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Abstract

The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In
particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal
growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar
advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial
interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous
bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric
potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand
microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces
atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential.
The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At
later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry
conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size
and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth
form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system
developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution,
thereby providing a useful approach for future examinations of how these properties influence the composition, diversity
and function of soil-borne microbial communities.
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Introduction

Soils are highly heterogeneous systems, containing a wide range

of micro-habitats and environmental gradients [1]. This extreme

heterogeneity, at a variety of spatial scales [2,3], offers a large

potential for niche differentiation and may be an important factor

in realizing the tremendous diversity of microbial communities in

soil [4]. Bacteria are distributed heterogeneously within the soil

matrix, and distances between individual cells and micro-colonies

are often very large in comparison to the size of bacterial cells.

Whether resources can be accessed by a given organism depends

on the distance between the microhabitats, and, perhaps more

importantly, on the level of connectivity between these microhab-

itats via water films [4]. Soil connectivity depends on the geometry

of the pore network, which impacts the distribution of soil water,

as well as the hydration status [5]. As the growth of many bacterial

species is dependent on the availability of soluble organic

compounds, the distribution of cells and the hydraulic connectivity

of soil micro-habitats will also have great implications for

competitive interactions.

Bacteria are essentially aquatic organisms, as they rely on water

for functioning and require water-filled pores or water films for

passive and/or active motility [6]. Given their ability to bridge air-

filled gaps via their hyphae, filamentous fungi may have distinct

advantages over many bacteria in unsaturated soils [7]. At low

matric potential, fungi can explore micro-habitats that appear not

to be accessible to most bacteria [8], and this may explain the

observations that fungal activity often exceeds bacteria activity

under these conditions [9–11]. Experimental work with Rhizoctonia

solani confronted with different ratios of air- and water-filled pore

volumes in sand provides evidence that having a large fraction of

air-filled pores stimulates fungal spread in soils [12]. Most soil-

bacterial cell morphologies (e.g. rods, cocci, spirals, etc.) are not

adapted to bridging the air-filled spaces that occur in non-

saturated soils. However, although bacteria are unable to cross air-

filled pores on their own, it has been shown that some motile
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bacteria can move along fungal hyphae (so-called fungal highways)

[13]. Also, it has been demonstrated that some bacterial strains,

have the ability to co-migrate with other bacteria along fungal

hyphae [14,15]. Fungal hyphae may thus promote the distribution

of motile bacteria in unsaturated soils.

Filamentous actinomycetes represent an exception within the

bacterial domain, providing a morphological bridge between

bacteria and filamentous fungi [8], and although they are much

smaller than fungi, their filamentous growth form could provide

similar advantages for the exploration of unsaturated soils. The

natural habitat of most actinomycetes is soil, where they typically

comprise 1 to 20% of the culturable community [16]. Streptomyces is

the most abundant genus and encompasses key players in the

decomposition of soil organic matter due to the ability to produce

a large array of extracellular enzymes such as chitinases, cellulases

and hemicellulases [17]. Streptomycetes are also known for

producing a vast array of antibiotics, some of which are valuable

in medicine and agriculture [18].

We hypothesized that actinomycetes might possess ‘‘fungal-like’’

characteristics with respect to their exploitation of less well

connected soils, thereby being able to out-compete non-filamen-

tous bacteria under low connectivity conditions. To address this

hypothesis, we investigated the competitive ability of a filamentous

bacterium (Streptomyces atratus) versus a non-filamentous Gram-

positive bacterium (Bacillus weihenstephanensis) across a series of

defined environmental conditions varying in pore size distribution,

moisture and habitat connectivity. The population sizes of the two

strains were subsequently tracked over time. In line with our

hypothesis, we predicted that Streptomyces would have a competitive

advantage under conditions of low connectivity and that Bacillus

would perform best in more well-connected habitat matrices.

Materials and Methods

Bacterial Strains
We used two soil isolates, Bacillus weihenstephanensis AW02 (NCBI

submission ID 1572885) and Streptomyces atratus AW01 (NCBI

submission ID 1572838), both isolated from the Park Grass

Experiment at Rothamsted Research, plot 3 (nil) in August 2009.

