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Abstract
Penfield’s motor homunculus describes a caricaturised yet useful representation of the map of various body parts on the pre-
central cortex. We propose a supplemental map of the clinically represented areas of human body in pre-central cortex and 
a novel subcortical corticospinal tract map. We believe this knowledge is essential for safe surgery in patients with eloquent 
brain lesions. A single-institution retrospective cohort study of patients who underwent craniotomy for motor eloquent lesions 
with intraoperative motor neuromonitoring (cortical and subcortical) between 2015 and 2020 was performed. All positive 
cortical and subcortical stimulation points were taken into account and cartographic maps were produced to demonstrate 
cortical and subcortical areas of motor representation and their configuration. A literature review in PubMed was performed. 
One hundred and eighty consecutive patients (58.4% male, 41.6% female) were included in the study with 81.6% asleep and 
18.4% awake craniotomies for motor eloquent lesions (gliomas 80.7%, metastases 13.8%) with intraoperative cortical and 
subcortical motor mapping. Based on the data, we propose a supplemental clinical cortical and a novel subcortical motor 
map to the original Penfield’s motor homunculus, including demonstration of localisation of intercostal muscles both in the 
cortex and subcortex which has not been previously described. The supplementary clinical cortical and novel subcortical 
motor maps of the homunculus presented here have been derived from a large cohort of patients undergoing direct cortical 
and subcortical brain mapping. The information will have direct relevance for improving the safety and outcome of patients 
undergoing resection of motor eloquent brain lesions.
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Introduction

Homunculus as described by Penfield and Boldrey in 1937 
after bipolar direct cortical stimulation (DCS) in 126 awake 
patients has provided the foundation for intraoperative motor 
mapping in patients undergoing craniotomy for brain lesions 

(Penfield and Boldrey 1937). Since then, there has been a 
range of studies on motor mapping of corticospinal tract 
(CST) using neuro-physiological, viral tracing, microstruc-
tural, cadaveric and intraoperative human and animal studies 
(Foerster 1936; Farrell et al. 2007; Rathelot and Strick 2009; 
Desmurget and Sirigu 2015). More recently, there has been 
further studies using advanced imaging techniques such as 
deterministic as well as probabilistic tractography to produce 
a map of the CST, including U fibre connections, highlight-
ing the complex fibre connections and overlap (Berman et al. 
2004; Catani 2017). Human connectome project has further 
provided an advanced interface to characterise the configura-
tion of cortical and subcortical CST (Human Connectome 
Project 2020). Difference in the size of representation of 
body-parts within the primary motor cortex has been rec-
ognized and is thought to be likely related to each regions’ 
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functional specialisation and fine motor functions (Penfield 
and Bouldrey 1937; Penfield and Rasmussen 1950; Catani 
2017).

Advancements in the DCS and subcortical mapping 
techniques (monopolar stimulation, dynamic continuous 
monitoring), allow accurate measurement of the distance 
from CST during intraoperative stimulation to achieve safe 
lesion resection and avoid inadvertent injury to CST cen-
tral to preserving the quality of life of the patients (Seidel 
et al. 2013; Schuncht et al. 2014; Lavrador et al. 2020). 
Bello et al. (2008) described subcortical mapping in 57 
patients where individual areas of hand, arm and leg were 
identified during resection of gliomas and accurate identi-
fication of CST enhanced surgical performance and safety, 
maintaining a high rate of functional preservation. Increas-
ingly, a combination of pre-operative [functional magnetic 
resonance imaging (fMRI), diffusion tensor imaging (DTI), 
navigated transcranial magnetic stimulation (nTMS)] and 
intra-operative [neuronavigation, intra-operative ultrasound 
(ioUS), augmented reality microscope, 5-aminolevulinic 
acid (5-ALA)] tools are combined with direct intra-opera-
tive brain mapping to aid surgical planning for maximal safe 
resection (Bello et al. 2008; Seidel et al. 2013; Vassal et al. 
2013; Schucht et al. 2014; Hervey-Jumper and Berger 2016; 
Lavrador et al. 2020).

Despite these studies and the data gathered, no updated 
homunculus nor subcortical map, based on intra-operative 
direct cortical/subcortical stimulation, has been proposed 
since the original 1937 work (Supplemental Table 1).

