
optGpSampler: An Improved Tool for Uniformly
Sampling the Solution-Space of Genome-Scale Metabolic
Networks
Wout Megchelenbrink1,2,3*, Martijn Huynen2,3, Elena Marchiori1,3*

1 Institute for Computing and Information Sciences (ICIS), Radboud University Nijmegen, Nijmegen, The Netherlands, 2 Centre for Molecular and Biomolecular Informatics

(CMBI), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 3 Centre for Systems Biology and Bioenergetics (CSBB), Radboud University Nijmegen

Medical Centre, Nijmegen, The Netherlands

Abstract

Constraint-based models of metabolic networks are typically underdetermined, because they contain more reactions than
metabolites. Therefore the solutions to this system do not consist of unique flux rates for each reaction, but rather a space
of possible flux rates. By uniformly sampling this space, an estimated probability distribution for each reaction’s flux in the
network can be obtained. However, sampling a high dimensional network is time-consuming. Furthermore, the constraints
imposed on the network give rise to an irregularly shaped solution space. Therefore more tailored, efficient sampling
methods are needed. We propose an efficient sampling algorithm (called optGpSampler), which implements the Artificial
Centering Hit-and-Run algorithm in a different manner than the sampling algorithm implemented in the COBRA Toolbox for
metabolic network analysis, here called gpSampler. Results of extensive experiments on different genome-scale metabolic
networks show that optGpSampler is up to 40 times faster than gpSampler. Application of existing convergence diagnostics
on small network reconstructions indicate that optGpSampler converges roughly ten times faster than gpSampler towards
similar sampling distributions. For networks of higher dimension (i.e. containing more than 500 reactions), we observed
significantly better convergence of optGpSampler and a large deviation between the samples generated by the two
algorithms. Availability: optGpSampler for Matlab and Python is available for non-commercial use at: http://cs.ru.nl/
,wmegchel/optGpSampler/.

Citation: Megchelenbrink W, Huynen M, Marchiori E (2014) optGpSampler: An Improved Tool for Uniformly Sampling the Solution-Space of Genome-Scale
Metabolic Networks. PLoS ONE 9(2): e86587. doi:10.1371/journal.pone.0086587

Editor: Simon Rogers, University of Glasgow, United Kingdom

Received June 7, 2013; Accepted December 13, 2013; Published February 14, 2014

Copyright: � 2014 Megchelenbrink et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by The Netherlands Organisation for Scientific Research (NWO) and The Netherlands Organisation for Health Research and
Development (ZonMW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: w.megchelenbrink@cs.ru.nl (WM); elenam@cs.ru.nl (EM)

Introduction

Modelling metabolic networks helps to unravel the complex

machinery of metabolism within the cell. A classic approach is to

model the reaction pathways in a dynamic fashion, using detailed

kinetic data. For genome-scale models, often involving hundreds

or thousands of reactions and metabolites, it is experimentally

prohibitive to obtain the kinetic parameters involved. A constraint-

based approach has successfully been applied to model and

address a wide range of biological questions in the absence of

detailed kinetic data [1,2]. By using a steady-state assumption, a

first type of constraint dictates that all metabolite concentrations

stay constant over time (mass-balance). A second type of constraint

limits the flux rate for each reaction (flux-capacity and direction-

ality). The relation between the m metabolites and n reactions is

described in the m|n stoichiometric matrix S. A positive

stoichiometric coefficient Si,j means that the metabolite i is

produced by reaction j and a negative entry indicates that the

metabolite is consumed in that reaction. At steady-state, the mass-

balance and flux capacity constraints can be formulated as in eq.

(1) and inequality (2) respectively.

d~xx

dt
~S~vv~0, ð1Þ

vj,minƒvjƒvj,max,Vj[f1 . . . ng, ð2Þ

where~xx and~vv are vectors of metabolite concentrations and flux

rates respectively. Each flux rate vj is bounded by inequality

constraint (2). Although in some cases the bounds are known from

experiments, for most reactions this is not the case and arbitrarily

large values are used. Since the matrix S is a system of linear

equations, the constraints in eq:mass-balance and inequality (2)

form a bounded convex space [3], containing all possible values of

~vv. A major challenge is to characterize the biologically interesting

flux distributions among all alternatives. Since the stoichiometric

matrix is fixed, the remaining possibility is to add additional

constraints or tighten the inequality bounds in (2). This can be

done by incorporating measured flux data, which is often

laborious, expensive or difficult to obtain, even for a small subset

of all reactions.