These strains were chosen because they both represent Gram

positive soil bacteria that co-occur in soil and process alternative

growth and soil exploration strategies. Both strains were isolated

from the same single soil aggregate, which was dispersed in

phosphate buffer (pH 6.5), shaken for 30 min followed by

261 min sonication. Diluted soil suspension was plated on soil

suspension agar prepared from soil taken outside the experimental

plot. The soil suspension agar was prepared by weighing 100 g air-

Figure 1. Schematic diagram of the experimental setup. Three matric potentials were combined with three sand particle size fractions with
different pore size distributions, giving a total of nine treatments. In each box, the appropriate gravimetric water content of each treatment is
indicated. Grain size, water distribution and bacterial cells (orange and purple) are indicated for illustrative purposes and are not based on actual
microscopic visualization. Habitat connectivity decreases with decreasing matric potential and increasing pore size. In well-connected soils, (e.g. the
treatments ‘‘wet’’ and/or ‘‘fine pores’’), bacterial species (orange and purple) often inhabit connected microhabitats/pore spaces, thereby allowing for
completive interactions. Under less-connected conditions (e.g. low matric potential ‘‘dry’’ and coarse pores), microhabitats are discontinuous, thereby
reducing competitive bacterial interactions.
doi:10.1371/journal.pone.0083661.g001
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dried soil in 900 mL phosphate buffer (pH 6.5), shaking for

30 min, sonicating (Branson 5210 ultrasonic bath) twice for 1 min

and subsequent filter-sterilization through 0.2 mm pore size; per

liter suspension, 15 g agar (Merck) was added. The strains were

identified by 16S rRNA gene sequencing, and these sequences

have been deposited under NCBI accession numbers JX944825

and JX944824 for B. weihenstephanensis AW02 and S. atratus AW01,

respectively. To determine growth curves of both strains in liquid

medium, six replicates of each strain were grown in 96 well plates

in 10% tryptic soy broth (TSB) (Oxoid), and the OD at 600 nm

was measured over a period of 20 h. Measurements were taken

every 20 min, and the 96-well plate was shaken for 2 min before

each measurement.

Construction of Microcosms
Sand microcosms were constructed using quartz sand particles

of different size distributions, obtained by milling (Retsch Mortar

Mill RM 200) acid-washed sea sand (Honeywell Specialty

Chemicals Seelze GmbH, Seelze, Germany) for 10 min followed

by fractionation of the particles into size classes by sieving.

Particles of different size fractions were used to create three distinct

textures: ‘‘fine’’ (sand particles 53–106 mm), ‘‘medium’’ (106–

212 mm), and ‘‘coarse’’ (212–425 mm), thereby creating a range of

pore size classes. For the competition experiments, microcosms

were established in 100 mL glass vials to which 10 g quartz sand

of one of the three particle size fractions was added. For the

motility experiments, microcosms were established in glass petri

dishes to which 50 g of quartz sand of the different grain size

fractions was added. Microcosms were sterilized by autoclaving

followed by oven-drying prior to use. To prevent moisture loss, the

glass vials were closed with screw cap lids, and the petri dishes

were sealed with 2 layers of parafilm after inoculation. The

moisture content was set to matric potentials of 210 (‘‘wet’’), 220

(‘‘intermediate’’) and 250 kPa (‘‘dry’’) (see next section). In total,

sand microcosms with all nine combinations of three different pore

size distributions and three different moisture regimes were

established (Fig. 1) with three replicates per treatment and

inoculant per time point. Microcosms were weighed after

inoculation and at the end of the experiment to confirm that

there was no moisture loss.

Water Retention Curves and Pore Size Distribution
Water is retained in soils largely due to matric forces (adhesive

forces between water and solids) in pores and interconnecting pore

necks. At saturation, all pores are filled with water, and the matric

potential, Y, is zero. When the water content decreases, large

pores empty first because water is held less tightly adhered to solids

in larger capillaries than in smaller ones. The matric potential is

more negative when water is adhered more strongly and is thus

lower in smaller pores than in larger ones. Consequently, the water

content of a soil at a given matric potential depends on the

distribution of the pore sizes (diameters). The relationship between

Figure 2. Pore size distribution of the three sand size fractions (fine, medium, coarse). Boxes indicate water-filled pores at different matric
potentials, i.e. in the ‘‘dry’’ treatments all pores with a pore-neck diameter,=6 mm are filled with water, in the ‘‘intermediate’’ treatments,= 15 mm
and in the ‘‘wet’’ treatments ,=30 mm, respectively. Pores above these pore-neck diameters are filled with air.
doi:10.1371/journal.pone.0083661.g002

Table 1. Three-way ANOVA of factors affection expansion of
bacteria in sand microcosms.

