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ABSTRACT
Most metal-organic frameworks (MOFs) hardly maintain their physical and chemical properties after
exposure to acidic, neutral, or alkaline aqueous solutions, resulting in insufficient stability, therefore limiting
their applications.Thus, the design and synthesis of stable size/morphology-controlledMOF nanocrystals
is critical but challenging. In this study, dual-ligand and hard-soft-acid-base strategies were used to fabricate
a variety of 3D pillared-layer [Ni(thiophene-2,5-dicarboxylate)(4,4′-bipyridine)]n MOF nanocrystals (1D
nanofibers, 2D nanosheets and 3D aggregates) with controllable morphology by varying the concentration
of 4,4′-bipyridine and thus controlling the crystal growth direction. Owing to the shorter ion diffusion
length, enhanced electron/ion transfer and strong interactions between thiophene-2,5-dicarboxylate and
4,4′-bipyridine, the 2D nanosheets showed much larger specific capacitance than 1D nanofibers and 3D
aggregates. A single device with an output voltage as high as 3.0 V and exceptional cycling performance
(95% of retention after 5000 cycles at 3 mA cm–2) was realized by configuring two aqueous asymmetric
supercapacitive devices in series.The excellent cycling property and charge–discharge mechanism are
consistent with the hard-soft-acid-base theory.

Keywords:metal-organic framework, dual ligand, hard-soft-acid-base, electrochemical energy storage,
supercapacitor

INTRODUCTION
Supercapacitors (SCs) have emerged as promising
devices for electrochemical energy storage, on ac-
count of their long life cycle, high power density
and fast charging ability [1]. Recently, 2D pseu-
docapacitive nanomaterials (e.g. black phosphorus
[2] and transition-metal carbide/nitrides [3]) have
been proven to be efficient electrode materials for
high-energy and high-power-oriented applications
of SCs [4]. Therefore, the synthesis and develop-
ment of 2D pseudocapacitive nanomaterials is cru-
cial for the future development of SCs.

Metal-organic frameworks (MOFs) are crys-
talline materials whose diverse structures, large
surface areas and tunable pore sizes attract consid-
erable attention [5,6]. Because of their remarkable
properties, MOFs have been used in diverse fields,
including gas storage and separation [7], batteries

[8], SCs [9,10], catalysis [11,12], water treatment
[13,14] and desalination [15,16]. Earlier research
in this field has mainly focused on the preparation,
characterization and application of bulk MOFs, and
has shown considerable influence of their chemical
composition, size and morphology on their func-
tionality and utility [17,18]. In recent years, it was
found that MOF nanomaterials are more promising
for electrochemical energy storage devices than
bulkMOFmaterials because of the shorter diffusion
pathways and size-dependent physical–chemical
properties [19,20]. However, most of these MOF
nanomaterials still suffer from insufficient stability,
which severely limits their application [21,22].
Consequently, the synthesis of size/morphology-
controlled MOF nanocrystals with improved
stability has become central to their wider
application.
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Scheme 1. Schematic of the dual-ligand and HSAB strategies for fabricating 3D
pillared-layer [Ni(Tdc)(Bpy)]n MOF nanocrystals.

Although there is a growing number of methods
used to regulate the size/morphology of MOFs, us-
ing different reagents and templates, most of them
are only applicable to specific materials [23–25].
Therefore, it is highly desirable to develop a gen-
eral and efficient method for adjusting the crystal
size and morphology of different MOFs, endowed
with excellent electrochemical energy storage per-
formances. In the process of developing new meth-
ods for the crystal engineering of coordination net-
works, the double-ligand strategy has been shown to
be effective for controlling the size, morphology and
chemical properties of MOFs [26,27]. In particular,
the dual-ligand strategy can provide unique pillared-
layer networks to assemble specific MOFs with di-
verse properties [27]. Such pillared-layer networks
are based on coordination bonds, which confer bet-
ter structural stability and are more attractive than
hydrogen bonds [28,29]. One of the reasons for the
instability of many MOF crystals may be the com-
bination of soft metal cations (Co2+, Zn2+, Ni2+,
Cu2+, etc.) with hard carboxylic acid ligands, which
do not conform to the hard-soft-acid-base (HSAB)
principle [30]. Coordination bonds involving soft
metal cations with softer N-containing organic lig-
ands are stronger than those formed with hard car-
boxylic acid ligands [31,32].