In this study, we propose a supplemental motor cortical 
map and a novel motor subcortical map of the configura-
tion of the corticospinal tract initially described by Penfield 
(Penfield and Boldrey 1937; Penfield and Rasmussen 1950). 
These maps, although represent artistic illustrations similar 
to that presented by Penfield, provide further insight into 
the cortical and subcortical representation of the body parts, 
critical for surgery in eloquent brain and for better clinical 
outcomes. Furthermore, they also form the basis for future 
large-scale work towards formal probabilistic maps of the 
cortical and subcortical homunculi.

Materials and methods

A single-centre retrospective study was performed between 
January 2015 and January 2020 to collect intraoperative 
data on consecutive patients who underwent craniotomy for 
eloquent brain lesions with intraoperative cortical and sub-
cortical motor neuromonitoring at our quaternary referral 
neurosurgical centre. Patients were consented for intraopera-
tive neuromonitoring including motor mapping. Prior to the 
surgery, patients underwent a range of pre-operative brain 
mapping investigations to include fMRI, DTI and nTMS to 

evaluate the feasibility of lesion resection, determine the best 
surgical approach and help consent the patient based on indi-
vidual’s risk profile. At surgery, 3-dimensional (3D) recon-
structed structural MRI, tractography from DTI, fMRI hot-
spots and 3D reconstructed nTMS motor stimulation points 
were projected onto the brain with augmented reality using 
ZEISS  KINEVO® 900 microscope(CARL ZEISS Meditec 
AG, Jena, Germany) for the patients. These helped as start-
ing points to define the relationship between the lesions and 
eloquent motor brain areas, guiding intra-operative mapping 
with cortical/subcortical stimulation. Thereafter, all posi-
tive documented cortical and subcortical points of stimula-
tion confirmed with intraoperative neuromonitoring were 
recorded and plotted over cartographical maps by utilizing 
the intraoperative numerically labelled pictures and cor-
relating with intra-operative neuro-navigation MRI, cor-
rected for intra-operative brain shift using the ioUS, and 
immediate post-operative anatomical T1 post gadolinium 
MRI. The overlap of stimulated points were also noted. 
Demographic, clinical and surgical data were collected 
from patients’ medical records. A PubMed literature review 
was performed, in order to investigate if a subcortical motor 
map was previously described, with the MeSH items [(Sub-
cortical stimulation) OR (subcortical mapping) OR (sub-
cortical intraoperative neuromonitoring) AND Motor AND 
corticospinal tract)] with filters for “articles with abstracts, 
adult (19 + years), English language articles, human stud-
ies and articles published between 1990 and 2020”. The 
demographic and clinical data were analysed with Micro-
soft Excel 2020.

Functional magnetic resonance imaging (fMRI)

Three different tasks were performed: lip smacking, finger-
tapping and foot rocking (Supplemental Figure 1). The corti-
cal activated areas were used to constrain the probabilistic 
tractography.

Diffusion tensor imaging (DTI) and deterministic 
tractography

DTI sequences were obtained to reconstruct CST. The 
parameters utilised for obtaining diffusion tensor imag-
ing were b-value: 1500; diffusion directions: 64; diffu-
sion mode; multi-directional diffusion weighting; field 
of view: 32 cm; voxel size, 2.5 × 2.5 × 2.5 mm; TR/
TE:9500/86; scan time:11:35 min. The deterministic trac-
tography was modelled in 3D with StealthViz Medtronic 
Software (Minneapolis, Minnesota, USA) (Lavrador 
et al. 2020). The dissection of the corticospinal tract was 
performed according to the regions of interest (ROIs) 
between the motor cortex and the ipsilateral half of the 
medulla oblongata below the middle cerebellar peduncle 
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(Supplemental Figure 6). Constrained probabilistic trac-
tography for complex motor function and cortical/sub-
cortical CST was performed with MRTrix3 opensource 
Software (Tournier et al. 2019) (Supplemental Figure 2).

