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Abstract There is copious evidence of abnormalities in
resting-state functional network connectivity states, grey and
white matter pathology and impaired cerebral perfusion in
patients afforded a diagnosis of multiple sclerosis, major de-
pression or chronic fatigue syndrome (CFS) (myalgic enceph-
alomyelitis). Systemic inflammation may well be a major el-
ement explaining such findings. Inter-patient and inter-illness
variations in neuroimaging findings may arise at least in part
from regional genetic, epigenetic and environmental varia-
tions in the functions of microglia and astrocytes. Regional
differences in neuronal resistance to oxidative and inflamma-
tory insults and in the performance of antioxidant defences in
the central nervous system may also play a role. Importantly,
replicated experimental findings suggest that the use of high-
resolution SPECT imaging may have the capacity to differen-
tiate patients afforded a diagnosis of CFS from those with a
diagnosis of depression. Further research involving this form

of neuroimaging appears warranted in an attempt to overcome
the problem of aetiologically heterogeneous cohorts which
probably explain conflicting findings produced by investiga-
tive teams active in this field. However, the ionising radiation
and relative lack of sensitivity involved probably preclude its
use as a routine diagnostic tool.
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Introduction

Many pa t i en t s wi th mul t ip le sc le ros i s (MS) , a
neuroinflammatory illness, major depressive disorder
(MDD), a neuroprogressive condition and chronic fatigue
syndrome (CFS) (myalgic encephalomyelitis), a phenotype
of no fixed aetiology, share a range of underlying abnormali-
ties [1, 2]. These include mitochondrial dysfunction; systemic
inflammation; oxidative stress; a range of autoimmune phe-
nomena; hypothalamic-pituitary axis dysfunction and evi-
dence of structural and functional brain change obtained by
neuroimaging using magnetic resonance imaging (MRI),
functional MRI (fMRI), magnetic resonance spectroscopy
(MRS), positron emission tomography (PET) and single-
photon emission computerised tomography (SPECT) (also
known as single-photon emission tomography (SPET)) and
cognitive symptoms [1–3]. Neuroimaging abnormalities in
MS are well recognised, and there are numerous excellent
reviews on the subject [4–6]. There are also many excellent
reviews of neuroimaging abnormalities in MDD utilising
voxel-based morphometry (VBM) which is widely used with-
in neuropsychiatry [7–11]. Such neuroimaging abnormalities
are routinely seen in many patients afforded a diagnosis of
CFS according to international consensus criteria [3]. Such
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abnormalities have been discerned via MRI [12–14], fMRI
[15–17], MRS [17–19] and PET [20].

Despite the existence of such data, however, there would
appear to be no comprehensive review of neuroimaging ab-
normalities in patients afforded such a diagnosis which in-
cludes the most recent evidence obtained via VBM analysis.
There have been few attempts to compare the transdiagnostic
neuroimaging data obtained for patients with MS and MDD
[2] although there have been several studies comparing neu-
roimaging abnormalities seen in MS patients with or without
co-morbid depressive symptoms which appear to demonstrate
changes in global and regional patterns of white and grey
matter reduction [21–23]. Similarly, there have been few at-
tempts to compare neuroimaging data in MS, MDD and CFS
[2, 3]. We aim to remedy this by engaging in such an in-depth
review. We have chosen to focus on data examining resting-
state functional connectivity, white and grey matter structure
and volume and cerebral perfusion for twomain reasons. First,
this renders the analysis manageable in terms of length.
Second, and perhaps more importantly, these parameters are
strongly influenced by the presence of systemic inflammation
[24–31]. Hence, by comparing and contrasting neuroimaging
data in these domains, we may be in a position to comment on
mechanisms driving neuroimaging abnormalities in these ill-
nesses which might be similar or different, which in turn could
speak to differences in the pathogenesis of these conditions.
To this end, we will review data on resting-state functional
connectivity, white and grey matter abnormalities and abnor-
malities in cerebral perfusion in patients with various subtypes
of MS before examining data relating to the same parameters
in MDD and CFS.

Neuroimaging Abnormalities in MS

Resting-State Functional Connectivity in MS

Functional dissociation or disconnection between large-scale
resting-state neural networks is a characteristic feature of
relapsing-remitting MS (RRMS) in the advanced stage of
the disease [32, 33]. Moreover, the degree of dissociation cor-
relates with the severity of disability in multiple dimensions
and with the extent of T2-lesion load [32, 33]. The clinical
significance of these abnormalities is emphasised by data
demonstrating that functional connectivity between networks
is significantly stronger in patients with preserved cognitive
function and correlates with lower lesion load and other struc-
tural abnormalities [34].

Cortical reorganisation in patterns of resting-state network
connectivity is evident in patients with a clinically isolated
syndrome [35] and is typically apparent as increased function-
al connectivity which is widely regarded as an adaptive mod-
ification in an attempt to mitigate the deleterious effects on

brain function by disease processes [35, 36]. This pattern of
reorganisation involves several networks and has been most
commonly reported in the executive control network,
sensory-mode network and default-mode network (DMN)
[32, 37].

Some authors report an increase in the functional connec-
tivity within resting-state networks in patients with RRMS
[38–40] while others report a decrease [32, 41]. Specific rest-
ing networks such as the DMN and resting-state motor net-
works display increased or decreased connectivity with some
other networks, which suggests a general reorganisation of
connectivity between and within neural networks rather than
a simple pattern of increase or decrease [39, 41].

Several research teams have also reported correlations be-
tween abnormal intra-network functional connectivity and
clinical parameters, but these relationships are far from
straightforward [42–44]. For example, while more studies re-
port an inverse relationship between functional connectivity
and clinical disability [45–47], other studies indicate a positive
association between functional connectivity and clinical dis-
ability [39].