We decided to utilize 4,4′-bipyridine (Bpy) as
a coordination modulator to achieve a more con-
trollable morphology and good stability of MOFs
based on dual-ligand and HSAB strategies. We
report a general, rapid, room-temperature solu-
tion reaction method to fabricate a variety of
3D pillared-layer [Ni(Tdc)(Bpy)]n MOF materials
(Tdc= thiophene-2,5-dicarboxylate).TheNiII cen-
ter can be connected to the softer base Bpy to form
stable 1D Ni-Bpy linear chains, which can in turn
be used as pillars to support 2D Ni-Tdc network
structures resulting from coordination of the NiII

center with the carboxylate ligand Tdc (Scheme 1).
We have successfully synthesized [Ni(Tdc)(Bpy)]n
MOF nanocrystals with different controllable mor-
phologies (1D nanofibers, 2D nanosheets and 3D
aggregates) by adjusting the concentration of Bpy to
control the direction of crystal growth. The result-

ing [Ni(Tdc)(Bpy)]n MOF nanocrystals were used
as electrodes for SCs, and the 2D nanosheets dis-
played the highest specific capacity of 612 F g–1 at
0.5A g–1. Furthermore, two aqueous asymmetric SC
(ASC) devices placed in series were successfully fab-
ricated using 2D nanosheets and activated carbon
(AC), which delivers superior cycling properties.

RESULTS AND DISCUSSION
[Ni(Tdc)(Bpy)]n MOFs were readily prepared
by a room-temperature alkaline solution reac-
tion of the organic linkers Tdc and Bpy with
NiCl2·6H2O. The different morphologies obtained
for [Ni(Tdc)(Bpy)]n according to the Tdc and
Bpy molar ratios of 1:0.03, 1:0.06, 1:0.12, 1:0.25,
1:0.5, 1:1, 1:1.5 and 1:2, are denoted as M1 to M8,
respectively. Scanning electron microscopy (SEM)
and transmission electron microscopy (TEM)
images of the [Ni(Tdc)(Bpy)]n MOFs (Fig. 1)
indicate that the samples M1, M5 and M8 are 1D
nanofibers, 2D nanosheets and 3D aggregates with
uniform morphology, respectively. The change in
morphology of the MOF nanomaterials from 1D
nanofibers to 3D aggregates was also observed in
Figs S1 and S2. Obviously, an increasing amount of
Bpy (on going from M1 to M8) results in gradual
stacking and agglomeration of the 1D nanofibers
to form 2D nanosheets (from M1 to M5), and
then the 2D nanosheets gradually assemble to
form 3D aggregates (from M6 to M8). Moreover,
the high-resolution TEM images of M5 in Fig. S3
exhibit no lattice fringe, which may be due to the
damage caused by the light beam at high voltage.
The high-angle annular dark-field scanning TEM
combined with elemental mapping show that
the elements C, N, O, S and Ni are distributed
throughout the M5 nanosheets (Fig. S3b). The
MOF stability in water and alcohol was investigated
by soaking M5 in a water or ethanol solution for
7 days. Figure S4 indicates that the structure of
M5 nanosheets is destroyed in ethanol solution,
but remains stable without any change in water,
which is beneficial to application in aqueous SC
devices. The Fourier transform infrared (FTIR)
spectra of M1–M8, Tdc and Bpy are displayed in
Fig. S5. For Tdc, the peaks at ∼1411, 1662 and
1522 cm–1 arise from the symmetric and asym-
metric stretching modes of the –COOH group,
respectively [33]. The peaks of the Bpy appearing
at ∼1406, 1482 and 1587 cm–1 arise from C=C
stretching. The absorptions at 800–1215 cm–1 are
related to aromatic C–H stretching vibrations. The
FTIR spectra of MOFs (M1–M8) exhibit peaks
at 1566 and 1350 cm–1, which can be associated
with the asymmetric and symmetric stretching
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Figure 1. (a–c) The morphological transformation process of MOF nanomaterials from
1D nanofibers to 3D aggregates. (d–f) SEM (scale bar, 200 nm) images. (g–i) TEM (scale
bar, 200 nm) images of the samples: (a, d, g) M1, (b, e, h) M5 and (c, f, i) M8.

modes of coordinated –COO– groups, respectively.
The difference between the peaks of the –COOH
and –COO– groups confirms the coordination of
–COO– to Ni2+. In addition, compared with the
free ligands, a new peak at 629 cm–1 corresponds to
Ni-O from [Ni(Tdc)(Bpy)]n.