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e86587

http://cs.ru.nl/∼wmegchel/optGpSampler/
http://cs.ru.nl/∼wmegchel/optGpSampler/
http://creativecommons.org/licenses/by/4.0/

Many constraint-based methods have been proposed to find flux

distributions that are of biological interest. A successful approach is

Flux Balance Analysis (FBA) [4], that introduces a biologically

relevant objective function and uses linear programming to find a

flux distribution that optimizes this objective. FBA proved to be

especially useful for cell types with a well-defined objective

function, such as maximum growth for unicellular species.

Although FBA has successfully been applied to determine possible

phenotypes and byproduct secretion in various experimental

settings, it is often unable to determine the underlying (internal)

flux states [5]. Furthermore, for many objective functions, a wide

range of alternative optima exists [6].

In order to obtain an estimated probability distribution of

attainable flux values for each reaction in the network, methods

based on uniform sampling are used. A fast algorithm for this task

is called hit-and-run (HR) [7]. HR collects samples by iteratively

choosing a random direction and a random step size in that

direction such that the next point also resides in the solution space.

For the irregularly shaped solution spaces of metabolic networks

the Artificial Centering Hit-and-Run (ACHR) algorithm [8] is

better suited, because it is tailored to sample in the elongated

directions of the solution space. Partly based on ACHR, the

uniform random sampling procedure known as gpSampler is often

used to sample metabolic networks and implemented in the

COnstrained Based Reconstruction and Analysis (COBRA)

Toolbox [9]. Although these algorithms are often referred to as

uniform random samplers, their convergence behaviour in the

context of genome-scale metabolic networks has not yet been

thoroughly investigated. Besides its irregular shape, the solution

space of genome-scale metabolic networks are often high-

dimensional, containing hundreds to almost a thousand dimen-

sions as in the human metabolic network reconstruction.

Therefore in this paper we investigate uniform random

sampling in the context of metabolic networks. Our contributions

are threefold: (1) we introduce an efficient and effective random

sampling algorithm which combines the advantages of ACHR and

gpSampler; (2) we propose a new measure to quantify the deviation

between samples obtained from two independent sampling runs;

(3) we perform a thorough analysis on five metabolic network

models.

Methods

Uniform Random Sampling
One of the first attempts to sample the flux states in a metabolic

network used a rejection sampling technique [10]. In rejection

sampling, the space of interest is enclosed by a regular shape, such

as a parallelepiped. Samples are drawn from the uniform

distribution over the parallelepiped and rejected if they violate

the constraints for the enclosed space of interest. The nice feature

of rejection sampling is that the samples are uniformly distributed

over the enclosed space. However, fitting a regular shape tightly

around the space of interest is hard and often impossible. This

means that in higher dimensions, the volume of the enclosing

shape grows explosively compared to the volume of the shape of

interest [7]. In this case, a very large fraction of the samples have

to be rejected, making rejection sampling an inefficient method for

genome-scale models.

The hit-and-run (HR) algorithm [7] mitigates this problem,

because it samples directly from the solution space (see Fig. 1). Hit-

and-run starts from a point~xx0 in the bounded space. It chooses an

arbitrary direction ~uu1 from the uniform distribution on the

boundary LB of the unit sphere in Rn. The distance from~xx0 to the

boundary of the solution space in the direction of ~uu1 determines

the maximum distance it can travel. An arbitrary step size l1 is

selected in the (negative) direction of~uu1, such that the sampler does

not step out of the constrained space. The next point ~xx2 is

determined by travelling distance l1 in the direction ~uu1. By

iterating this process, HR generates a chain of consecutive sample

points. The fact that HR uses only the current point to obtain the

next sample makes it a Markov Chain Monte Carlo (MCMC)

method [11], which has been shown to converge towards the

target distribution (uniform in our setting).