Streptomyces Bacillus

Source of
Variation DF F P DF F P

pore size
distribution

2 56.5 ,0.001 2 68 ,0.001

matric potential 2 2.8 0.066 2 109.4 ,0.001

time 3 249.5 ,0.001 2 431.7 ,0.001

PSD6MP 4 0.8 0.558 4 2 0.095

PSD6 T 6 17.3 ,0.001 4 69.4 ,0.001

MP 6 T 6 0.8 0.55 4 19.2 ,0.001

PDS6MP 6 T 12 0.6 0.883 8 2 0.051

Residual 252 189

Total 287 215

P values ,0.05 (in bold) were regarded as statistically significant and p values
,0.1 (in italic) display a non-significant trend towards significance.
doi:10.1371/journal.pone.0083661.t001
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matric potential, Y, and pore neck diameter, d, is given by the

equation Y [2kPa] = 300/d [mm] [19]. Based on this equation,

the pore size distribution of a soil can be calculated from the water

retention curve (WRC) [20]. The WRC describes the matric

potential – water content relationship and can be determined by

draining a saturated soil and determining the water content at a

given matric potential [21].

Practically, the WRCs of the 3 sand particle size fractions were

determined using a pressure plate (15 bar ceramic plate extractor

Cat.#1500 and 5 bar ceramic plate extractor Cat.#1600 by

Soilmoisture Equipment Corp., Santa Barbara CA,; for pressures

of 21580 and 2300 kPa) and a ceramic suction table (pF

laboratory station, ecoTech Umwelt- Meßsysteme, Germany for

pressures 250, 230, 220, 210, 25.3, and 23.7 kPa). Aluminum

cylinders with a diameter of approximately 3 cm and a height of

5 cm were completely filled for the suction table and to 1 cm

height for the pressure plate. Samples were wetted until saturated,

before being drained with the respective apparatus. The decrease

in the water content during drainage was calculated from the loss

of water volume. All analyses were performed in triplicate. From

nine experimentally determined data points (water content at a

given matric potential), WRC was determined for each sand

particle size fraction according to the model of Van Genuchten

[22] in RETC version 6.02. The bulk density of the sand particles

in the cylinders was comparable to that used in the microcosms,

allowing one to assume that the pore size distribution in the sand

microcosms can also be calculated from the water retention

curves.

Motility Measurements
The motility rates of both strains across the range of sand

microcosm were measured using a method that was developed to

determine expansion of bacteria in soils [23]. Microcosms were

established in glass petri dishes, sterilized by autoclaving and oven-

drying, and adjusted to the different matric potentials by adding

the appropriate volumes of liquid growth medium (10%TSB) and

inoculated at the center of the petri dish with 5 mL overnight

culture of B. weihenstephanensis or S. atratus. After 5 h, 23 h and

47 h, bacterial expansion was determined by sampling with a

multi-pronged sampler which measures expansion in 4 directions

(Fig. S1). The prongs (spaced equally at 2 mm intervals) were first

pushed approximately 5 mm into the sand and then onto a TSB

Figure 3. Expansion of Streptomyces and Bacillus inoculated individually in nine different combinations of pore size distribution and
matric potential. Each data point represents the mean of 2 replicate microcosms with 4 measurements per microcosm. Error bars show the
standard deviation.
doi:10.1371/journal.pone.0083661.g003
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agar plate. The soil layer in the petri dish was approximately 1 cm

thick; by sampling this way we avoided sampling from the water-

film which formed at the sand matrix-petri-dish interface at the

bottom of the petri dish. After three days of incubation of the TSB

agar plates the transfer of bacteria by prongs was determined and

the expansion in the sand microcosm was calculated. All

measurements were performed in duplicate, resulting in a total

of 8 measurements per treatment and time point (2 replicates, 4

measured directions), of which the mean was used for statistical

analysis. A Three-Way ANOVA was performed in SigmaPlot

(version 12.3) to test for the effects of pore size distribution

(independent variable 1), matric potential (independent variable 2)

and time (independent variable 3), on the expansion of both

Bacillus and Streptomyces (radius of extension of each strain = de-

pendent variable).