The same variation in patterns persists for specified dimen-
sions of disability such as impaired motor function where
reduced and increased connectivity within the network is as-
sociated with impaired motor performance [44, 48]. Increased
connectivity within the dorsal premotor cortex correlates with
increasing clinical disability as measured by the Expanded
Disability Status Scale (EDSS), and this has been held once
again to be an adaptive reorganisation aimed at preserving
motor function [43]. However, this team of authors have also
reported that impaired regional connectivity in the left cere-
bellar hemisphere, a region of the brain which regulates mul-
tiple aspects of motor performance, is associated with increas-
ing clinical disability [39]. The latter pattern appears to pre-
dominate in advanced stages of disease where impaired con-
nectivity throughout the motor network is associated with a
higher burden of symptoms [48]. In this context, it is notewor-
thy that recovery from acute relapse appears to be associated
with changes in resting-state motor network connectivity [49].
It has also been proposed that reduced activity in the medial
prefrontal cortex or the anterior cingulate cortex (ACC) may
in fact function as a state marker for the disease [50].

The picture is if anything more complex in studies investi-
gating the resting-state functional connectivity associated with
cognitive dysfunction within the DMN, as impaired and en-
hanced conductivity between and within sub-regions in the
DMN have been repeatedly observed [51, 52]. However, once
again, decreased connectivity within this region of the brain
and associated impairment of cognitive performance appears
to be the most common pattern with advancing disease sever-
ity [42, 47].

When considered as a whole, the data would suggest that in
early or mild disease, there is a compensatory positive

Mol Neurobiol (2018) 55:3592–3609 3593



reorganisation within and between resting-state networks
which eventually are overcome by disease progression [35,
53, 54]. This would explain data illustrating changes in the
patterns of connectivity with increasing disease severity but
not how such patterns are modified by gender, which seems to
be an issue worthy of research [55]. Finally, impaired neural
connectivity between the hippocampus and the subgenual cin-
gulate, parietal and prefrontal regions correlates with the se-
verity of depression [54]. Interestingly, such defects in con-
nectivity are provoked by activated microglia in the hippo-
campal region [54].

White Matter Abnormalities in MS

Conventional structural MRI of MS patients is characterised
by the existence of cortical demyelination and focal and dif-
fuse white matter (WM) lesions [56–58]. Researchers have
reported a plethora of variations in T1 and T2 signals which
may well reflect considerable intra-patient variability in un-
derlying lesion pathology [59, 60]. Several research teams
using MR approaches such as magnetisation transfer ratio
(MTR), magnetic resonance spectroscopy (MRS) and diffu-
sion tensor imaging (DTI) have reported a wide range of ab-
normalities in seemingly normal-appearing WM (NAWM)
[61–63]. These include changes in the diffusion properties of
water, reduced MTR, abnormal T1 and T2 relaxation times
and a range of metabolic abnormalities including reduced N-
acetyl aspartate, increased glutamate/glutamine and reduced
choline [64–71]. In addition, prolonged T1 and T2 times have
also been reported in diffusely abnormal WM (DAWM),
which is suggestive of decreased myelin density, axonal loss
and chronic fibrillary gliosis [72, 73]. It is also noteworthy that
NAWM abnormalities revealed by MTR histogram analysis
worsen over the disease course when compared with age- and
sex-matched healthy controls [74, 75].

Grey Matter Abnormalities in MS

Grey matter (GM) pathology is evident in the hippocampus,
basal ganglia, hypothalamus, cerebellum and spinal cord [76].
GM atrophy is seen in the earliest stage of the disease, and its
extent is predictive of the development of cognitive disability,
physical disability (as indexed by the EDSS) and overall dis-
ease prognosis (reviewed [77, 78]). It is also of interest that
GM atrophy increases over time as the disease worsens, which
is a phenomenon which is not apparent in WM atrophy [79].
While there is scant post-mortem evidence of an inflammatory
origin of GM pathology [80], biopsies taken from patients at
early disease stages reveal a different picture—there is ample
evidence of T-cell infiltration, activated microglia and astro-
cytes together with other markers of chronic inflammation
associated with cortical lesions and diffuse injury [81, 82].

The reasons for the discrepancy between in vivo and post-
mortem studies are not clear but may stem from re-
myelination processes which are far more active in GM than
WM (reviewed [83]). However, it should be noted that there is
evidence of neurodegenerative as well as inflammatory dam-
age in the GM of RRMS patients and current debate centres on
whether such neurodegeneration is independent of inflamma-
tion or has an independent origin [79, 84]. There is evidence
suggesting that neurodegenerative damage is secondary to
mitochondrial dysfunction and impaired ion channel activity
[85, 86]. Such data are difficult to interpret however as several
authors have concluded that mitochondrial dysfunction seen
in the central nervous system of MS patients is in fact driven
by chronic inflammation in general and oxidative bursts in
particular [87, 88]. Moreover, an intriguing study conducted
by Frischer and fellow workers established an inverse relation
between neuronal integrity in the GM and the magnitude of
inflammation rather suggesting that neurodegenerative pro-
cesses are not independent of inflammatory drivers [87].
Once again, given the relationship between the development
of systemic inflammation and neuroinflammation, it seems
reasonable to conclude that chronic inflammation in the pe-
riphery makes a significant contribution to the development of
central GM pathology.

Cerebral Perfusion in MS

There is a considerable and accruing body of research dem-
onstrating globally reduced cerebral perfusion and blood vol-
ume abnormalities in MS patients obtained via the use of
SPECT [89]; PET [90] and, more recently, dynamic suscepti-
bil i ty contrast-enhanced perfusion MRI [91–93].
Interestingly, this state of chronically impaired cerebral blood
flow (CBF) appears to exist in all subtypes of the illness [94,
95], develops in patients with a clinically isolated syndrome
and in very early disease [93, 96] and would seem to affect
NAWN before deep GM changes [93].