In general, the constraints in metabolic network models lead to

a convex space of irregular shape which is elongated for reactions

whose flux rates are loosely constrained, and is narrow for tightly

constrained fluxes. A consequence of this phenomenon is that

many sample points are close to the boundary of the solution

space. Since HR chooses a direction~uui uniformly from all possible

directions, this enforces the sampler to perform small steps, so the

next generated point is close to the previous one. In practice this

prevents the sampler to fully explore the rest of the solution space.

ACHR [8] alleviates the problem of getting trapped in regions

close to the boundary because it tries to sample in the elongated

directions, thus making larger steps possible. It iteratively

generates samples by using an ‘artificial’ centre of the space,

which is empirically estimated at each iteration using the points

sampled so far. ACHR consists of two phases: warm-up and (main)

sampling. In the warm-up phase an arbitrary initial point ~xx0 in the

solution space is selected to generate a chain ~xx0, . . . ,~xxW of W§n
points. The requirement W§n ensures that after the warm-up

phase, the set of directions spans LB with probability one [8].

Then the main sampling phase starts from ~xxW . By iteratively

updating the empirical centre and by using a direction from a

randomly chosen previous sampled point to this centre, ACHR

Figure 1. Illustration of hit-and-run. Hit-and-run starts at the point
x0 in the solution space S. It chooses a random direction u1 and
determines the maximum distance it can travel forwards or backwards
in that direction. A random step size l1 is chosen on the line u1[S. The
next point x1 is obtained by travelling l1 in the direction u1 . By iterating
this process T times, samples are obtained that are uniformly
distributed in the space, when T??.
doi:10.1371/journal.pone.0086587.g001

An Improved Tool for Sampling Metabolic Networks

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e86587

explores elongated directions of the space. Figure 2a illustrates the

warm-up and the main sampling phase of ACHR.

The sequence of ACHR iterates is not a Markov chain, due to

the dependence of directions on prior iterates. Thus the sequence

of iterates is not guaranteed to converge to a uniform distribution

[8].

ACHR is at the core of gpSampler [9], a popular sampling

algorithm for metabolic network analysis. Figure 2b illustrates how

gpSampler works. The highly irregular shape of the solution space of

metabolic networks makes a uniform direction choice on LB a

poor choice. Therefore, in order to generate a number of T

samples, gpSampler’s warm-up phase uses linear programming in a

two parts procedure. In part (1) 2n warm-up points are generated

by consecutively minimizing and maximizing the flux rate of each

reaction. In part (2) the remaining T{2n warm-up points are

generated by assigning random weights to the fluxes that should be

optimized. The optimal solutions (and thus the warm-up points)

for a linear program reside on the boundary of the constrained

space [12]. Often, this causes the allowed step sizes to become very

small, which makes it hard to move away from the boundary.

Therefore, gpSampler uses a linear transformation to ‘pull’ the

warm-up points more into the interior of the solution space. Then,

each moved warm-up point is used in the main sampling phase to

generate T separate chains of length k. The user provided step count

parameter k determines the number of ACHR iterates between

the starting point ~xxW and the end point ~xxWzk of each chain.

Finally, the T end points of the chains are returned as samples.

optGpSampler
We propose to combine a part of the warm-up phase of

gpSampler and ACHR. The resulting algorithm is called optGpSam-

pler (see Table 1. Algorithm 1). First, 2n warm-up points are

Figure 2. Conceptual difference between the samplers. Conceptual difference between (a) ACHR, (b) gpSampler and (c) optGpSampler. Warm-
up points are depicted as gray rectangles, samples that are stored as gray circles. Uncoloured circles denote points that are visited by the sampler,
but are not stored as a sample. a) The original ACHR algorithm starts at a point~xx0 and iteratively moves to a next point~xxi =~xxi{1zli~uui . One chain is
used, with step count k = 1. The chain contains W warm-up points and T samples. b) GpSampler uses the linear programming procedure described
in the main text to find T warm-up points. Then, each of the warm-up points is iteratively moved in the space in the same fashion as the ACHR
algorithm in (a), leading to T sampling chains. Each chain of length k returns its end point as a sample. c) OptGpSampler obtains 2n warm-up points.