Competition Experiments
10% TSB was used as growth medium and microcosms were

incubated at 20uC, with all treatments performed in triplicate.

Different treatments had different total amounts of nutrients since

we have chosen to use similar nutrient concentrations in the liquid

Figure 4. Population dynamics of Streptomyces and Bacillus competing in nine different combinations of pore size distribution and
matric potential. The x-axis is time in days and the y-axis is cell number (g drywt soil) on a log-scale. Each data point is the mean of three
microcosm replicates. Error bars show the standard deviation.
doi:10.1371/journal.pone.0083661.g004

Table 2. Three-way ANOVA of factors affecting Bacillus/
Streptomyces (B/S) ratios.

Source of Variation DF F P

pore size distribution (PSD) 2 12.0 ,0.001

matric potential (MP) 2 18.8 ,0.001

time (T) 3 2.7 0.053

PSD6MP 4 4.1 0.005

PSD6 T 6 0.6 0.752

MP 6 T 6 1.1 0.367

PSD6MP 6 T 12 0.9 0.573

Residual 72

Total 107

The ratio between cell densities of Bacillus and Streptomyces (B/S-ratio) was
used as a measure of competitive strength. P values ,0.05 (in bold) were
regarded as statistically significant and p values ,0.1 (in italic) display a non-
significant trend towards significance.
doi:10.1371/journal.pone.0083661.t002
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phase for all 9 texture-moisture combinations. The alternative to

have all combinations with same absolute amount of nutrients

would have resulted in strongly different concentrations of

nutrients in the liquid phase, which will result in different osmotic

pressures. Microcosms were inoculated either with the Streptomyces

and Bacillus strain as pure cultures (105 cells/g soil; based on

colony-forming unit (CFU) counts) or with both strains in a 1:1

ratio with 105 cells/g soil of each strain. The inoculation was

performed by adding the appropriate numbers of bacterial cells to

the nutrient solution, which was subsequently added to the sand

microcosms. Microcosms were tilted, after which the inoculum

was pipetted on the bottom of the glass vial. Tilting the

microcosms back ensured homogenization of the inoculum. A

total of 405 microcosms were constructed, representing 9

treatments, 3 inoculums, 3 replicates, and 5 time points. Sampling

was performed destructively after 0, 3, 6, 9, and 12 days by adding

phosphate buffer (10 mM, pH 6.5) to a total volume of 10 mL to

each microcosm, and cells were suspended by shaking the

microcosms for 30 min, followed by sonication (Branson 5210

ultrasonic bath) twice for 1 min. One mL of the resulting

supernatant was sampled to make serial dilutions, which were

spread on 10% TSB agar plates for the determination of CFU of

both strains. As the two strains differ in their colony morphology,

they could be easily distinguished on agar plates. A three-way

ANOVA was performed in SigmaPlot to test for a possible effect of

pore size distribution (independent variable 1), matric potential

(independent variable 2) and time (independent variable 3), on the

ratio between Bacillus and Streptomyces (B/S-ratio = dependent

variable), which we used as indicator of the competitive strength

of the strains. To test the effect of pore size distribution (as

generated by the different sand particle sizes), matric potential and

the presence of the competitor (Streptomyces) on cell densities of

Bacillus (dependent variable), a three-way ANOVA was performed

for each time point (except the starting point T0= 0 d) using the

following parameters: pore size distribution (independent variable

1), matric potential (independent variable 2) and inoculant

(independent variable 3). A series of three-way ANOVAs was

performed to test the effect of pore size distribution, matric

potential and the presence of the competitor (Bacillus) on cell

densities of the Streptomyces (dependent variable).