Several research teams have reported relationships between
abnormal patterns of perfusion and various elements involved
in the pathophysiology or pathogenesis of the illness [94,
97–99]. For example, Taghizadeh and colleagues examined
the brains of 25 RRMS patients via 99mTc-labelled SPECT
and reported a positive association of the degree of perfusional
impairment between disease duration and disease severity
indexed by the EDSS [97]. Interestingly, these authors also
reported a significant increase in perfusion following 20 ses-
sions of hyperbaric oxygen treatment but unfortunately, this
improvement was not accompanied by any improvement in
disease status as measured by any objective or subjective pa-
rameter [97]. Another team of authors utilising dynamic sus-
ceptibility contrast-perfusion MRI reported a significant de-
crease in cerebral hypoperfusion in 22 RRMS patients, com-
pared with an equal number of sex-matched controls, whose

3594 Mol Neurobiol (2018) 55:3592–3609



extent correlated with the severity of their self-reported fatigue
[98]. There is also considerable evidence associating reduced
CBF in GM and WM with the development of cognitive dys-
function in multiple domains [100–103].

Neuroimaging Abnormalities in MDD

Resting-State Functional Connectivity in MDD

Several studies have revealed dysfunction of functional con-
nectivity within or between large-scale functional resting-state
neural networks such as the DMN in patients withMDD using
resting-state fMRI [104]. Abnormalities in two large-scale
neuronal networks—the frontoparietal central executive net-
work (CEN) and the medial prefrontal-medial parietal
DMN—are consistent findings in depression and potential
therapeutic targets for transcranial magnetic stimulation
[105]. Resting-state functional conductivity is also altered by
some psychotropics efficacious in depression such as keta-
mine, lithium and antidepressants [106, 107].

Intra-network changes are exemplified by enhanced con-
nectivity within the anterior DMN and abnormal connectivity
between the anterior and posterior DMN. Inter-network ab-
normalities are evidenced by increased connectivity between
the anterior DMN and salience network and diminished con-
nectivity between the posterior DMN and the CEN (review
[108]). MDD network research has largely focused on the
DMN which is understandable given that this network incor-
porates the anterior cingulate and an extensive area of the
medial prefrontal cortex extending into the orbitofrontal cor-
tices considered to play a major if not dominant role in the
pathophysiology of the illness [109]. Anterior regions of the
DMN, particularly the medial prefrontal cortex, mediate self-
referential processing while posterior regions are associated
with the formation and retrieval of episodic memories (review
[109]).

Dissociation of functional connectivity between the anteri-
or and posterior areas of this region and dissociation between
the DMN and other large-scale resting networks are charac-
teristic of patients with MDD [110, 111]. Zhu and fellow
workers reported that a pattern of dissociation between ante-
rior and posterior functional connectivity in resting-state
DMNs of first-episode, treatment-naïve young adults with
MDD is evidenced by increased functional connectivity in
anterior medial cortical regions (especially the medial prefron-
tal cortex and ACC) and decreased functional connectivity in
posterior medial cortical regions (especially the posterior cin-
gulate cortex/precuneus) in MDD patients compared with
control subjects [110]. In the depressed group, the increased
functional connectivity in the anterior medial cortex correlated
positively with rumination score, while the decreased func-
tional connectivity in the posterior medial cortex correlated

negatively with over-general autobiographical memory test
scores [110]. More recent data have established a relationship
between the patterns of functional dissociation in connectivity
between the precuneus (PN), a region within the DMN, and
the clinical presentation and/or severity of MDD [111, 112].
For example, the magnitude of hyperconnectivity between the
PN and the dorsal medial prefrontal/ACC region is associated
with increased severity while reduced connectivity between
the PN and fusiform areas is associated with the variable
symptoms seen in the illness.

While alterations in brain connectivity centring on the
DMN continue to be a focus of research, abnormal patterns
of connectivity are also seen within and between the affective
network and the cognitive control network (CCN) [113, 114].
In fact, several trait- and state-dependent abnormalities in pat-
terns of functional connectivity have been reported in the cer-
ebellum, ACC, lingual gyrus, dorsolateral prefrontal cortex
(DLPFC), middle frontal gyrus, amygdala and insula [113].

Successful therapy is associated with changes in connec-
tivity within the DMN and corticolimbic areas, and it is note-
worthy that changes in the latter areas correlate with the de-
gree of clinical improvement while changes in the DMN do
not [114]. The success or otherwise of transcranial magnetic
stimulation would also appear to depend on the positive mod-
ulation of functional connectivity in this instance both be-
tween and within the CEN and DMN [105].

White Matter Abnormalities in MDD

DTI utilising tract-based spatial statistics (TBSS) [115] has re-
vealed disrupted WM tracts and WM degeneration in the pre-
frontal cortex, the temporal cortex and limbic system, the unci-
nate fasciculus, the internal capsule and the superior longitudi-
nal fasciculus (review [116, 117]). The geographical extent of
these WM tract abnormalities has prompted some authors to
describe MDD as a disconnection syndrome [118]. DTI studies
have reported microstructural abnormalities, albeit of a some-
what different pattern, in WM integrity characterised by low
fractional anisotropy (FA) values associated with MDD in el-
derly patients [119, 120], middle-aged patients [121], young
treatment-naïve first-episode adolescent patients [122, 123] (re-
view [124]) and even disease-free individuals with a familial
vulnerability to the development of the illness [125, 126]. A
recent meta-analysis conducted by Chen and fellow workers
using TBSS concluded that there was consistent evidence of
WM architecture and integrity disruption in the frontal and
thalamic regions, and the anterior limb of the internal capsule
and importantly that WM reduction in the corpus callosum is
associated with more severe disease [127].