For each of the p processors used, a warm-up point is chosen randomly as the initial point~xx0
j , with j[f1,2, . . . ,pg. Starting from the warm-up points,

new points are found in the same fashion as for the ACHR algorithm in (a), but now only every kth point is kept as a sample. Again, the result is T
sample points, but now these have travelled k up to kT=p steps from a warm-up point. Compared to gpSampler, it uses less but much longer
sampling chains.
doi:10.1371/journal.pone.0086587.g002

An Improved Tool for Sampling Metabolic Networks

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e86587

generated using part (1) of gpSampler’s warm-up procedure by

successively minimizing and maximizing the flux through each

reaction. We do not generate T warm-up points as in gpSampler

because running a linear program on a large network is much

more time-consuming than random sampling. Moreover, although

the weight vector for the linear program is randomly chosen, the

constraints in eq. (1) and inequality (2) often lead to the same or a

similar optimal solution. This could bias the starting points and

directions choice of our sampler.

The sampling phase of optGpSampler is similar to that of ACHR

(see Fig. 2c), but only selects a sample at each k iterates.

Furthermore, instead of generating one chain of consecutive

sample points, optGpSampler exploits p processors and generates p
chains in parallel. In practice, the desired number of sample points

T is much larger than the number of available processors p. This

makes the length of the chains generated by optGpSampler a factor

of T=p longer than those generated by gpSampler.

We implemented optGpSampler in C++ and used Armadillo [13],

a fast linear algebra library. OpenMp [14] was utilized to start a

separate chain on p processor cores in parallel. Interfaces for

Matlab and Python enable users to easily sample existing models

with optGpSampler or integrate our sampler in new methods.

Experiments

Datasets
We benchmarked gpSampler and optGpSampler on five publicly

available reconstructions of genome-scale metabolic networks

[14]. All reactions and associated metabolites that could not carry

a flux were removed from the models prior to the sampling. The

network size remaining after this preprocessing step, i.e. the

number of m metabolites and n reactions is given between

brackets. In ascending size order, we used E. coli central

metabolism (68, 87), C. thermocellum iSR432 (288, 351), S.

cerevesiae iND750 (479, 631), E. coli iAF1260 (1032, 1532) and

H. sapiens recon 1 (1587, 2469).

Evaluation
We assessed efficiency and quality performance of gpSampler and

optGpSampler. Efficiency was measured using runtime. Quality

performance in our context amounts to measure the capability

of a sampler to effectively generate points uniformly distributed

in the solution space. Since both gpSampler and optGpSampler have

no theoretical convergence guarantees, we use two methods:

empirical convergence diagnostics and a new method called

xy-deviation.

Empirical Convergence Diagnostics
Empirical convergence diagnostics are used to test whether the

sampled distribution converges towards a stationary one. There is

not always good agreement between different convergence

diagnostic methods [16]. Therefore we use the following three

convergence diagnostics tests: Gelman and Rubin [17], Geweke

[18] and Heidelberger and Welch (HW) [19]. They are available

in the Convergence Diagnosis and Output Analysis (CODA)

Toolbox for MCMC [20].

The Gelman and Rubin test is multivariate: it returns a so called

R value (with R§1:0). R values smaller than 1.2 indicate

convergence, with values closer to 1.0 indicating better results.

The other two tests are univariate. The Geweke test returns a z-

value for each reaction, with lower values indicating better

convergence. The HW test returns whether a sample distribution

for a given reaction converged (value = 1) or not (value = 0).

Table 1. Algorithm 1.

Input: S: the solution space; T : sample count; k: step count, p: number of processors;
output: P: sequence of T sampled points;
/* Warm-up phase */

1 Generate 2n warm-up points as in part (1) of gpSampler’s warm-up phase;
/* Sampling-phase */

2 P~vw;
3 L~qTk=pr ;
4 for i = 1 to p do
5 ~xx0~ a point randomly chosen from the 2n warm-up points;
6 for j = 1 to L do
7 ~xxj = point generated from ~xxj{1 by performing one iterate of the ACHR sampling phase;

8 if j mod k = = 0 then
9 P~vP,~xxjw;

10 end
11 end
12 end

optGpSampler(S, T , k, p).
doi:10.1371/journal.pone.0086587.t001

Table 2. Runtimes for the networks analysed.