Navigated transcranial magnetic stimulation (nTMS)

Preoperative nTMS was utilised for pre-operative motor 
mapping, using Nexstim TMS, v.4.3.1 (Nexstim, Helsinki, 
Finland) (Jung et  al. 2019). nTMS was obtained with 
single-pulse sequence delivered using a figure-of-eight 
coil, and the motor mapping was performed at 105% of 
the determined resting motor threshold (Jung et al. 2019). 
The nTMS preoperative positive motor responses were 
transformed in 3D objects (StealthViz Medtronic soft-
ware, Minneapolis, Minnesota, USA) superimposed to 
the 3D tractography model of the CST on the Medtronic 
Stealth Station S7/S8 neuronavigation software/machine 
(Minneapolis, Minnesota, USA) (Supplemental Figure 3).

Cortical mapping

Cortical motor evoked potentials (cMEPs) were recorded 
with direct electrical monopolar stimulations of primary 
motor cortex (Fig. 1). Train of five pulses, positive pulse 
form, inter-stimuli interval of 4.0 ms, pulse width of 0.5 ms, 
1 Hz and anodal pole were the parameters for stimulations. 
Continuous cMEPs were monitored using a four-contact 
strip electrode positioned over the motor cortex recording 
stable MEPs at the motor threshold. Muscles monitored dur-
ing intraoperative neuromonitoring were orbicularis oris, 
masseter, tongue, cricothyroid, deltoid, brachioradialis/flexor 
carpi ulnaris (BR/FCU), abductor pollicis brevis/abductor 
digiti minimi (APB/ADM), first dorsal interosseous (FDI), 
intercostals, quadriceps femoris, tibialis anterior, abductor 
hallucis.

Subcortical mapping

Subcortical motor evoked potentials (scMEPs) were 
recorded using modified monopolar suction probe and 
monopolar probe (Parameters were same as cMEP recording 
with cathodal pole) (Seidel et al. 2013; Schucht et al. 2017; 

Fig. 1  Cortical stimulation with monopolar probe stimulating differ-
ent areas of motor cortex a 1,2,3: hand and forearm 4,5: foot and leg 
b 6,7,8,9,10,11,13,14- hand knob (ADM, FDI, APB, forearm, del-

toid) 1,2,5- post central gyrus c 1,2: intercostal muscles 3,4: deltoid 
5: foot d 1,2: arm, forearm, hand 3,4,5: hand, face 6,7: face
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Lavrador et al. 2020) (Fig. 2). Muscles monitored were same 
as on cortical mapping.

Intraoperative ultrasound

Ultrasound images were obtained intraoperatively prior to 
corticotomy and at the end of resection with Esaote Ultra-
sound Machine (Esaote, Genova, Italy) to delineate the mar-
gins of the tumour and post resection cavity. It provided the 
configuration, depth and location of the lesion with respect 
to the motor cortex and subcortical CST identified with 
subcortical stimulation and helped to correct for any intra-
operative brain shift (Supplemental Figure 4).

Results

Table 1 summarises the demographics of the 180 consecu-
tive patients studied. All patients underwent pre-operative 
T1 pre- and post-gadolinium, T2 and FLAIR imaging. 45 
patients had DTI, 5 patients had complex motor task fMRI 
and 39 patients had nTMS. The motor threshold during stim-
ulation represented the estimated distance from the clinically 
detected anatomical bundle of fibres of CST (1 mA = 1 mm). 
Cortical motor threshold of DCT of motor cortex/CST was 
recorded as a mean of 7.2 mA (range 0.8–25 mA, n = 180). 
Cortical and subcortical mean stimulation threshold for leg 
(c8.4 mA, range 2–17 mA, n = 14; sc5.8 mA, range 3–13, 
n = 11), foot (c7 mA, range 5–12 mA, n = 17; sc6.5 mA, 
range 2–14  mA, n = 12), intercostal muscles (c10  mA, 
range 6–14 mA, n = 6; sc6 mA, range 4–12 mA, n = 7), 
arm (c7.6 mA, range 0.8–13 mA, n = 21; sc4.3 mA, range 
2–6 mA, n = 6), hand (c8.7 mA, range 0.8-20 mA, n = 47; 
sc6.6 mA, range 5–8.5 mA, n = 20) and face (c7.4 mA, 
range 2–11 mA, n = 24; sc5.7 mA, range 0.5–8, n = 12) were 
recorded during the procedures (Tables 2, 3). The stimu-
lated cortical and subcortical points were then plotted in the 
diagrammatic representation of cortex and subcortex with 
individual areas stimulated. The points were then assembled 
into cartographic maps to demonstrate a clinical cortical and 
subcortical map of intraoperative corticospinal tract (Figs. 3, 
4).