Antagonism Assay
As many Streptomyces are known to produce antibacterial

compounds [24], we also tested for a possible antagonistic effect

of Streptomyces against Bacillus, by performing an agar overlay assay.

2 mL of an overnight culture of Streptomyces was spotted on the

surface of a 10% TSB agar plate and incubating at 20uC until

growth could be observed. The plate was then overlaid with 8 mL

10% TSB soft agar seeded with 50 mL of an overnight culture of

Bacillus. After incubation, the plates were examined for zones of

inhibition.

Results and Discussion

Characterization of the Artificial Soil Microcosms: Water
Retention Curves
The water retention curves were characterized by the van

Genuchten model giving the constants displayed in Table S1 [22].

The pore size distributions of each sand size fraction (as shown in

Fig. 2) was calculated from the water retention curves (Fig. S2).

Because the relationship between matric potential Y and pore

neck diameter d is given by the equation Y [2kPa] = 300/d

[mm], we could predict which pore sizes would theoretically be

filled with water at a specific matric potential (shown in Fig. 2).

Motility
The tests for the expansion ability of the strains in sand

microcosms revealed that Bacillus displayed greater expansion in

sand than Streptomyces except for the dry medium and - coarse sand

sizes, where expansion of both strains was nearly equal (Fig. 3).

This may be attributed to the faster growth rate of Bacillus as

compared to that of Streptomyces as observed for cultures in liquid

10%TSB (Fig. S3). The expansion rate of Bacillus was significantly

affected by pore size distribution (p,0.001) as well as by matric

potential (p,0.001) (Tab. 1). It was fastest in the most connected

sand fractions (fine and wet) (Fig. 3). There was also a significant

interaction effect of matric potential and pore size distribution on

Table 3. Three-way ANOVAs of factors affecting population densities of Bacillus and Streptomyces strains after the given periods of
incubation.

Bacillus Streptomyces

Source of
Variation/time
[d] 3 6 9 12 3 6 9 12

DF F P F P F P F P F P F P F P F P

pore size
distribution

2 63.4 ,0.001 203.5 ,0.001 51.1 ,0.001 315.4 ,0.001 17.0 ,0.001 39.9 ,0.001 17.2 ,0.001 47.7 ,0.001

matric potential 2 19.2 ,0.001 152.9 ,0.001 26.3 ,0.001 346.7 ,0.001 37.9 ,0.001 94.8 ,0.001 8.8 ,0.001 37.6 ,0.001

Inoculant (I) 1 1.6 0.220 0.3 0.617 4.5 0.042 0.2 0.667 76.6 ,0.001 314.1 ,0.001 60.7 ,0.001 162.1 ,0.001

PSD6MP 4 13.5 ,0.001 43.7 ,0.001 29.5 ,0.001 82.5 ,0.001 19.0 ,0.001 72.3 ,0.001 3.5 0.017 15.2 ,0.001

PSD6 I 2 1.2 0.300 1.2 0.303 1.3 0.279 19.9 ,0.001 17.2 ,0.001 38.4 ,0.001 14.9 ,0.001 46.8 ,0.001

MP 6 I 2 10.5 ,0.001 0.9 0.420 3.0 0.063 8.5 ,0.001 32.7 ,0.001 87.0 ,0.001 9.0 ,0.001 30.8 ,0.001

PSD6MP 6 I 4 3.4 0.018 1.9 0.136 4.6 0.004 12.8 ,0.001 16.0 ,0.001 73.7 ,0.001 4.1 0.007 14.9 ,0.001

Residual 36

Total 53

P values ,0.05 (in bold) were regarded as statistically significant and p values ,0.1 (in italic) display a non-significant trend towards significance.
doi:10.1371/journal.pone.0083661.t003
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the expansion of Bacillus (p,0.001). As hydraulic connectivity is

determined by the interplay of hydration status and pore

geometry, this demonstrates that habitat connectivity impacts

the expansion of Bacillus. An explanation for Bacillus being more

affected by matric potential and pore size is that motility of this

strain relies exclusively on the presence of water-filled pores and

water films on solid surfaces. The expansion rate of Streptomyces was

also significantly affected by pore size distribution (p,0.001) and

was greatest in the fine sand fraction (Fig. 3). Unlike Bacillus, the

expansion rate of Streptomyces was not significantly affected by

matric potential (p = 0.066). Overall, matric potential and pore

size distribution had a smaller effect on the expansion of

Streptomyces than Bacillus. We attributed this to the hyphal growth

form of Streptomyces that allows it to spread through air-filled pores

and makes it less dependent on water for its motility.