Network
name m n N(S)

Time
Gp (SD)

Time
optGp (SD)

E. coli
core

68 87 24 137.16
(0.62)

3.63
(0.05)

C. therm.
iSR432

288 351 70 258.57
(0.54)

10.20
(0.05)

S. cerev.
iND750

479 631 180 496.57
(3.07)

21.81
(0.04)

E. coli
iAF1260

1032 1532 525 1474.01
(6.78)

95.78
(2.62)

H. sapiens
recon 1

1587 2469 932 2910.26
(43.57)

349.05
(0.48)

The number of metabolites and reactions is denoted by m and n respectively.
The dimensionality of the nullspace of S, is given by N(S). Time gp (SD) is the
mean runtime (seconds) and standard deviation for sampling T = 50.000 points
using gpSampler. Time optGp (SD) denotes the same figures for optGpSampler.
Experiments were performed on a 16 GB RAM AMD Phenom desktop pc.
doi:10.1371/journal.pone.0086587.t002

An Improved Tool for Sampling Metabolic Networks

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e86587

xy-Deviation
In general, a larger step count gives a sample distribution that is

closer to the target distribution, at the expense of a longer runtime.

Therefore, we introduce a measure called xy-deviation that

quantifies how samples generated by sampler x using a given step

count k1 deviate from those generated by sampler y using a much

larger step count k2. Specifically, a small deviation indicates that the

sample distribution generated by sampler x converged empirically

to the target distribution of y.

Given samplers x and y, step counts k1 and k2, with k2 very

large (k2~5000 in our experiments), the number c of runs, and

the number T of samples, xy-deviation is computed as follows.

1. Perform c runs of sampler x with step count k1, and c runs of

sampler y with step count k2, where each run generates T

samples.

2. Sort the points in each run (e.g., in increasing order), producing

c sorted chains of points for sampler x and y: vx
j
b,iw,

vy
j
b,iw, b[f1, . . . ,Tg, j[f1, . . . ,ng, i[f1, . . . ,cg.

3. For each reaction j, normalize the flux rates: we divide x
j
b,i

(resp. y
j
b,i) by the difference between the upper and lower

bounds of vj :

X
j
b,i~

x
j
b,i

vj,max{vj,min

, Y
j
b,i~

y
j
b,i

vj,max{vj,min

,

i[f1, . . . ,cg, j[f1, . . . ,ng, b[f1, . . . ,Tg.

4. Compute the mean chain of the c runs of y:

Y
j

b~
1

c

Xc

i~1
Y

j
b,i, j[f1, . . . ,ng, b[f1, . . . ,Tg.

5. Our assumption is that chains generated by sampler x

that converge will have small deviation from the ‘average-chain’

generated by y. For each reaction j, we measure such deviation

by computing the mean absolute deviation over the chains

generated by x from �YY j
b: Dj~

1

c|T

Xc

i~1

XT

b~1
DX j

b,i{
�YY j

bD,

j[f1 . . . ng.

Our choice to use a mean deviation over the standard deviation

is motivated by the fact that the mean deviation is more efficient

than the standard deviation in the realistic situation where some of

the measurements are in error, and more efficient for distributions

other than perfect normal [21]. Note that the range of Dj is [0,1],

and can be expressed as a percentage, which makes it convenient

to compare deviations across different reactions.

Figure 3. Empirical convergence for C. thermocellum iSR432. (a) Convergence according to the Geweke diagnostic. (b) Convergence
according to the Heidelberger-Welch diagnostic. Convergence for optGpSampler is observed at approximately 500 steps. For gpSampler, both
diagnostics only agree on convergence after k = 5000 steps. Notice the higher HW convergence fraction of the latter at k = 50 steps and at k = 5000
steps compared to the steps in between.
doi:10.1371/journal.pone.0086587.g003

Figure 4. xy-deviation for C. thermocellum iSR432. xy-deviation from samples obtained with sampler x at step count k1 to sampler y using
k2 = 5000. (a) Deviation to samples obtained by y = gpSampler. (b) Deviation from samples obtained by y = optGpSampler. In both cases optGpSampler
converges much faster to sampler y.
doi:10.1371/journal.pone.0086587.g004

An Improved Tool for Sampling Metabolic Networks

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e86587

6. Then the xy-deviation over c chains with respect to k1 and k2 is

defined as the average of the reaction deviations:

D~
1

n

Xn

j~1

Dj ð3Þ

Small values of xy-deviation indicate convergence of x to y. In the

experiments we analysed self-deviation (xx-deviation) and cross-

deviation (xy-deviation, with x and y different samplers) for

different values of k1.