Cortical and subcortical stimulation of intercostal 
muscles

As a contribution to the previously described homunculus, 
we present, for the first time in the literature, a detailed rep-
resentation, at both cortical and subcortical level, of the 
intercostal muscles demonstrated during routine neurophysi-
ological mapping and monitoring (Supplemental Table 2). 
An example of isolated subcortical stimulation recording 
(scMEP) during intraoperative subcortical mapping with 

electrode placed in the intercostal muscles is shown in Sup-
plemental Figure 5. These findings aided in the illustration 
of the proposed maps.

Literature review

PubMed literature review resulted in identification of 141 
articles. The articles were reviewed to identify data on 
subcortical mapping of specific motor areas (hand, arm, 
leg, trunk, face) of patients who underwent craniotomy for 
brain lesions. Articles that did not show individual-motor-
area (hand, arm, leg, trunk, face) subcortical mapping were 
excluded. Six articles were identified and have been sum-
marised in Supplemental Table 1. There was no literature 
on a map for the subcortical motor areas.

Proposed homunculus maps

Proposal of supplemental map of cortical motor region 
(clinical cortical motor homunculus)

The proposed supplemental cortical map consists of new 
addition of cortical representation of intercostal muscles in 
the existing Penfield’s motor homunculus (Fig. 3).

Proposal of map of intraoperative subcortical corticospinal 
tract (isCST) (clinical subcortical motor homunculus)

The proposed subcortical novel map of the corticospinal 
tract along the corona radiata (Fig. 4) provides an insight 
into the configuration of CST fibres and highlights the sig-
nificant differences between the cortical orientation and sub-
cortical orientation of the CST fibres.

Discussion

Motor pathway topography: current knowledge

Understanding the topography of the motor pathway at both 
cortical and subcortical levels is crucial for neurosurgeons 
during surgery for motor eloquent brain lesions if risk of 
deficits is to be minimised. Penfield’s 1937 description of 
the arrangement of the motor function onto the homun-
culus, although a simplified map, provides a representa-
tive image of the motor arrangement of function onto the 
precentral cortex (Penfield and Boldrey 1937). Since then, 
human clinical studies and cadaver anatomical studies have 
provided further insight into the complexity of the motor 
cortex and overlap of function (Farrell et al. 2007; Catani 
2017). There has been recognition of dynamic, rather than 
the traditional static, representation of the body parts on 
the motor cortex, especially for complex motor movement 
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Fig. 2  a Subcortical stimula-
tion in the resection cavity 
demonstrating subcortical map-
ping of the corticospinal tract 
with contact numbers (1–15); 
Strip electrode over the primary 
motor cortex. b Corresponding 
mapping/stimulation positive 
areas (1–15) of intraoperative 
MEPs for different parts of 
the subcortical homunculus 
along with their corresponding 
motor thresholds; Subcortical 
MEP recording: X axis: time 
(ms), Y axis: amplitude (µV); 
Strip Direct cortical Stimula-
tion (DCS) recording: X axis: 
time (ms), Y axis: amplitude 
(µV); 1—upper limb (8 mA), 
face (5 mA); 2—upper limb 
(8 mA), face (6 mA); 3—upper 
limb (7 mA), face (2 mA); 
4—upper limb (5 mA), face 
(2 mA); 5—upper limb (7 mA), 
face (4 mA); 6—face (2 mA); 
7—upper limb (6 mA), face 
(5 mA); 8—upper limb (8 mA); 
9—face (6 mA); 10—upper 
limb (7 mA), lower limb 
(10 mA), face (6 mA); 11—
face (8 mA); 12—upper limb, 
face (13 mA); 13—upper limb 
(8 mA), face (7 mA); 14—upper 
limb (12 mA), face (11 mA); 
15—upper limb (19 mA), face 
(17 mA)
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(Perez and Rothwell 2015; Schellekens et al. 2018) as well 
as significant overlapping of motor representation in the sup-
plementary motor area (SMA), premotor, primary motor and 
parietal cortex (Cunningham et al. 2013). Furthermore, con-
trary to the traditional orientation of body parts on motor 
cortex, multiple directions of the representation have now 
been described: lateral-anterior-ventral direction along the 
precentral gyrus and central sulcus, reflecting a shift from 
lower- to upper-body muscles (Verstynen and Sabes 2011). 
Catani recently described a detailed reappraisal of the 
original Penfield’s findings, suggesting overlaps between 
the trasitional areas and cross over to the somatosensory 
cortex along with description of role of U fibres (Catani 
2017). Non-human primate studies, using viral tracers, have 
added additional dimensions to this complexity by defining 
phylogenetically new M1 and old M1 cortex (Rathelot and 
Strick 2009). Despite the spectrum of the new knowledge 
and techniques, from the practical point of view, the original 
Penfield’s motor homunculus remains central as a starting 
point when planning surgery for lesions in and around motor 
cortex, and DCS continues as the gold standard for intra-
operative refinement. Thus, Duffau and colleagues, through 
DCS studies, were recently even able to demonstrate the 
concept of negative motor response whereby movement 
arrest was induced at specific stimulation points in the pre-
central gyrus (Rech et al. 2019).