Population Dynamics
In the mixed inoculated microcosms, the rod-shaped Bacillus

exhibited greater growth than the filamentous Streptomyces during

the first three days of incubation in all treatments (Fig. 4). This

result is in accordance with the faster growth of this Bacillus strain

in liquid cultures (Fig. 3S). In less-connected conditions (medium

and coarse sand combined with dry and intermediate matric

potential), Streptomyces caught up and ultimately reached higher cell

numbers than Bacillus (Fig. 4) after 12 days of microcosm

incubation. In wetter treatments (see Fig. 1), the numbers of

Bacillus significantly exceeded the numbers of Streptomyces during

the whole incubation period: Bacillus outnumbered Streptomyces by

52-, 22- and 1.6-times in the wet-fine, wet-medium and wet-coarse

treatments, respectively, at day 12. In less-connected soils (coarse

and dry), Streptomyces cells outnumbered Bacillus cells at the end of

the experiment, e.g. the medium-dry and coarse-intermediate soils

had approximately 1.7 and 2.2 times more Streptomyces cells than

Bacillus cells at day 12, respectively.

We found that the population dynamics of the filamentous

Streptomyces and the rod-shaped Bacillus strains were influenced by

pore size distribution (p,0.001) and matric potential (p,0.001), as

well as the interaction between pore size distribution and matric

potential (p = 0.005) (Tab. 2). Bacillus cell numbers were not

affected by the presence of the Streptomyces strain at 3 out of 4 time

points, whereas Streptomyces was affected by the presence of Bacillus

at all time points (p,0.001 for all time points; Tab. 3). In line with

our hypothesis, the filamentous Streptomyces performed best when

connectivity was low (coarse pores and dry conditions). Due to its

faster growth rate, we anticipated that Bacillus would be more

successful than Streptomyces in the early stages of the experiment.

Such a pattern was indeed observed, with Bacillus cells outnum-

bering Streptomyces cells after three days of incubation in all

treatments (Fig. 4). As the experiment progressed, the Streptomyces

strain outcompeted Bacillus in poorly-connected soils, probably

because of the ability of Streptomyces to exploit new microhabitats

which may still contain nutrients that are inaccessible to the

Bacillus strain. These results indicate that the hyphal growth may

provide a benefit in less-connected matrices by giving the organism

access to nutrient patches that cannot be reached by non-hyphal

organisms.

The treatments in which Bacillus had the greatest competitive

advantage coincided with the treatments where this strain also had

the greatest advantage in motility (Fig. 3 and 4, Tab. 1, 2, and 3).

Treatments in which Streptomyces could catch up with or

outnumber Bacillus were those where the differences in expansion

rate between Bacillus and Streptomyces were smallest. This suggests

that motility may have been a particularly important factor in

determining the outcome of the competition in the sand

microcosms.

Increased motility in well-connected soils also may enable

Bacillus to more readily colonize new habitats. Remus-Emsermann

and colleagues [25] found that the level of pre-colonization of leaf

surfaces affected the establishment of a secondary colonizer.

Similarly, in the well-connected soil microcosms, microsites are

likely to be pre-colonized by the faster-growing and more motile

Bacillus strain, which may then hamper subsequent colonization by

the Streptomyces strain.

Overall, the patterns observed in our competition experiments

could generally be explained by differences in growth rate, motility

and growth form. Although we attributed the relative success of

Streptomyces in the least connected artificial soil microcosms to its

ability to produce hyphae, its ability to produce toxin may also

have played a role in its interaction with Bacillus. The antagonism

assay indicated the production of an inhibiting compound by

Streptomyces, as zones of inhibition around colonies of Streptomyces

were observed in our Bacillus soft-agar overlay experiment (Fig.