Furthermore, X-ray diffraction (XRD) pat-
terns confirmed that the various samples of
[Ni(Tdc)(Bpy)]n were successfully prepared and
their characteristic peaks were indexed using the
standard simulated pattern of MOFs (CCDC No.
298903) [34,35]. Figure 2a shows the XRDpatterns
of M1, M5 and M8, demonstrating that the 1D
nanofibers (M1) preferentially grow (202) crystal
planes, while 2D nanosheets and 3D aggregates
have exposed crystal planes (010), (020), (024) and
(124). Interestingly, upon stacking of 1D nanofibers
and agglomeration to 2D nanosheets (from M1
to M5), the (024) crystal plane is gradually ex-
posed and the diffraction peak intensity increases
(Fig. S6). To further explain this phenomenon, the
molecular structure of a [Ni(Tdc)(Bpy)]n MOF,
which belongs to the orthorhombic space group
(Pccn), was analyzed [34]. Figure S7a shows that
each NiII center is coordinated by four oxygen
atoms and two nitrogen atoms, and the NiII center
is in a six-coordinated environment, forming an
octahedral structure [36]. In the 3D stacking
structure of a [Ni(Tdc)(Bpy)]n MOF, the NiII

ions connect to the N atoms of Bpy to construct
1D Ni-Bpy linear chains, and these 1D chains
serve as ‘pillars’ to support the 2D Ni-Tdc network
structures formed by coordination of the carboxyl
oxygen atoms of Tdc to the NiII center (Fig. S7b–e)
[37]. A view along the (202) direction (Fig. 2b)
shows that adjacent 1D Ni-Bpy linear chains are
bridged by Tdc to further extend into a 3D porous
structure through Ni-O bonds. Therefore, when
a small amount of Bpy is introduced, the 1D Ni-
Bpy linear chains form and control the growth of
[Ni(Tdc)(Bpy)]n MOF crystals along the (202)
crystal plane as a priority, making M1 appear as
1D nanofibers. With an increasing amount of Bpy,
the 1D nanofibers gradually stack and agglomerate
to form 2D nanosheets, the crystal planes (010),
(020), (024) and (124) are exposed, and the
perspective views along the direction of these crystal
planes (Figs 2c and S8) indicate that the adjacent
2DNi-Tdc network structures are bridged by Bpy to
further extend into a 3D porous structure by Ni-N
bonds, resulting in the formation of 2D nanosheets.

X-ray photoelectron spectroscopy (XPS) mea-
surements confirm that M5 contains five elements:
Ni, N, C, S and O (Fig. 2d). The Ni 2p spec-
trum demonstrates the presence of two types of
Ni species: Ni2+ at 855.2 and 872.8 eV and Ni3+

at 856.5 and 874.2 eV (Fig. 2e) [38,39]. The de-
convoluted N 1s XPS spectrum (Fig. 2f) indicates
peaks at 399.5 and 398.8 eV arising from Ni-N
and pyridinic N [40]. In the C 1s XPS spectrum
(Fig. 2g), the peaks appearing at ∼288.2, 287.6,
285.3 and284.5 eVarise fromO=C–O,C–S/C=O,
C–N/C–O and C=C–C, respectively [41]. More-
over, the existence of O=C–O (531.3 eV) and
C=O (530.7 eV) units is further verified by the
O 1s spectrum (Fig. 2i) [41]. The S 2p spectrum
(Fig. 2h) reveals the presence of C–S–C, further
confirming the formation of [Ni(Tdc)(Bpy)]n [42].
Furthermore, the XPS spectra of other samples
also indicated that the constructed MOF materi-
als are [Ni(Tdc)(Bpy)]n (Figs S9–S15). To study
the porous structure of the MOF materials, the
Brunauer-Emmett-Teller (BET) surface areas were
determined.A sampleofM5exhibited ahigh specific
surface area that was remarkably larger than those of
other MOF materials (Fig. S16 and Table S2). Fur-
thermore, the pore size distribution also indicates
the coexistence of micropores and mesopores in the
MOF materials, with M5 possessing a larger pore
volume (Fig. S17). Therefore, the high specific sur-
face area ofM5 is favorable for promoting electrolyte
permeation to access more redox active sites.