Results

We used the gpSampler implementation in the COBRA Toolbox.

Results of extensive experiments are given in supplementary

material. Tables S1–S5 in File S1 provide results for all the

runtime experiments performed. Figures S1–S6 in File S1 provide

the results of the convergence diagnostic tests and xy-deviation.

We visualized how a small or large xy-deviation translates to a

similar or (highly) dissimilar sample distribution in figures S7–S11

in File S1.

Efficiency
We sampled all networks four times using T = 10, 50 and 100

thousand samples, with step count k = 50. Both gpSampler and

optGpSampler were executed in parallel mode on an AMD desktop

computer using p = 4 processor cores in parallel. Efficiency results,

summarized in Table 2, show that optGpSampler is roughly 6 to 40

times faster than gpSampler.

Quality
To asses the quality of the results, we performed four

independent runs with each sampler. Each run collected

T = 50.000 samples and was repeated for six different step counts

(k[f50,250,500,1000,2500,5000g).
We ran all convergence diagnostics with the default settings in

the CODA package. The convergence tests results were averaged

over the four runs. A univariate test for a sampler outputs a vector

of length n. Significance of the difference between gpSampler and

optGpSampler was assessed by applying the Wilcoxon signed-rank

test to the corresponding vectors. The results for the Gelman and

Rubin test indicated convergence for all experiments, in disagree-

ment with results of the Geweke and HW tests.

The obtained chains were also used to compute the xy-

deviation for the above given step count k1, and k2 = 5000. All

Figure 5. Empirical convergence for E. coli iAF1260. (a) Convergence according to the Geweke diagnostic. (b) Convergence according to the
Heidelberger-Welch diagnostic. For both convergence tests, gpSampler’s performance deteriorates when the step count is increased up to k = 2500.
Especially the good scores at low values of k seem unrealistic and could indicate convergence towards a non-uniform distribution. Results for
optGpSampler seem more stable and more reliable.
doi:10.1371/journal.pone.0086587.g005

Figure 6. xy-deviation for E. coli iAF1260 xy-deviation from samples obtained with sampler x at step count k1 to sampler y using
k2 = 5000. (a) Deviation to samples obtained by y = gpSampler. (b) Deviation from samples obtained by y = optGpSampler. Self-deviation (x~y) is
small for both samplers, but there is a large cross-deviation (x=y). For this large network, the we do not observe convergence of gpSampler to the
samples obtained by optGpSampler or vice versa as in Fig. 4.
doi:10.1371/journal.pone.0086587.g006

An Improved Tool for Sampling Metabolic Networks

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e86587

sample chains were compared by the average of the four chains

obtained at the highest step count of k = 5000.

Small networks (less than 500 reactions). On the E. coli

central metabolism network, the Geweke test returned relatively low

z-values for both gpSampler and optGpSampler (see figure S1 in File

S1). Results of the HW test indicated that optGpSampler converged

rapidly, at k = 50 step count. Both the Geweke and HW tests

showed that gpSampler needs a step count close to 500 to converge.

Results of xy-self-deviation demonstrate a large deviation of

samples generated by gpSampler with a small step count from those

generated with a higher step count. In general, results showed that

optGpSampler with a low step count generates samples that are both

close to those generated using a higher step count with the same

sampler and to those generated by gpSampler with a higher step

count.

On the C. thermocellum iSR432 network, the HW test showed

significantly higher convergence rates for optGpSampler (see Fig. 3).

Both the Geweke and HW tests showed that optGpSampler

converged at step counts bigger than 1000. The situation for

gpSampler is different: the values of the HW test dropped at step

count 250 and then increased significantly when the step count

reached 5000. This indicates two distinct points of convergence,

one at small step count values and one at large values. This

behaviour can be explained by the way gpSampler collects its

samples. It starts at a warm-up point and uses k iterates of the

ACHR algorithm to obtain a sample point. It repeats this process,

each time starting from a different warm-up point (see Fig. 2b).