Interestingly, Le Win and others reported similar findings
using a DTI TBSS-based approach in adolescents with MDD
[128]. Lower FAvalues in the WM associated with the corpus
callosum and the cortical-striatal-thalamic circuit were
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detected, as well as lower FA values in the superior and ante-
rior corona radiata [128]. Very similar findings in adolescent
MDD have been reported by Hendeson and others in a study
aiming to investigate possible associations between patterns
of WM abnormalities and symptom severity in this patient
group [129]. In this study, MDD severity was once again
correlated with reduced WM integrity in the corpus callosum,
but also with reduced integrity in the anterior cingulum, ante-
rior thalamic radiation and sagittal stratum [129]. They also
reported that the presence of anhedonia and irritability was
associated with disrupted WM tracts in the anterior limb of
the internal capsule and in projection fibres to the orbitofrontal
cortex and impaired integrity in the anterior corona radiata,
sagittal stratum and in efferent tracts leading to temporal and
prefrontal cortices [129]. It is also noteworthy that Bessette
et al. reported a unique pattern of FA abnormalities in the genu
of the corpus callosum, thalamus, midbrain and internal and
external capsule tracts, which have yet to be reported in adult-
onset MDD [123].

Yuan and fellow workers reported whole-brain reductions
in participants with first-episode geriatric MDD in remission,
characterised by low FA values in the right superior frontal
gyrus, left middle temporal gyrus, left inferior frontal gyrus,
right middle occipital gyrus, right inferior parietal lobule, left
lingual gyrus, right putamen and right caudate [119]. Taylor
et al. also reported widespread decreases in WM FAvalues in
participants with late-onset depression consistent with a state
of disconnection between frontal and limbic regions [120].
However, these authors also detected increases in FA values
in the frontal gyri and ACCwhich was predictive of resistance
to the selective serotonin re-uptake inhibitor antidepressant
sertraline [120]. Interestingly, the same team reported that
those with late-onset MDD in remission following antidepres-
sant therapy displayed WM changes which were almost iden-
tical to normal patterns of WM integrity seen in never-
depressed patients [130].

The weight of evidence indicates that compared with
healthy controls, those with midlife-onset MDD display de-
creased FA values in the left anterior limb of the internal cap-
sule, left posterior cingulate cortex, right cingulate cortex,
bilateral parahippocampal gyri, hippocampus, pons, right
and left frontal lobes, sagittal striatum and cerebellum [117,
131]. There is also evidence that FA values in the left anterior
limb of the internal capsule correlate negatively with MDD
severity [117].

Huang and others reported lower FAvalues in the splenium
of the corpus callosum, left cingulum, inferior fronto–occipital
fasciculi, superior longitudinal fasciculi and uncinate in pa-
tients than in controls, and that this measure might serve as a
vulnerability marker for the illness [126]. Xiao et al. reported a
virtually identical pattern of WM pathology in the cerebral
peduncle, the anterior and posterior limbs of the internal cap-
sule, the external capsule and the cingulum in patients with

chronic depression and individuals at high familial risk of
developing the illness, suggesting that whole-brain WM dis-
ruption precedes the development of active disease [125]. It is
also notable that several authors reported significant differ-
ences between people with MDD in an acute episode com-
pared with those in remission [132, 133], as well as negative
correlations between FA and current illness severity.

Widespread decreases in FA values in the cingulum, supe-
rior and inferior longitudinal fascicule and corpus callosum
compared with first-episode patients are characteristic of re-
sistant to antidepressant therapy [116]. It is also notable that
FA values in the ventromedial prefrontal region in this group
are lower even in relation to MDD subjects with a history of
remission and recurrence [134]. Finally, recent meta-analyses
concluded that compromised WM integrity in the sub-callosal
cingulate cortex and in cortical-limbic or cortical-subcortical
circuits was most commonly associated with the development
of treatment-resistant depression [111, 116].

Not all research teams have reported significant WM ab-
normalities inMDD patients however [121, 135]. The reasons
for such discrepant results are not entirely clear, but differ-
ences in technique and evidence that depression is an
aetiologically heterogeneous syndrome rather than a single
discrete neurobiological entity [136] is likely also relevant.

Grey Matter Abnormalities in MDD

Several research teams have detected severe or moderate GM
volume loss in the amygdala, the thalamus and many cortical
brain regions, including the pre- and post-central gyri,
orbitofrontal cortex, ACC and temporal cortex and lateral pre-
frontal cortex [137–140]. Relatively recent meta-analyses pre-
sented convergent findings for the ACC and many
orbitofrontal cortical structures but divergent findings for lim-
bic and striatal regions [138, 141–143]. Readers interested in a
more detailed consideration of the variable findings regarding
the patterns of GM pathology in MDD are referred to excel-
lent discussions by [142, 144].

From a treatment perspective, several research teams have
reported that patients with treatment-resistant depression dis-
play greater reductions in GM volume in the left temporal
cortex and right medial frontal cortex compared with age-
and sex-matched controls or patients in remission [145,
146]. Reduced GM volume is also a replicated finding in
treatment-naïve first-episode adolescent patients [147–149]
and indeed may even precede the first episode [143]. The
significance of such reductions from a clinical perspective
was recently investigated by Luby et al. who reported that
the rate of GM loss in adolescent patients correlated with the
severity of depression, probably stemming from aggressive
synaptic pruning [150].

The pattern of GM structural changes in young first-
episode people with MDD is not straightforward, however,
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with decreases in GM volume in the left lingual gyrus and
left putamen and increases in GM volume in the left poste-
rior cingulate cortex and inferior cingulate gyrus, being re-
ported by Yang and others [151]. This abnormal pattern of
GM volume change has also been reported by others. For
example, Kong and fellow authors reported decreased GM
volume in the DLPFC and left frontal gyrus but GM volume
increases in the left thalamus and right insula in treatment-
naïve patients with first-episode depression [152]. Larger left
hippocampal bilateral posterior cingulate volumes appear to
be predictive of benefit from antidepressant therapy while
low volumes in the hippocampal area in particular are pre-
dictive of resistance to antidepressants and disease recur-
rence. Reductions in hippocampal volume are associated
with non-remitting depression, and it is interesting that
GM volume change accelerates with duration of illness, con-
cordant with there being an active process of neuroprogression
in the disorder [153–155].

