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Abstract

Background and Aims: A major impediment to establishing new treatments for non-alcoholic steatohepatitis is the lack of
suitable animal models that accurately mimic the biochemical and metabolic characteristics of the disease. The aim of this
study was to explore a unique polygenic animal model of metabolic disease as a model of non-alcoholic steatohepatitis by
determining the effects of 2% dietary cholesterol supplementation on metabolic and liver endpoints in Psammomys obesus
(Israeli sand rat).

Methods: P. obesus were provided ad libitum access to either a standard rodent diet (20% kcal/fat) or a standard rodent diet
supplemented with 2% cholesterol (w/w) for 4 weeks. Histological sections of liver from animals on both diets were
examined for key features of non-alcoholic steatohepatitis. The expression levels of key genes involved in hepatic lipid
metabolism were measured by real-time PCR.

Results: P. obesus fed a cholesterol-supplemented diet exhibited profound hepatomegaly and steatosis, and higher plasma
transaminase levels. Histological analysis identified extensive steatosis, inflammation, hepatocyte injury and fibrosis. Hepatic
gene expression profiling revealed decreased expression of genes involved in delivery and uptake of lipids, and fatty acid
and triglyceride synthesis, and increased expression of genes involved in very low density lipoprotein cholesterol synthesis,
triglyceride and cholesterol export.

Conclusions: P. obesus rapidly develop non-alcoholic steatohepatitis when fed a cholesterol-supplemented diet that
appears to be histologically and mechanistically similar to patients.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is the world’s most

common form of chronic liver disease, and affects approximately

75% of patients with obesity and type 2 diabetes [1]. The presence

of NAFLD worsens outcomes in these patients, as it exacerbates

diabetes, and can lead to cirrhosis and liver cancer [2]. It is

estimated that approximately 20% of NAFLD patients will go on

to develop non-alcoholic steatohepatitis (NASH), and approxi-

mately 20% of NASH patients will progress to life-threatening

cirrhosis [3]. The presence of NASH in human patients is

confirmed by key histological features including steatosis, inflam-

mation, hepatocyte injury, and fibrosis [4,5].

Current management of NASH generally focuses on weight loss

and treatment of co-morbidities (such as insulin resistance [6]). A

major impediment to establishing and characterising new treat-

ments for NASH is the lack of suitable animal models that

accurately mimic the biochemical and metabolic characteristics of

NASH in human patients [7]. Current animal models of NAFLD

or NASH can be broadly categorised as either dietary-induced or

genetic. The most widely used dietary-based model is rodents fed a

methionine- and choline-deficient (MCD) diet high in sucrose and

fat, resulting in the prevention of hepatic b-oxidation and

impaired production of very low density lipoprotein (VLDL). This

leads to the accumulation of intrahepatic lipid, fibrosis and

decreased VLDL synthesis. However, the MCD diet is associated

with considerable weight loss and toxicity [7,8]. Additionally, the

metabolic profile of animals fed this diet includes decreased plasma

insulin and glucose levels, in contrast to the metabolic profile

observed in the majority of human patients with NAFLD/NASH

[7,8]. Db/db mice, which have a mutated leptin receptor gene, are

a widely used genetic model of NAFLD. These animals develop

obesity, insulin resistance, diabetes and hepatic steatosis, however
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only progress to NASH following additional intervention such as

exposure to the MCD diet [9]. Although some of these animal

models are useful for investigation into particular aspects of human

NAFLD/NASH, none display all of the histological characteristics

present in the human disease state and in the context of metabolic

disease.