Subcortical corticospinal tract (sCST): literature thus 
far

Unlike the motor cortex, our understanding of the detailed 
functional anatomy of the white matter motor tracts is at 
an earlier stage. Cadaveric anatomical and imaging studies 
have shown that corticospinal tract (CST) predominantly 

begins in the pre-central gyrus (M1), making its way cau-
dally through the corona radiata into the internal capsule, 
condensing the fibres with a unique formation and thus pro-
ducing a swirl-like configuration with the twist of the fibres 
subcortically (Ebeling and Reulen 1992; Kim and Pope 
2005; Yamaha et al. 2007; Verstynen et al. 2011; Zolal et al. 
2012; Chenot et al. 2019).The CST undergoes a rotation 
whereby the most medially located fibres at the cortical level 
(topographically—lower limb) become posterior at the level 
of the internal capsule and lateral at the level of the cerebral 
peduncle (Englander et al. 1975; Ebeling and Reulen 1992; 
Catani and Thiebaut 2008; Chenot et al. 2019). Primate stud-
ies have demonstrated the complexity of organisation of the 
CST fibres corresponding to the functional body areas and 
its dynamic nature (Graziano et al. 2002). Understanding 
the detailed anatomy of these tracts is, therefore, essential 
for safe surgery for lesions in or around the subcortical 
motor pathways. In the recent years, DTI has proved useful 
as a starting point to understand the relationship between 
the CST and the lesions with DTI based maps of subcortex 
emerging as useful tools for pre-operative planning (Ber-
man et al. 2004; Okada et al. 2006; Rosenstock et al. 2017; 
Oda et al. 2018; Chenot et al. 2019). The accuracy of the 
image-based technology, however, remains less than what is 
required for confident safe surgery and intra-operative direct 
stimulation of subcortical motor pathways remain the gold 
standard.

Current contribution

Our supplementary cortical motor homunculus presented 
here, provides a useful addition to the original Penfield’s 
homunculus by clearly demonstrating the motor cortical 
area for the intercostal muscles, previously not described in 
detail. We first reported mapping of intercostal muscles as 
a technical note (Ghimire et al. 2019). This has now been 
replicated and mapped in detail in this paper (Supplemental 
Table 2). Understanding the cortical topography of intercos-
tal muscles is important to avoid inadvertent damage during 
the surgery which could lead to paralysis of respiratory mus-
cles and the well-recognised post-operative respiratory com-
plications (Ghimire et al. 2019). Despite the limited number 
of papers published on subcortical stimulation (Supplemen-
tal Table 1), accurate intraoperative identification of corti-
cal and subcortical boundaries has been challenging with 
no clear subcortical map, along the same line as the corti-
cal motor homunculus, has been described. We therefore 
aimed to address this using the data from our large cohort 
of patients as demonstrated in our novel subcortical map. 
In this illustration and based on our intra-operative direct 
stimulation of CST, the motor areas of leg shifted from 
medial to the posterior, motor areas of hand/forearm shifted 
from superior to the centre of the condensed bundle and the 