Cerebral Perfusion in MDD

The earliest data were obtained from studies using PET and
SPECT [156, 157] based on operator-dependent analysis and
revealed a general pattern of reduced regional CBF (rCBF) in
the DLPFC, ACC and medial prefrontal cortex [156, 158].
However, the use of techniques such as resting-state perfu-
sion with arterial spin labelling (ASL) perfusion MRI has
revealed complex and variable patterns of regional hyperper-
fusion and hypoperfusion compared with unaffected controls
[10, 159–162]. For example, Duhameau et al. reported statis-
tically significant hyperperfusion regions in a depressed pa-
tient group compared with a healthy control group in the
pallidum, amygdala, putamen, ACC and left prefrontal
dorsomedial cortex [161]. On the other hand, another re-
search team using the same imaging techniques combined
with whole-brain voxel-based analyses in a study involving
medication-naïve adolescent patients and matched healthy
controls reported significant hypoperfusion in the amygdala
together with paralimbic, frontal and cingulate regions and a
pattern of hyperperfusion in the subcallosal cingulate, fusi-
form gyrus superior insula and putamen [10]. Another imag-
ing technique previously used in cardiac imaging is 320-slice
computed-tomography (CT), which was used to assess rCBF
in MDD. There was a reduction in the pulsatility index in the
MDD group as well as lower rCBF in the left GM than the
right in those with MDD [163].

Overall, the most common observations are hyperperfusion
in the sub-colossal cingulate [164–166] and hypoperfusion in
frontal regions [167, 168], but there is also copious evidence
of abnormal perfusion levels in numerous regions of the brain
in MDD patients. A recent meta-analysis by Chen and others
of studies of resting CBF in medication-free MDD patients
obtained by PET, SPECT and ASL revealed elevated values

in the right caudate and right thalamus and reduced values in
the right ACC relative to healthy individuals [169]. This meta-
analysis also revealed somewhat inconsistent changes in
rCBF in the frontal–limbic–thalamic–striatal circuits and the
precuneus [169].

There are significant differences in the rCBF abnormalities
between patients with refractory versus non-refractory MDD
ascertained by ASL [161, 164]. One of the largest such studies
was of 24 individuals with refractory MDD (RM), 37 patients
with non-refractory MDD (NRM) and 42 healthy controls.
Individuals with NRM displayed impaired perfusion in the
left prefrontal cortex compared with the controls and elevated
perfusion largely confined to limbic-striatal areas [164]. RM
patients on the other hand displayed impaired perfusion main-
ly in the bilateral thalamic and frontal regions. Importantly,
NRM patients displayed higher CBF in the limbic striatal
areas, left and right hippocampal areas and right lentiform
nucleus compared to RM patients and healthy controls [164].

Several research teams have also reported an improvement
or reversal of rCBF abnormalities following successful anti-
depressant therapy [162, 170]. For example, Kaichi et al. re-
ported significantly impaired CBF, in the middle and inferior
frontal gyri, left inferior temporal gyri and the subgenual an-
terior cingulate, detected via ASL, which normalised follow-
ing a 6-week course of the selective serotonin re-uptake inhib-
itor escitalopram [162]. In addition, Ota and others reported
decreased CBF values in the inferior frontal cortex and ACC
which reversed following successful antidepressant therapy
[170]. This latter finding is of particular interest as there is
some evidence that impaired CBF in the ACC and indeed
the thalamus may be the cause of the dysfunction seen in
MDD patients in these regions of the brain [10]. In support
of this view, there are replicated data demonstrating increased
glucose metabolism in these areas following successful anti-
depressant therapy [171, 172] and that the impairment of glu-
cose metabolism seen in active disease may well stem from a
decrease in neurones in these brain regions [173].

Neuroimaging Abnormalities in CFS

Resting-State Functional Conductivity in CFS

Several authors have reported abnormal patterns of functional
connectivity in patients afforded a diagnosis of CFS according
to international criteria, whose magnitude correlates with
levels of fatigue and pain [174–177]. The precise patterns of
impairment are highly variable however.

Wortinger and fellow workers reported a significant de-
crease in functional connectivity of the salience network to
the right posterior insula in adolescent CFS patients compared
with age-matched healthy controls. Interestingly, this decrease
was negatively associated with the severity of fatigue [174]. In
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addition, this research team reported a positive association
between pain severity and salience network functional con-
nectivity to the left middle insula and caudate which differed
between the two groups [174]. Kim et al. also reported an
association between altered patterns and strength of functional
connectivity and fatigue severity in CFS. In this instance, the
authors reported increased resting-state connectivity between
the posterior cingulate cortex and the rostral and dorsal ACC
whose magnitude significantly correlated with fatigue levels
measured by the Chalder Fatigue Scale score while controlling
for depression [175]. Gay and fellow workers have also re-
ported widespread impairments in functional connectivity, in
this case within the lateral prefrontal cortex and between the
occipital lobes and other brain regions [176]. These authors
also reported impaired connectivity between the left anterior
midcingulate cortex and the sensory motor network and be-
tween the left posterior cingulate cortex and the salience net-
work [176]. Importantly, the magnitude of each of these con-
nective impairments correlated with the severity of reported
fatigue. On the other hand, Boissoneault and others reported a
pattern of increased functional connectivity within and be-
tween brain regions in their trial cohort compared with healthy
controls. In particular, their CFS participants displayed in-
creased connectivity in the bilateral superior frontal gyrus,
ACC, precuneus, thalamus, supplementary motor area, right
postcentral gyrus and posterior cingulate gyrus [177]. This
contrasted markedly with healthy participants, who displayed
greater functional connectivity in the left parahippocampal
gyrus, right insula, right precentral gyrus and hippocampus.
It is noteworthy however that the relatively reduced level of
connectivity in the left parahippocampal gyrus seen in CFS
correlated with fatigue severity [177].

