 with the detection
limit of 10 fg mL−1 was achieved [118].

7.3. Detection of Other Antigens

Liang et al. developed a sandwich immunoassay for the detection of HCV NS5a protein using a
glassy carbon electrode modified with an au-moo3/chitosan nanocomposite. The assay showed a wide
detection range of 1 to 50 µg mL−1 with the detection limit of 1 ng mL−1 [119].

8. Nanotechnology

The remarkable progress in nanoscience and nanotechnology in the last decade has opened
a new way of developing assays for the identification of HCV infection with high sensitivity and
specificity [120]. The use of nanomaterials and nanoparticles such as gold nanoparticles (GNP),
quantum dots (QDs), silver nanoparticles, carbon or silica nanoparticles, and magnetic beads had led
the way for the development of highly sensitive immunosensors [121–125]. In this article, only the
methods that use GNP or QDs for the detection of HCV were discussed.

8.1. Anti-HCV Antibody Detection

Recently, Cheng et al. developed a technique that allows the enzyme-mediated assembly of GNPs
for the colorimetric detection of the anti-HCV antibody, as shown in Figure 10 [126].
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interaction by thiocholine generated from AchE catalyzed hydrolysis reaction in the presence of
anti-HCV antibody (adopted from Cheng Y, Tang H, Jiang J. Anal. Methods, 2017, 9, 3777–3781).

As shown in Figure 10, the aggregation of GNPs induced by the acetylcholinesterase-catalyzed
reaction allows colorimetric detection of the anti-HCV antibody with the detection limit of 10−13 g mL−1

anti-HCV antibody. Duan et al. developed an assay for rapid and simultaneous detection of anti-HBV
and anti-HCV antibodies on a protein chip using nano-gold immunological amplification and the
silver staining method. The assay used a mixture of NS3, NS5, and HCV core antigens for the
detection of anti-HCV antibodies with the detection limit of 3 ng mL−1 [53]. Liu et al. reported the
protein array-based detection of HCV using QDs. The anti-HCV antibody in serum was detected by
immobilizing the highly purified HCV NS3, NS4, NS5, and core antigens on the surface of encoded
beads. A clinical study using this method found that the sensitivity, specificity, and accuracy were
97.5%, 96.0%, and 97.1%, respectively [127].

8.2. Core Antigen Detection

Yin et al. developed an assay for HV core antigen detection based on the GNP probes. In this
method, anti-HCVcAg monoclonal antibodies were functionalized on the magnetic microparticles
probes were with that recognize and bind HCV core antigen. The GNPs were modified with the
polyclonal antibody and the barcode single-stranded DNA (ssDNA). The HCV core antigen in the
samples allows the formation of GNP-HCV core antigen-MMP sandwich immuno-complex, which is
then separated magnetically. The magnetically separated immuno-complex with the barcode ssDNA
is characterized by real-time PCR for the quantification of HCV core antigen. The detection limit of
this method was reported to be 1 fg mL−1 [54].

8.3. Detection of Other Antigens

Roh et al. proposed the QDs-supported RNA oligonucleotide method for the detection of HCV
NS5B protein using a biochip with high sensitivity and specificity. Their approach allowed to detect
the HCV NS5B viral protein in the range of 1 µg mL−1 to 1 ng mL−1 and a limit of detection of
1 ng mL−1 [56,128]. Roh et al. reported a technique that uses a nanoparticle-supported aptamer probe.
The target HCV NS3 was detected visually by using the QDs based RNA aptamer with the detection
limit of the 5 ng mL−1 level [55].

9. Lateral Flow Assay (LFA)

Lateral flow assay, also known as immuno-chromatographic assays (ICA), is gaining high interest
recently because they are low-cost, simple, rapid, and allow the integration with portable detection
devices. The LFAs are performed on a membrane strip with various parts including the application
pad, conjugate pad, nitrocellulose membrane, and adsorption pad assembled on a plastic backing [129].
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In general, the nitrocellulose membrane contains two lines, one each for an analyte and internal control,
as shown in Figure 11.