These warm-up points turn out to be close to each other, as a

consequence of the linear programming procedure used. Thus

gpSampler often starts the sampling from the same area of the

solutions space. In higher dimensions, a small step count can

prevent gpSampler to ‘travel’ far from the warm-up points. In this

case the small step count causes gpSampler to show a bias towards

the regions close to the warm-up points and the sampling chain

converges towards these regions. The large xy-deviation (see

Figure 4) shows that the samples collected are different from those

sampled at a higher step count.

The results for gpSampler at large step count (k = 5000 steps)

again indicates convergence. In this case the small xy-deviation

indicates that an extended region is covered by the samples. Since

optGpSampler does not restart at a warm-up point, it is better able to

‘escape’ from the regions near the warm-up points because it

effectively uses much longer chains. Therefore, its convergence

and xy-deviation results are better.

Large networks (at least 500 reactions). The convergence

and results for the S. cerevisiae iND750 (see figure S3 in File S1) and

especially the E. coli iAF1260 network in Fig. 5 showed an even

more surprising result. For these larger models, the convergence

results for gpSampler declines when the step count is increased. For

optGpSampler, we still observed an increasing convergence perfor-

mance for the yeast network, although a much larger step count

(k~2500) was required. The more stable results for the larger E. coli

iAF1260 network could be an effect of the minimum glucose

setting of this network, which significantly reduces the attainable

flux states. The xy-deviation results in Fig. 6 indicate that the

samplers give completely different sampling results. The self-

deviation shown in Fig. 6, reveals a small variability within the four

independent runs for each sampler. This means that both samplers

give relatively stable results, and thus that the deviation results

observed between the samplers must be due to the difference

between the algorithms.

Finally, the results for the human network reconstruction (see

figures S5 and S6 in File S1) indicate that gpSampler converges

already at low k. Although we believe that the sample distributions

indeed converged in this case, it seems unlikely that they represent

a uniformly distributed sample. First, the high dimensionality of

almost a thousand and the declining results for the Geweke test

make this unlikely. Next, the huge deviation with samples obtained

by optGpSampler indicate a non-uniform distribution, especially

since we saw that optGpSampler performs better on the smaller

networks. The convergence results for optGpSampler seem more

realistic, with a relatively large z-value and a HW test result that

indicates that around 60% of the sampled flux distributions

converged.

Discussion

We proposed a new algorithm for uniform sampling of the

steady-state solution space of metabolic networks. Our algorithm

also implements ACHR, but in a different manner than the state-

of-the-art sampling method for metabolic networks (gpSampler). We

compared the runtimes with those of gpSampler, and showed its

superior efficiency. We investigated empirical convergence using

different diagnostics and showed faster convergence of optGpSam-

pler on the two smaller networks studied. Moreover, by using the

here introduced xy-deviation measure, we compared the sampled

distributions. For smaller networks, the samples obtained by

optGpSampler using a small step count are close to those obtained

with a high step count by both optGpSampler and gpSampler.

On three large networks the convergence performance of

gpSampler diminishes when the step count increases. We hypoth-

esized that the approach gpSampler takes by starting each sample

chain at a warm-up point, together with the high dimensionality of

the solution space, restrains its ability to move from the vicinity of

these warm-up points. Because our method continues the ACHR

procedure from the last collected point, it effectively uses much

larger step counts. Therefore, optGpSampler is more likely to escape

the regions near the warm-up points, leading to a better sampling

result.

For the larger networks, results showed that the convergence

observed at lower step counts does not reflect a convergence

towards the target distribution, since the sample distributions

deviate significantly from those generated using a large step count.

Therefore, especially larger networks should be sampled with a

high step count.

To the best of our knowledge there is no method to assess

whether samples are truly uniformly random distributed in a convex

space of unknown shape. Since the chains generated by ACHR are

not Markov chains, asymptotic convergence guarantees also do not

hold for both gpSampler and optGpSampler. Therefore convergence

results should be interpreted with caution. The accelerated

convergence of ACHR towards a uniform distribution was

demonstrated by [8] for convex polytopes of known shape. However

it remains uncertain to what extent the samples obtained by ACHR

for the irregular solution space of metabolic networks are truly

uniformly distributed. As expected, our experiments indicate that

convergence results deteriorate when the dimensionality of the

solution space increases, and that for the large genome-scale

metabolic networks, using a large step count is advisable.