The electrochemical capacitive properties of the
samples M1–M8 were first studied in a three-
electrode system. The SEM images of the prepared
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Figure 2. (a) XRD patterns of M1, M5 and M8. (b) The accumulation viewed along the (202) direction. (c) The accumulation viewed along the (024)
direction. XPS spectra of the M5: (d) survey and high resolution, (e) Ni 2p, (f) N 1s, (g) C 1s, (h) S 2p and (i) O 1s XPS spectra.

MOF electrodes show that the morphology of 1D
nanofibers, 2D nanosheets and 3D aggregates is
well maintained during the fabrication process of
the electrodes (Fig. S18). The cyclic voltammetry
(CV) curves in Fig. 3a reveal that the redox cur-
rent density of M5 is much higher than that of the
other electrodes. The electrochemical reaction ki-
netics of the as-fabricated electrodes were further
studied via CV at multiple scan rates (Figs 3b, S19a,
S21a, S23a, S25a, S28a, S30a and S32a). As the scan
rates increase, the reduction peak (peak 1) moves
to a more negative voltage and the oxidation peak
(peak 2) shifts to amore positive voltage, whichmay
be caused by an increase in the internal diffusion re-
sistance at high scan rates. Even at high scan rates,
the redoxpeaks ofM3–M5arewellmaintained, indi-
cating their excellent capacitive behavior and rate ca-
pability. Furthermore, the relationship between cur-
rent (i) and scanning rate (v) is i= avb (details in the
SupplementaryData) [43].Theb values arebetween
0.5 and 0.7, indicating that both diffusion-controlled

and surface capacitive-controlled processes exist in
the entire electrochemical reaction (Figs 3c, S19b,
S21b, S23b, S25b, S28b, S30b and S32b). Subse-
quently, the ratios of the two capacitive mechanism
contributions at various scan rates can be calculated
(details in the Supplementary Data). As the scan
rate increases, the capacitive contribution shows an
increasing trend, indicating high-efficiency charge
storage (Figs 3d, S19c, S20, S21c, S22, S23c, S24,
S25c, S26, S27, S28c, S29, S30c, S31, S32c and S33).
As shown in Fig. S34, compared with other elec-
trodes, M5 has a higher diffusion-controlled contri-
bution, which means that the corresponding redox
reactions in the M5 electrode are mainly diffusion-
controlled processes. Figure S35a shows CV curves
for the M5 electrode at various potentials. As the
potential window increases, the area delimited by
the corresponding CV curve increases accordingly.
To further explore the electrochemical behavior of
M1–M8, galvanostatic charge–discharge (GCD)
tests were performed. In Fig. S35b and c, the GCD
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Figure 3. (a) CV curves of the M1, M5 and M8 at 30 mV s–1 in a three-electrode cell.
(b) CV curves for M5 at various scan rates. (c) Log(i) versus log(v) plots for M5. (d)
Bar chart showing the % of capacitive contribution of M5 at various scan rates. (e)
Galvanostatic discharge curves of M1, M5 and M8 at 1 A g–1. (f) Specific capacitance
of M1, M5 and M8 at multiple current densities.

and specific capacitance change versus potential
curves of the M5 electrode at different potentials
suggest that this electrode possesses the longest
charge–discharge time and highest specific capaci-
tance at a charge–discharge potential of 0.5 V. From
theGCDcurves in Fig. 3e at 1 A g–1,M5 displays the
longest discharge time compared with M1 and M8.
The GCD curves of the other electrodes at various
current densities are displayed in Figs S36 and S37.
As shown in Fig. S38, although M3 has a longer dis-
charge time than M5, the coulombic efficiency and
rate performance of M3 are relatively poor. Overall,
M5 exhibits the highest specific capacity (592 F g–1

at 1 A g–1), and its coulombic efficiency is also good
(Fig. 3f).Tohighlight theoutstanding electrochemi-
cal capacitive performanceofM5, a comparisonwith
recently reported MOF nanomaterials [44–46] is
presented in Table S3. For comparison, the electro-
chemical capacitive properties of the organic ligands
(Bpy, Tdc, Bpy/Tdc) were also tested (Fig. S39).
Theorganic ligand electrodes exhibit almost no elec-
trochemical energy storage characteristics, which in-
dicates that the [Ni(Tdc)(Bpy)]n MOFs formed by

the organic ligands and Ni2+ have unique energy
storage characteristics. Their superior electrochem-
ical activity was further confirmed via electrochem-
ical impedance spectroscopy (EIS) measurements
(Fig. S40).The intersectionpoint of theNyquist plot
with the Z′ axis represents Rs (series resistance).M5
exhibits a low value of Rs at 1.06 �, similar to M1
(2.28 �), M2 (2.20 �), M3 (0.70 �), M4 (0.92
�), M6 (1.48 �), M7 (1.02 �) and M8 (0.93 �).
The results indicate that the as-obtained electrodes
have high electronic conductivity and rapid reaction
kinetics.