Psammomys obesus (Israeli sand rat) is a gerbil that is a unique

animal model of the Metabolic Syndrome. In its native desert

environment, P. obesus remain lean and healthy. However, when

housed under laboratory conditions and fed a standard rodent diet

(20% kcal/fat), a proportion of P. obesus become obese and type 2

diabetic, while others remain lean and healthy [10–14]. Previous

studies have shown P. obesus to be susceptible to steatosis when fed

a standard rodent diet with added fibre (30% wheat straw),

however key features of human NASH such as fibrosis, hepatocyte

injury and inflammation were absent [15]. The majority of

previously reported rodent models of NAFLD/NASH utilize diets

high in fat and/or supplemented with cholesterol. As P. obesus will

not consume highly palatable energy-rich diets, we tested whether

NASH could be induced in P. obesus via addition of cholesterol (2%

w/w) to their standard rodent diet (20% kcal/fat). In this study we

show that dietary cholesterol supplementation for 4 weeks induces

NASH in P. obesus with a profile similar to that seen in patients.

Materials and Methods

Ethics Statement
Animals were maintained in accordance with the Code of

Practice of the National Health and Medical Research Council of

Australia, and all procedures were carried out subject to the

approval of the Deakin University Animal Ethics Committee

(permit number A59-2010). All efforts were made to minimise

animal suffering.

Experimental animals
A colony of outbred P. obesus is maintained at Deakin

University, Geelong, Australia. All animals were housed in a

temperature-controlled room (2261uC) with a 12–12 h light-dark

cycle (light 06:00–18:00 h).

Male animals aged 8–10 weeks were randomly allocated to the

following groups: 1) Standard diet (20% kcal/fat, 0% cholesterol;

n = 8), or 2) Cholesterol-supplemented diet (20% kcal/fat, 2%

cholesterol (w/w); n = 9). Both diets contained 16% kcal/protein

and 64% kcal/carbohydrate, and had total digestible energy of

15 MJ/kg. The source of fat for both diets was mixed vegetable

oils. There was no difference in % fatty acid profile or total

digestible energy between the two diets. All animals were allowed

to consume their respective diet ad libitum for 4 weeks. Food intake

was measured weekly by rate of disappearance, and body weight

was measured weekly.

Histological and biochemical analyses of liver tissue
Animals were humanely killed and 1 g of liver tissue (left lobe)

was removed and fixed in 10% neutral-buffered formalin. The

liver tissue was paraffin-embedded, sectioned (5 mM), mounted

and stained with hematoxylin and eosin, or Masson trichrome

stain (Sigma-Aldrich, St Louis, MO) to visualise fibrosis. All

histological analyses were conducted by a pathologist blinded to

the treatment conditions.

Pictures of Masson trichrome stained liver sections were taken

on an Axioskop 2 microscope (Zeiss; magnification 200x) and

collagen content was quantitated using ImageJ software (NIH). For

each animal, 10 fields per liver section were selected randomly and

blue staining (representing collagen) was highlighted. The area of

staining was measured as number of pixels per picture and the

data collated to give a mean area of staining per field for each

animal in the study.

An additional portion of the liver (right lobe) was used to

measure lipid content. Lipid was extracted using a modified Folch

protocol [16]. The tissue was homogenised in 2:1 chloroform/

methanol solution (10 ml), and filtered. An additional 5 ml of 2:1

chloroform/methanol solution was added, followed by 2.5 ml of

0.9% NaCl. After mixing, the extract was centrifuged for 5 min at

2 000 g at 10uC. After discarding the aqueous layer, the organic

layer was dried under nitrogen, and total lipid content assessed by

weighing.

To assess the types of lipid present, a 1 g portion of the liver

(right lobe) was minced and lipids extracted essentially as

previously described [17]. The lipid extract was reconstituted in

200 ml of dichloromethane and the lipids were then separated by

thin layer chromatography. The lipid extracts were spotted onto

silica gel plates (Silica gel 60 G, Merck, Germany) and developed

in 85:15:2 (v/v) petroleum ether: diethylether: acetic acid in paper-

lined tanks. The lipids were visualised under ultraviolet light after

reacting with 0.1% (w/v) 29,79 –dichlorofluroescein indicator in

ethanol (Scharlau, Spain).