We envisage the provided implementation of optGpSampler will

be beneficial to constraint-based metabolic network analysis, as it

provides an efficient and versatile algorithm for sampling the

irregular solution space of metabolic networks.

Supporting Information

File S1 Runtimes, convergence results and xy-deviation
for the other metabolic models considered.
(PDF)

An Improved Tool for Sampling Metabolic Networks

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e86587

Acknowledgments

We thank Sergio Rossell and Robin van der Lee for testing our

implementation and providing us with valuable feedback. We thank the

reviewers for their comments.

Author Contributions

Conceived and designed the experiments: WM EM. Performed the

experiments: WM. Analyzed the data: WM EM. Wrote the paper: WM

MH EM.

References

1. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in ux balance analysis.

Current opinion in biotechnology 14: 491–496.
2. Raman K, Chandra N (2009) Flux balance analysis of biological systems:

applications and challenges. Briefings in bioinformatics 10: 435–449.
3. Price ND, Reed JL, Papin JA, Wiback SJ, Palsson BO (2003) Network-based

analysis of metabolic regulation in the human red blood cell. Journal of

Theoretical Biology 225: 185–194.
4. Varma A, Palsson BO (1994) Metabolic ux balancing: Basic concepts, scientific

and practical use. Bio/technology 12.
5. Suthers PF, Burgard AP, Dasika MS, Nowroozi F, Van Dien S, et al. (2007)

Metabolic ux eluci- dation for large-scale models using 13c labeled isotopes.
Metab Eng 9: 387–405.

6. Mahadevan R, Schilling C (2003) The effects of alternate optimal solutions in

constraint-based genome-scale metabolic models. Metabolic engineering 5: 264–
276.

7. Smith RL (1984) Efficient monte carlo procedures for generating points
uniformly distributed over bounded regions. Operations Research 32: 1296–

1308.

8. Kaufman DE, Smith RL (1998) Direction choice for accelerated convergence in
hit-and-run sampling. Oper Res 46: 84–95.

9. Schellenberger J, Palsson BØ (2009) Use of randomized sampling for analysis of
metabolic networks. J Biol Chem 284: 5457–5461.

10. Wiback SJ, Famili I, Greenberg HJ, Palsson BØ (2004) Monte carlo sampling
can be used to determine the size and shape of the steady-state ux space. Journal

of theoretical biology 228: 437–447.

11. Gilks WR, Richardson S, Spiegelhalter D (1995) Markov Chain Monte Carlo in
Practice (Chapman & Hall/CRC Interdisciplinary Statistics). Chapman and

Hall/CRC.

12. Winston WL, Goldberg JB (2004) Operations research: applications and

algorithms. Thomson/Brooks/Cole Belmont.

13. Sanderson C (2010) Armadillo: An open source C++ linear algebra library for

fast prototyping and computationally intensive experiments. Technical report,

Nicta, St Lucia (Australia).

14. OpenMP Architecture Review Board (2008) OpenMP application program

interface version 3.0. Available: http://www.openmp.org/mp-documents/

spec30.pdf.

15. Schellenberger J, Park JO, Conrad TM, Palsson BØ (2010) Bigg: a biochemical

genetic and genomic knowledgebase of large scale metabolic reconstructions.

BMC bioinformatics 11: 213.

16. Cowles MK, Carlin BP (1996) Markov chain monte carlo convergence

diagnostics: A comparative review. Journal of the American Statistical

Association 91: 883–904.

17. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple

sequences. Statistical Science 7: 457–472.

18. Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the

calculation of posterior moments. In: IN BAYESIAN STATISTICS. University

Press, pp. 169–193.

19. Heidelberger P, Welch PD (1983) Simulation run length control in the presence

of an initial transient. Operations Research 31: 1109–1144.

20. Plummer M, Best N, Cowles K, Vines K (2006) CODA: Convergence diagnosis

and output analysis for MCMC. R News 6: 7–11.

21. Gorard S (2005) Revisiting a 90-year-old debate: The advantages of the mean

deviation. British Journal of Educational Studies: 417–439.

An Improved Tool for Sampling Metabolic Networks

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e86587

http://www.openmp.org/mpocuments/spec30.pdf
http://www.openmp.org/mpocuments/spec30.pdf