ASC devices were fabricated from
[Ni(Tdc)(Bpy)]n MOFs (positive) and AC
(negative) materials using our previously reported
method (at a mass ratio of 1:1.8, details are in the
Supplementary Data, Fig. S41). As displayed in
Fig. 4a, the shape of the CV curves of the M5//AC
ASC device can be maintained at various scan rates,
suggesting typical pseudocapacitive performance
with rapid and reversible charge storage capacity.
To better understand the enhanced properties of
the M5//AC ASC device, the interfacial capacitive
behavior of all ASC devices was further confirmed
via CV tests at multiple scan rates. By plotting log(i)
versus log(v), b values of M1–M8//AC ASC de-
vices were found to be between 0.8 and 1 (Figs 4b,
S42–S57). This result indicates that the overall
charge storage by M1–M8//AC ASC devices can
be divided into diffusion-controlled and surface
capacitance-controlled processes but are mainly
due to a surface capacitance-controlled process.
Figure S58 shows that the surface capacitance-
controlled contribution in the M5//AC ASC
device is more significant. With an increasing scan
rate, the surface capacitance-controlled contri-
bution rate of M5//AC gradually increases from
52.8% to 94.8%, indicating that M5//AC has
good charge-transfer kinetics, which is also the
reason why M5//AC has high rate capability. A
shaded area related to the surface capacitance-
controlled contribution in M5//AC accounts for
a large fraction of 74.2% at 30 mV s–1 (Fig. 4c).
As displayed in Fig. S59, the specific capacitance
of the as-constructed M5//AC ASC devices is the
highest at 1.5 V. Additionally, the GCD curves of
the assembled M1–M8//AC ASC devices were
tested at different current densities (Figs S60 and
S61). In Fig. S62, the M5//AC ASC device reveals
a specific capacitance of 207mF cm–2, which is
high compared to other devices (the values for
M1, M2, M3, M4, M6, M7 and M8 are 98.5, 155,
90, 106, 119, 74 and 61mF cm–2, respectively),
mainly because 2DMOF nanosheets have a shorter
ion transport pathway (Fig. S63). At 8 mA cm–2,
the M5//AC ASC device provides an excellent
rate capability by maintaining a capacitance of
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Figure 4. (a) CV curves of M5//AC at multiple scan rates. (b) Log(i) versus log(v) plots for M5//AC. (c) CV curve with the capacitive fraction displayed by
the shaded area of M5//AC at 30 mV s–1. (d) GCD curves of two M5//AC devices linked in series at multiple current densities. (e) Specific capacitance
changes versus current density of two M5//AC devices linked in series. (Inset) Optical image of two M5//AC devices linked in series. (f) Schematic
illustration of twoM5//AC devices linked in series to light up a yellow LED and power a rotating motor. (g) Cycling performance and coulombic efficiency
at 3 mA cm–2 for 5000 cycles. (Inset) The first 20 and last 20 GCD curves of two M5//AC devices linked in series.

144mF cm–2. To further explore the impedance
performance, EIS analysis was performed, and
the Nyquist plots of the M1–M8//AC ASC devices
are displayed in Fig. S64. The charge-transfer
resistance (Rct) of this device was calculated using
ZView software.TheM5//AC ASC device revealed
a low Rs of 1.2 � and an Rct of 79 �. The low
resistance value for the M5//AC ASC device
indicates easy ion diffusion. In addition, the GCD
curves of the device at different mass loadings were
investigated. The specific capacitance was found to
gradually increase with the mass loading, but with
the higher mass loading (8 mg cm–2), the specific
capacitance decreases, probably because the active
material on the electrode is not fully utilized under
the high mass loading conditions (Fig. S65).