Sensors 2019, 19, 4257 13 of 20 

 

barcode ssDNA is characterized by real-time PCR for the quantification of HCV core antigen. The 
detection limit of this method was reported to be 1 fg mL−1 [54]. 

8.3. Detection of Other Antigens  

Roh et al. proposed the QDs-supported RNA oligonucleotide method for the detection of HCV 
NS5B protein using a biochip with high sensitivity and specificity. Their approach allowed to detect 
the HCV NS5B viral protein in the range of 1 μg mL–1 to 1 ng mL–1 and a limit of detection of 1 ng 
mL–1 [56,128]. Roh et al. reported a technique that uses a nanoparticle-supported aptamer probe. 
The target HCV NS3 was detected visually by using the QDs based RNA aptamer with the 
detection limit of the 5 ng mL−1 level [55]. 

9. Lateral Flow Assay (LFA) 

Lateral flow assay, also known as immuno-chromatographic assays (ICA), is gaining high 
interest recently because they are low-cost, simple, rapid, and allow the integration with portable 
detection devices. The LFAs are performed on a membrane strip with various parts including the 
application pad, conjugate pad, nitrocellulose membrane, and adsorption pad assembled on a plastic 
backing [129]. In general, the nitrocellulose membrane contains two lines, one each for an analyte 
and internal control, as shown in Figure 11. 
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9.1. Anti-HCV Antibody Detection

Xiang et al. reported a double antibody sandwich-lateral flow immunoassay for the rapid and
straightforward detection of HCV. They screened several recombinant proteins, including HCV core
antigen, E1, E2, P7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B for the highly specific screening of HCV. In
this study, they found that the full-length core and NS3 proteins have the dominant immunodominant
epitopes of the HCV genome that were used for the development of LFA [58]. Kosack et al. evaluated
the diagnostics accuracy of the ImmunoFlow HCV from Core Diagnostics for the detection of anti-HCV
antibodies. The assay demonstrated 100% sensitivity and 100% specificity [130]. There are several
reports on the OraQuick HCV rapid antibody test. Lee et Gao et al. reported the overall specificities
of OraQuick HCV test to 99.6%–99.9% [131]. Cha et al. also evaluated the OraQuick HCV test for
its performance in the detection of HCV and found the clinical sensitivity and specificity of 97.8%
and 100%, respectively [132]. The sensitivity and specificity of this method were 94.1% and 99.5%,
respectively [133].

9.2. Core Antigen Detection

Wang et al. developed the method for detection of the HCV core antigen by using a highly specific
aptamer. The detection limits for their method were found to be 10 pg mL−1 and 100 pg mL−1 by using
scanner detection and detection with naked eyes [134].

10. Conclusions

The development of technologies for the identification of HCV infected patients has been a hot
topic of research for the last three decades. It is crucial to screen the blood donors for HCV infection to
avoid the spread of HCV. Furthermore, it is crucial to screen organ donors in liver transplant surgeries.
Beyond this, the screening of HCV in the general population is of paramount importance to control
hepatitis associated illness including fibrosis, cirrhosis, and possibly hepatocellular carcinoma, because
they are preventable. In many cases, it is crucial to detect HCV infection during the window period.
It is evident from the presented articles that research on the HCV detection methods has reduced the
window period from six months to 26 days. Therefore, the current study should be focused on the
ultrafast HCV screening methods that not only demonstrate high sensitivity and specificity but also
they should demonstrate the ability to detect the HCV as early as in less than a week after infection.
It is known that the effective use of antiviral medicines can cure more than 95% of HCV infected
people. Nonetheless, only screening of HCV is not enough for combating the HCV infection because,
for the successful treatment of hepatitis, it is important to know the HCV genotype. Therefore, future
efforts should be engaged towards the simplistic yet highly specific and sensitive methods that not
only screen for HCV but also allow the HCV genotyping simultaneously.
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