Table 1  Demographics of the patient data

Demographics Data

Mean age (years) (with range) 50 (16–79)
Laterality of the lesion N (%)
 Right 97 (53.8%)
 Left 83 (46.2%)

Gender N (%)
 Male 105 (58.4%)
 Female 75 (41.6%)

Pathology of the lesion
 Glioma
  High Grade (III, IV) 104 (57.7%)
  Low Grade (I, II) 41 (23%)

 Meningioma 8 (4.4%)
 Metastasis 25 (13.8%)
 Vascular malformations 2 (1.1%)
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Table 2  Cortical stimulation of motor cortex areas with their thresholds

Black arrow tumour causing expansion of motor/pre-motor cortex, ADM abductor digiti minimi, FDI first dorsal interossei, APB abductor pol-
licis brevis, MT motor threshold
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face representation shifted from lateral to the anterior aspect 
of the condensed bundle demonstrating the change in CST 
configuration during the descent of fibres within the corona 
radiata. There were further changes in configuration prior 
to reaching the internal capsule: the leg area shifted from 
posterior to the midline position with the face area shifting 

anteriorly and the arm area shifting posteriorly as progress-
ing into the known configuration of fibres in the genu and 
posterior limb of internal capsule. The subcortical map thus 
generated, we hope will aid in a better understanding of the 
functional anatomy of the CST and help safe surgery for 
motor eloquent lesions.

Table 3  Subcortical stimulation of motor subcortex areas with their thresholds

UL upper limbs, LL lower limbs, MT motor threshold, CST corticospinal tract
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As our understanding of the biology of brain lesions, 
particularly gliomas, evolve and concepts such as survivor-
ship and preservation of quality of life, quite rightly, gain 
centre-stage, there is an ever-increasing need for maximal 
safe resection. This remains a challenge for lesions in and 
around the motor pathways. Understanding the cortical and 
subcortical functional anatomy is therefore crucial and it is 
best derived from intra-operative direct stimulation of motor 
pathways. Our findings from a large cohort of patients pre-
sented as an updated motor homunculus and a novel subcor-
tical map will aid neurosurgeons in their quest to achieve the 
best outcome possible for these patients.

Limitation of the study

The proposed maps here are artistic illustrations of motor 
pathways, based on intra-operative stimulation similar to 
Penfield’s original homunculus, which we hope will fur-
ther guide neurosurgeons during eloquent cortical and sub-
cortical brain tumour surgery. The ultimate goal, however, 
remains the creation of a formal probabilistic atlas of the 
cortical and subcortical homunculi. Large scale, prospective 

studies with normalisation of stimulation sites into a tem-
plate space are required to achieve this. We hope the work 
presented here will help generate interest in such future 
endeavours.

Conclusion

Penfield’s motor homunculus represented a landmark in 
understating the functional anatomy of the motor cortex 
with real implications for surgery in motor eloquent brain. 
After an almost a century, however, there is now time for a 
reappraisal. Our data from a large cohort of patients under-
going modern intra-operative stimulation of motor pathways, 
the widely accepted standard methodology for brain map-
ping based on accuracy and clinical relevance, generated 
a supplementary updated motor homunculus and a novel 
subcortical motor map. Our finding will aid surgical plan-
ning for lesions in or around the motor pathways, to reduce 
the risks and increase the extent of resection. Further pro-
spective multicentre studies are required to validate the map 

Fig. 3  Proposed supplemental cortical motor homunculus includ-
ing the cortical somatotopy of intercostal muscles: a cortical motor 
representation. b, c Primary motor cortex reconstructed with Mesh-

lab opensource software (Cignoni et al. 2008) with the data available 
from The Human Brainnectome Atlas (Fan et al. 2016)
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towards routine utilisation in clinical practice and generation 
of probabilistic atlases.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00429- 021- 02274-z.
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