Plasma enzyme and metabolite analyses
Blood glucose was measured on days 0 and 28 using a

glucometer (Accuchek II; Roche, Castle Hill, Australia). Plasma

triglyceride, total cholesterol, HDL-cholesterol, ALT and AST

levels were measured using an Olympus AU400e Bioanalyzer

(Olympus America Diagnostics, Center Valley, PA). Plasma

insulin concentration was measured using an ultra-sensitive ELISA

kit (Crystal Chem Inc, Downers Grove, IL, USA).

RNA Extraction and Gene Expression Analysis
Total RNA was extracted from 100 mg of liver tissue using

TRIzol (Invitrogen Life Technologies, Carlsbad, USA) and

RNeasy columns (Qiagen, Hilden, Germany). Quality and

concentration of mRNA was established using RNA 6000 Nano

Assay on a Bioanalyser (Agilent Technologies, USA), and cDNA

was generated from total RNA using Superscript First-Strand

Synthesis System for RT-PCR (Invitrogen). Gene expression levels

were measured using FastStart Universal SYBR Green Master

(Roche Australia) on a Mx3005P cycler (Stratagene), and

normalised to cyclophilin. RT-PCR primer sequences are listed

in Table 1.

Statistical Analysis
Data distribution was tested for normality using a Kolmogorov-

Smirnov test. Group mean differences were assessed using

Student’s unpaired t-test (for normally distributed data) or

Mann-Whitney U-test. Correlation between continuous variables

was assessed using Pearson (for normally distributed data) or

Spearman rho tests as appropriate. All analyses were performed

using Statistical Package for the Social Sciences software (SPSS

version 20; USA). Data were considered statistically significant at

p,0.05.

Results

We evaluated the effects of feeding lean, non-diabetic P. obesus a

standard rodent diet (20% kcal/fat) supplemented with 2%

cholesterol for 4 weeks. There was no difference in food intake

between the groups (standard diet 5263 v. cholesterol-supple-

mented diet 4763 g/kg/d, p = 0.26). The mean body weight of

the two groups was not different at the start or end of the study,

NASH in Psammomys obesus
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and body weight gain in the two groups was similar (standard diet

+41.064.1 v. cholesterol-supplemented diet +36.163.7 g,

p = 0.40). Blood glucose levels increased marginally in the

standard diet group (+0.560.2 mmol/L, p = 0.04) and decreased

slightly in the cholesterol-supplemented group (20.460.1 mmol/

L, p = 0.03). However, these changes are considered minor since

all animals in the study remained normoglycemic (range 3.2–

5.1 mmol/L).

Visual examination of livers at necropsy revealed grossly

enlarged and pale livers in the animals fed the cholesterol-

supplemented diet, and these livers had a firm, rubbery texture

(Fig. 1A,B.). Liver weights were significantly greater in animals fed

the cholesterol-supplemented diet (p,0.001, Fig. 1C.). Corre-

spondingly, liver lipid levels were also markedly elevated

(p,0.001, Fig. 1D.). Thin layer chromatography analysis showed

that the lipid species present in the liver were predominantly

triglycerides and, in the case of the animals fed the cholesterol-

supplemented diet, cholesterol esters (Fig. 2.).

Hepatocyte injury and impaired liver function were also

apparent, with plasma ALT and AST activity significantly

elevated in the animals fed the cholesterol-supplemented diet

(p = 0.02 and p = 0.03, respectively, Fig. 1E.). Plasma total

cholesterol levels were 4-fold higher in the animals fed the

cholesterol-supplemented diet (1141618 v. 2796165 mg/dL,

p = 0.003), while HDL cholesterol levels were reduced by 37%

(4266 v. 6765 mg/dL, p = 0.014). There was no difference in

plasma triglycerides between the groups (74630 v. 97632 mg/

dL, p = 0.62).