To explore the practical applications of the ASC
device, twoM5//ACASCdevices were linked in se-
ries. Figure 4d shows GCD curves for twoM5//AC

ASC devices linked in series. This device could be
extended to a large voltage window of 3.0 V. As dis-
played inFig. 4e, the specific capacitanceof the series
device at 1.5, 3, 6 and8mA cm–2 was calculated to be
102, 83, 72 and 67mF cm–2, respectively, showing
good rate capability. According to the GCD curves
in Fig. 4d, we calculated the coulombic efficiency of
the device at different current densities (Fig. S66).
With the increase of current density, the coulombic
efficiency gradually increases, and is close to 100%
at 8.0 mA cm–2. More importantly, in Fig. 4f, this
series device was used to power a yellow LED and
a rotating motor for ∼5 min and 3 s, respectively,
after charging for 1 min (Videos S1 and S2). More-
over, this device demonstrates an excellent cycling
property with a capacitance retention of 95% and an
excellent coulombic efficiency of 96% at 3 mA cm–2

after 5000 cycles, which should be of benefit for
fast-charging energy storage devices (Fig. 4g).
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Figure 5. (a) Schematic for the selective removal of Tdc carboxylate links from [Ni(Tdc)(Bpy)]n nanosheets by OH– in the
electrolyte during charging and discharging. (b) Mechanism of charge/discharge of a [Ni(Tdc)(Bpy)]n MOF-based electrode.

To further investigate the charge–discharge
mechanism of the electrode materials, SEM images
of M5 after cycling were obtained (Fig. S67). The
SEM images show that the nanosheet morphology
of M5 is well maintained without visible damage.
The corresponding elemental mapping images of
M5 after cycling indicate that C, N, O, S, Ni and
K are distributed throughout the whole nanosheet
(Fig. S68). The XRD patterns show that the (202)
crystal plane of M5 is retained and the other crystal
planes disappear after cycling (Fig. S69). This phe-
nomenon can be explained by the selective removal
of Tdc carboxylate links from [Ni(Tdc)(Bpy)]n
nanosheets by OH– in the electrolyte during charg-
ing and discharging, whereas the Ni-Bpy layers
are well protected (Fig. 5a). Therefore, the (202)
crystal plane corresponding to the Ni-Bpy layers is
well preserved. In addition, Fig. S70 shows that the
XPS spectral peaks of N 1s and C 1s decrease after
cycling, and the XPS spectral peak of S 2p almost
disappears, which also confirms the above hypoth-
esis. As can be seen from the cycling performance
(Fig. 4g), the specific capacitance slowly increases
before 1000 cycles, which may be due to the capac-
ity contribution of Ni(OH)2 generated during the
removal of Tdc carboxylate linkers. Therefore, the
possible charge–discharge mechanism is shown in
Fig. 5b.

CONCLUSIONS
In conclusion, we have proposed a facile method
for the preparation of morphology-controllable 3D

pillared-layer [Ni(Tdc)(Bpy)]n MOF nanocrystals,
based on the synergetic dual-ligand and HSAB
strategies. The nanocrystals are revealed as efficient
electrode materials for SCs with excellent life cy-
cles. Bpy was found to act as a coordination mod-
ulator to adjust the morphology transformation
of [Ni(Tdc)(Bpy)]n MOF nanocrystals from 1D
nanofibers to 2D nanosheets and then to 3D aggre-
gates. This appears related to the amount of Bpy in-
troduced, which causes MOF crystals to grow along
1D Ni-Bpy linear chains or in a 2D Ni-Tdc net-
work direction. Compared with the 1D nanofibers
and 3D aggregates, the 2D nanosheets demonstrate
higher electrochemical performance. This is closely
related to the ion diffusion and charge-transfer pro-
cesses. The excellent electrochemical properties of
2D nanosheets are due to their short ion transport
distance. Furthermore, bywayofHSABstrategies, in
the 3D pillared-layer [Ni(Tdc)(Bpy)]n MOF struc-
ture the NiII center can be used as a soft metal site
to connect with the soft base Bpy to construct a
stable 1D Ni-Bpy linear chain. During the charg-
ing and discharging process, the Ni-Tdc network
in the MOF was removed by OH– in the elec-
trolyte, while the Ni-Bpy layer was well protected,
thus providing good cycling stability. We believe
that this work can provide a general approach to
designing size/morphology-controllable and func-
tional adjustable MOFs.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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