This team also examined the patterns of dynamic and static
functional connectivity in CFS compared with unaffected con-
trols during a fatiguing cognitive task and reported major
group differences. Specifically, Boissoneault and others re-
ported decreased dynamic connectivity between the hippo-
campus and right superior parietal lobule and increased static
inferior frontal gyrus connectivity to occipital and temporal
structures and to the cerebellum [178]. It is also noteworthy
that healthy controls displayed greater dynamic connectivity
increases than did CFS patients between the temporo-occipital
regions and insula structures and between thalamus/striatum
and the precuneus [178]. Moreover, the degree of static or
dynamic connectivity impairment correlated with the self-
reported fatigue in CFS [178]. It is difficult to determine a
typical pattern of impaired functional connectivity in CFS by
a consideration of these studies. It would appear to be different
from those displayed inMS andMDD, but clearly, more stud-
ies are needed to confirm this, and a study examining resting
functional state abnormalities containing CFS, MDD and MS
patients allowing direct comparisons to be made could be very
informative. Factors likely to affect functional connectivity

include peripheral inflammation, disease severity, disease pro-
gression and genetic heterogeneity.

White Matter Abnormalities in CFS

Early research investigating potential neuroanatomical abnor-
malities usingMRI focused onWMusing observer-dependent
analysis [14, 179–181]. Natelson and others reported subcor-
tical WM hyperintensities in 52 subjects fulfilling the original
CDC selection criteria [182] compared with a control group
who had undergone MRI investigation for head trauma [179].
On the other hand, Greco and others reported widespread
demyelination inmany of their CFS participants but at a group
level, WM hyperintensities were not significantly different
from healthy controls [180]. However, Lange and others also
reported significantly increased WM hyperintensities in their
CFS group who were free of comorbid anxiety or depression
compared with healthy controls and CFS subjects with co-
morbid psychopathology [183]. Interestingly, when the data
obtained from the two CFS groups were combined, the levels
of WM hyperintensities were not significantly different from
the control group [183]. In another large study involving 48
CFS patients, Cook and others reported widespread WM ab-
normalities in their cohort whose extent correlated with symp-
tom severity [14]. It should also be noted that a more recent
MRI study using observer-dependent methods failed to detect
any WM abnormalities in their CFS cohort although these
patients were not recruited according to international consen-
sus guidelines [184].

Recent studies based on T1- and T2-weighted MRI using
VBM have universally reported significantly increased WM
abnormalities in CFS subjects selected according to the
BFukuda^ CDC criteria compared with healthy participants
[185–188]. Puri and others reported reduced WM voxel vol-
umes in the left occipital lobe while Barnden and others re-
ported reduced WM voxel volumes in the frontal cortex, cau-
date and hypothalamus [185, 186]. Pertinently, Shan and
others reported decreased WM volume in the left frontal oc-
cipital lobe and the fasciculus whose extent increased with self
and clinically assessed symptom severity and also worsened
over time [188]. Finally, Barnden and others reported reduced
WM volume in the prefrontal cortex, the ventrolateral thala-
mus and internal capsule even following correction for the
potential effects of anxiety and depression [187].

Grey Matter Abnormalities in CFS

Several research teams utilising VBM have reported reduced
global or regional GM volumes in those with CFS [185,
188–191]. Puri and fellow workers in a study consisting of
26 CFS participants and 26 age- and sex-matched healthy
controls reported significantly reduced GM volume in the left
and right occipital poles, left lateral occipital cortex (superior
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division), left supracalcrine cortex, the posterior division of
the left parahippocampal gyrus and the right angular gyrus
[185]. Okada and fellow workers on the other hand reported
reduced GM volume in the right prefrontal cortex [189]. It is
also worthy of note that these authors also reported that the
extent of GM volume reduction in the right prefrontal cortex
correlated with the severity of reported fatigue [189].
However, it should also be noted that this was a relatively
small study consisting of just 16 CFS participants and 16
healthy controls [189].

The results reported by deLange and others appear to be
particularly interesting as their studies were specifically de-
signed to examine potential relationships between the severity
of symptoms in CFS and cerebral abnormalities and the effect
of cognitive-behavioural therapy (CBT) on those cerebral ab-
normalities respectively [190, 191]. In the first relatively large
study consisting of 28 CFS patients and 28 healthy controls,
these authors reported significant reductions in global GM
volume in CFS and that the extent of such reductions corre-
lated with the degree of physical disability [190]. In the later
study, these authors also reported a global reduction in GM
volume which increased significantly, albeit slightly (approx-
imately 6%), following a course of CBT [191]. Finally, in their
longitudinal MRI study, Shan and others have recently report-
ed a progressive decrease in WM volumes in the left inferior
fronto–occipital fasciculus in a cohort of 15 CFS participants
(unchanged in 10 normal controls), with decreased regional
WM volumes in adjacent regions and GM volume reduction
in contralateral regions over a 6-year period; these regional
WM and GM volumes once again correlated with illness se-
verity [188].

Abnormalities in Cerebral Perfusion in CFS

Most of the SPECTstudies investigating potential CBF abnor-
malities in CFS have reported areas of significant cerebral
hypoperfusion, at either a global [20, 192] or regional level
[193, 194] compared with unaffected controls. However, a
minority of researchers reported no significant CBF impair-
ments in comparison with unaffected controls or MDD partic-
ipants [195, 196]. The reasons for such discrepant findings are
unclear, but fewer participants and differences in selection
methods may be relevant. The much larger studies conducted
by Ichise, Schwartz, Costa and Goldstein, and their colleagues
[20, 192–194] appear worthy of particular consideration as
they examined multiple brain regions and perhaps even more
importantly, apart from Ichise and others [192], examined dif-
ferences in patterns of abnormal perfusion between partici-
pants with CFS and MDD, which is currently a contentious
area.