S4). Although toxin production was indicated in our soft-agar

overlay assay, the growth dynamics observed in our study did not

seem to indicate any effects of toxin production under the

conditions used. Tracking toxin levels and examining the impacts

of soil connectivity on toxin-mediated antagonistic interactions

remain interesting issues for future research in bacterial compe-

tition.

The hyphal growth form of bacteria has been recognized to be

superior over non-filamentous growth forms for the degradation of

insoluble polymers such as cellulose and chitin in soils, as hyphae

can grow along polymer chains and penetrate into these structures

[26]. However, our results indicate another advantage of the

hyphal growth of actinomycetes, namely that it enables these

organisms span air-filled pores to access nutrients that cannot be

accessed by non-filamentous bacteria. This may allow for the co-

existence of filamentous and non-filamentous bacteria in soil.

Hence, both specialization (e.g. polymer degradation) and habitat

exploitation abilities of actinomycetes may contribute to the

maintenance of microbial diversity.

Despite the potential importance of soil characteristics that

impact habitat connectivity on interactions between (individual)

microbes, and thereby ultimately on soil biodiversity, relatively few

studies have investigated how soil structure and connectivity affect

competition between soil microorganisms. Treves et al. [27]

introduced two bacterial species, Ralstonia eutropha and Sphingomonas

sp., competing for a single resource into sand microcosms with

different matric potentials and found that both strains could co-

exist under dry conditions, but not under wet conditions. The

authors concluded that spatial isolation created by low moisture

content could contribute to the structuring of soil microbial

communities. Similarly, Carson et al. [28] provided evidence that

low pore connectivity caused by low water potential could increase

the richness and diversity of a complex bacterial community in

soil. The observation that soil pore size can impact community

composition was also made by Ruamps et al. [29] who used 13C-

labelled fructose and PLFA to track differential responses related

to pore size classes. Whereas these studies focused separately on

either the effects of moisture content or pore size, we developed

and characterized an artificial sand microcosm system that allows

for the independent manipulation of both moisture and pore size

distribution, thereby allowing us to address the individual impact

of these factors as well their interaction. Such systems should prove

useful in helping to disentangle the impacts of various microbial

interactions and soil parameters on shaping soil-borne microbial

diversity. In contrast to true soils, this system has the advantage
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that soil structure parameters can be precisely defined and

reproduced. The experimental conditions used in our microcosm

experiments provided a wide and realistic range of soil pore sizes

[30] and matric potentials [31]. Although we used this system

specifically to investigate interactions between filamentous and

non-filamentous bacteria, it holds the potential to facilitate the

examination of other organismal interactions in soil, such as

chemical signaling and quorum sensing, grazing and resource

competition.

Supporting Information

Figure S1 Schematic design for measurements of
bacterial motility. Microcosms containing sand with different

pore size distributions and matric potentials were established in

glass petri dishes. The microcosms were inoculated in the middle

with an overnight culture of either Streptomyces or Bacillus

( = inoculation point). A multi-pronged sampling device was used

at 24 and 48 h to measure the bacterial expansion in four

directions by transferring bacterial cells with the prongs from

defined distances ( = sampling points) onto agar plates where

colony formation was observed.

(DOCX)

Figure S2 Water retention curves of the 3 sand fractions
used in the experiments, showing the water-filled pore
space at each matric potential.
(DOCX)

Figure S3 Growth curves of Bacillus weihenstephanen-
sis and Streptomyces atratus in 10% tryptic soy broth
(n=6). Error bars represent the standard error of the mean.

(DOCX)

Figure S4 Antagonism assay of Streptomyces colonies
overlaid with Bacillus in soft-agar. Zones of inhibition

around the colonies indicate the production of an inhibiting

compound by Streptomyces.

(DOCX)

Table S1 Constants of water retention curves according
to the model of van Genuchten as expressed by the
equation Se= [1+(a h)n]–m with Se= (hh – hr)/(hs – hr) and
m=12(1/n). hh is the soil water content (cm3 cm23) at
the suction h (cm), hr and hs are the residual and
saturated soil water contents (cm3 cm23). Se is the effective
saturation; the parameters a, m, and n are empirical and

determined by a best-fit procedure; a is a parameter related to

the inverse of the air entry suction (cm21), n is a dimensionless

curve shape parameter and s is the slope of hh [32].

(DOCX)
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