Ischise et al. compared rCBF in 60 CFS participants and 14
healthy controls and reported significant reductions in
cortical/cerebellar rCBF ratios in the frontal, temporal, parietal

and occipital lobes, providing objective evidence of wide-
spread functional impairment of the brain in the vast majority
of their CFS subjects [192]. Schwartz et al. examined SPECT
data differences in terms of regional perfusional deficits and
mid-cerebral uptake indices between 45 CFS participants, 14
MDD participants, 27 participants with AIDS dementia com-
plex (ADC) and 38 healthy controls [20]. These authors noted
more areas of impaired frontal and temporal perfusion in the
ADC group compared with those with CFS or MDD.
However, the mid-cerebral uptake index was lower in patients
with ADC and CFS than in the MDD and healthy controls
groups [20].

The largest study examining potential 99mTc-HMPAO
SPECT differences between CFS and MDD patients was
carried out by Costa and others [193]. It included 40
healthy participants, 67 CFS participants (both with and
without psychiatric co-morbidity) and 29 early- and late-
onset MDD participants [193]. These authors reported sig-
nificantly greater global and brain-stem hypoperfusion in
CFS participants free of psychiatric symptoms compared
with controls and MDD participants, which was not ap-
parent in CFS participants displaying symptoms of anxi-
ety and depression [193]. Goldstein and others compared
high-resolution 99mTc-HMPAO SPECT imaging patterns
of rCBF in 33 CFS subjects (55 ± 10 years), 26 age-
matched MDD participants and 19 healthy participants
in an attempt to investigate the potential pathophysiology
of CFS [194]. Importantly, they reported dorsofrontal hy-
poperfusion as the dominant profile in CFS while hypo-
perfusion seen in MDD was predominantly in the right
orbitofrontal lobe, left temporal lobe and, in particular,
the left anterior frontal lobes [194].

More recent research using xenon-computed tomography,
ASL and high-resolution SPECT reported consistently im-
paired CBF at a global and regional level at rest and during
exercise [197–200]. Yoshiuchi and others reported reduced
CBF in the right and left hemisphere in CFS participants free
of psychiatric comorbidity comparedwith healthy controls but
also noted that hypoperfusion in CFS patients with psychiatric
comorbidity appeared to be exclusively limited to the left
hemisphere [198]. These results have been broadly replicated
by Biswal and others who reported impaired regional and
global CBF in the vast majority of their participants with ev-
idence of regional hyperperfusion in a minority [197].
Evidence of hyperperfusion in some CFS subjects has also
been supplied by Machale and others who reported signifi-
cantly increased hyperperfusion in the left thalamus in CFS
compared with a pattern of hyperperfusion in the left prefron-
tal cortex of MDD [200]. Finally, Patrick-Neary and others
reported significantly decreased CBF in CFS participants dur-
ing maximal exercise compared with healthy controls which
they suggested as a cause of the profound disability experi-
enced by many patients [199].
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The potential capacity of SPECT to differentiate CFS from
MDDmay be highly significant as CFS is a purely descriptive
diagnosis reliant on phenotype only, and there is accumulating
evidence that the diagnosis identifies a clinically and
aetiologically heterogeneous syndrome rather than a discrete
biological entity even when such a diagnosis is made via the
application of international guidelines [1, 3, 201, 202].
Unsurprisingly, research in this area has been bedevilled by
a lack of reproducibility which is also the case in many other
areas where diagnostic categories are descriptive and homo-
geneity of causation is assumed (reviewed in [203]). This
issue in ‘CFS research’ is even more complex because of the
frequent use of unvalidated criteria which only mandate the
presence of chronic mental and physical tiredness [204] or
where a diagnosis is based on the presence of intermittent
symptoms based on a population study of fatigue in a localised
population [205]. Hence, a method for increasing the homo-
geneity of a study population and excluding patients with
MDD is to be welcomed. The question of heterogeneity is also
relevant to the next section of this paper which briefly exam-
ines mechanisms whereby systemic inflammation could be a
major element initiating and maintaining neuropathology in
different illnesses even though investigation with an array of
neuroimaging techniques produces very different and often
illness-specific results.

Factors Affecting Severity and Specificity
of Neuropathology

There is widespread agreement that the relationship between
the presence of systemic inflammation and various dimen-
sions of neuropathology is established via the conveyance of
inflammatory signals to the brain through a range of humoral
and neural routes culminating in the activation of microglia
and astrocytes [206, 207]. Once activated, these glial cells
secrete a range of inflammatory molecules such as pro-
inflammatory cytokines, reactive oxygen species, reactive ni-
trogen species, prostaglandins and quinolinic acid [208, 209].
These are well-documented effects and have been described in
a number of detailed reviews [210, 211].

Another source of neuropathology is more indirect howev-
er and stems from the loss or corruption of the regulatory
functions exerted by these glial cells via a sophisticated com-
munication system with neurones and oligodendrocytes
founded on the secretion of exosomes containing mRNAs,
miRNAs, caspases and P2X7 (reviewed in [212]). This is a
highly complex area, but the key point from the perspective of
this paper is that abnormally expressed microglial exosomal
miRNAs appear to be independent contributors to the devel-
opment maintenance and illness-specific patterns of neuroin-
flammation seen in many different neurodegenerative and
neuroprogressive disorders [213]. Thus, microglial activation

following prolonged systemic inflammation could produce an
illness-specific or at least a range of characteristic WM abnor-
malities depending on a particular signature of abnormally
expressed miRNAs. The mechanisms underpinning this phe-
nomenon are currently unknown but may lie in the recently
discovered capacity of at least some miRNAs to activate toll-
like receptors and are another mechanism underpinning ‘ster-
ile’ immune activation [214, 215].

Microglia also display distinct regional differences in den-
sity and transcriptional identity particularly in bioenergetic
and immunoregulatory pathways [216, 217]. This underpins
observations of region-specific sensitivities to microglial dys-
function and in particular responses to different pathogen-
associated molecular patterns [216, 217]. Hence, this provides
another mechanism whereby systemic inflammation could
produce geographically variable neuropathology. Another
highly pertinent example of the role of microglial genetics in
creating unique patterns of abnormalities can be found from
recent data in MS, where microglia deficient in the production
of caspase-8 are considered to be the source of necroptotic
markers seen in active plaques of MS patients. These glial
cells are likely one of the main drivers of neuronal and oligo-
dendrocyte destruction seen in this illness [218, 219]. The
heterogeneous responses of microglia to external or internal
stimuli are also under epigenetic regulation involving DNA
methylation, histone acetylation and the expression of a wide
range of miRNAs [220]. It is also noteworthy that different
genomic patterns of DNAmethylation within and outside glial
cells are associated with different patterns of neuropathology
in distinct brain regions [221].

Predictably, astrocytes also display extensive variability in
biochemical, biophysical and immunoregulatory properties in
distinct brain regions (reviewed in [222, 223]). The signalling
pathways orchestrated by astrocytes are also strongly influ-
enced by genetics [224]. Importantly, some of the neuropro-
tective functions of astrocytes are also under epigenetic con-
trol. Reactive microglia also compromise astrocytic function
and survival in an inflammatory environment with the latter
property resulting from a decrease of histone acetylation in
astrocytes and a silencing of Nrf-2-mediated antioxidant de-
fences [225].

Antioxidant defence systems also demonstrate pronounced
regional differences in composition and efficacy. For example,
thioredoxin and thioredoxin reductase levels vary in different
brain regions [226]. This is also true of glutathione transferase,
glutathione reductase and glutathione peroxidase, with the
former two enzymes being reduced in the striatum, neocortex,
cerebellum and hippocampus, whereas expression of the last
enzyme appears to be reduced in the striatum, cerebellum,
cortex and corpus callosum [227, 228]. The expression and
activity of NADPH oxidases also displays considerable vari-
ation in different brain regions [229]. Selenium distribution
across different brain regions is also heterogeneous, with the
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highest concentrations being in the parietal inferior lobule,
putamen and occipital cortex and the lowest levels in the cer-
ebellum and medulla [230].

Different discrete neuronal populations existing in different
brain regions display differential susceptibility to neurodegener-
ative stressors which is a phenomenon often described as selec-
tive neuronal vulnerability (SNV). Well-documented examples
include neurones in the entorhinal cortex, frontal cortex, hippo-
campal CA1 region and amygdala, which are the most suscepti-
ble to neurodegenerative death in populations of neurones most
sensitive to the neurodegeneration associated with Alzheimer’s
disease [231, 232]. The increased susceptibility of dopaminergic
neurones of the substantia nigra to neurodegenerative destruction
in Parkinson’s disease is equally well documented [233, 234]. It
should be stressed that the pattern and extent of neural damage
seen in different neurodegenerative disease is not just dependent
on SNV but also stems from specific factors unique to the
aetiology of the illness (reviewed in [235]). SNV also exists
within populations in the same brain region. For example, the
hippocampal CA1 neurones are much more vulnerable than are
CA3 neurones to global cerebral ischaemia [236, 237] and oxi-
dative stress [238, 239].

Brain volume and structure are strongly influenced by ge-
netic factors [240–242] and resting-state functional connectiv-
ity [243, 244], GM and WM volume [245, 246] and CBF
[247, 248] are sensitive to environmentally induced epigenetic
changes in gene methylation and/or acetylation and/or chang-
es in the expression of a wide range of miRNAs. These factors
may also produce heterogeneity in neuroimaging phenotypes
between individuals with the same illness or between illnesses
even if systemic inflammation is a major driver of neuropa-
thology in each instance.

Conclusions and Future Directions

We begin by briefly summarising the key neuroimaging
findings.

In MS, there is evidence of impaired neural connectivity
and functional dissociation on resting-state fMRI, which cor-
relates with the severity of disability. Cortical demyelination
and reduced cerebral perfusion also occur. Early GM atrophy
appears to be predictive of the subsequent level of disability
and of the prognosis.

MDD is associated with dysfunction of functional connec-
tivity and both microstructural and macroscopic WM abnor-
malities, including disrupted tracts. There is evidence of GM
volume loss in several regions.

CFS is associated with cerebral hypoperfusion, while large
VBM studies have shown evidence of GM and WM changes.

The evidence given in this paper points to the likelihood
that systemic inflammation may be a major underlying cause
of structural and functional neuroimaging abnormalities

reported in seemingly diverse disorders including MS, MDD
and CFS. Furthermore, reported inter-patient and inter-illness
differences may be a function of regional genetic, epigenetic
and environmental variations in microglial and astrocytic
functioning.

While SPECT appears to be able to differentiate CFS from
MDD, its use of ionising radiation makes it unlikely to be a
neuroimaging modality of choice in the future for this pur-
pose. Rather, efforts are likely to be undertaken to develop
corresponding functional magnetic resonance-based tech-
niques instead. Not only are magnetic resonance techniques
free of the use of ionising radiation, they also afford a higher
resolution than does SPECT (even high-resolution SPECT).
In this vein, a further development is likely to be the use of
machine learning classification methodologies, which may,
for example, be able in the near future to differentiate different
disorders and, within a given disorder, be able to classify
patients with a given diagnosis. Finally, there is also a strong
case for further combining neuroimaging techniques with in-
vestigative modalities from the fields of biochemistry, neuro-
physiology, environmental medicine, immunology and
epigenetics.
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