Liver sections from animals on both diets were examined for

histological features of NASH (Fig. 3.). Blinded histopathological

analysis confirmed the presence of steatosis, inflammation,

hepatocyte injury and fibrosis in the cholesterol-supplemented

group. Steatosis was marked, with abundant large and small lipid

droplets (Fig. 3B,D.). Inflammation was demonstrated by the

presence of neutrophil-containing parenchymal inflammatory foci

(Fig. 3C.), and in addition sinusoidal foamy macrophages were

seen in some livers (Fig. 3B.). This was supported by greater

mRNA expression of proinflammatory markers including CD68,

interleukin 1 beta (IL1B), chemokine (C-C motif) ligand 2 (CCL2) and egf-

like module containing, mucin-like, hormone receptor-like 1 (EMR1) (Fig. 4,

p,0.05 for each gene). Hepatocyte injury was noted, including

focal necrosis in some cases, and there was architectural disruption

including fibrous expansion of portal tracts, early septum

formation, and both pericellular and perisinusoidal fibrosis

(Fig. 3D,E,F.). This fibrosis was reflected by markedly higher

collagen 1 alpha (COL1A1), actin, alpha 2, smooth muscle, aorta (ACTA2)

and transforming growth factor, beta 1 (TGFB1) gene expression (Fig. 4,

p,0.05 for each gene). Collagen content was 30-fold increased in

the cholesterol-supplemented group compared with controls as

assessed by quantitative imaging (1175665859 vs. 3786224 pixels

per field, p,0.002).

NAFLD activity scores were calculated based on the method of

Kleiner and Brunt [18]. The overall scores were 4.460.5 in the

cholesterol-supplemented group and 1.860.4 in the control group

(p,0.001). Scores were significantly different for steatosis (2.360.3

vs. 1.360.2, p = 0.007) and inflammation (2.160.4 vs. 0.560.3,

p = 0.003). Histologically, P. obesus showed the key features of

NASH after only 4 weeks of dietary cholesterol supplementation.

The effect on the liver by simply adding cholesterol to the diet

(without increasing dietary fat content) was profound in P. obesus

compared with effects seen previously in other rodents, suggesting

increased susceptibility to NASH in these animals. Therefore, we

profiled the hepatic expression of key genes involved in lipid

metabolism in P. obesus fed the two diets. Expression of genes

involved in delivery and uptake of lipids were consistently lower in

the cholesterol-supplemented group (SREBF2 237%, p = 0.019;

SCARB1 248%, p = 0.002; LDLR 261%, p,0.001; PCSK9

250%, p = 0.022; Table 2), while genes involved in fatty acid

and triglyceride synthesis were also lower in the cholesterol-

supplemented group (FABP1 248%, p = 0.012; PPARA 259%,

p,0.001; GPAM 241%, p = 0.016; LIPE 249%, p = 0.005;

Table 2). In general, genes encoding proteins involved in VLDL

synthesis, triglyceride and cholesterol export from the cells were

higher in the cholesterol-supplemented group (ACAT2 +63%,

p = 0.034; ABCA1 +230%, p = 0.001; Table 2), however expression

of MTTP was unexpectedly lower (243%, p = 0.007). PPARD gene

expression was increased (+170%, p = 0.007), presumably to

increase transcription of genes involved in fatty acid oxidation,

however CPT1A mRNA was decreased (241%, p = 0.027).

Finally, the expression of cholesterol 7 alpha hydroxylase

(CYP7A1), the rate-limiting step in bile acid synthesis, was reduced

in livers of P. obesus fed the cholesterol-supplemented diet (247%,

p = 0.016).

Discussion

Here we have shown that P. obesus exhibit key features of NASH

when exposed to a cholesterol-supplemented diet. Four weeks of

dietary cholesterol supplementation resulted in these animals

displaying extensive steatosis, inflammation, hepatocyte injury and

fibrosis. These histological phenotypes closely resemble the NASH

disease profile observed in human patients. Additionally, hepatic

Table 1. PCR primer sequences.

Gene Forward primer (59-39) Reverse primer (59-39)

CD68 ggacagcttacctttggattcaa ctgtgggaaggacacattgtattc

IL1B atcagcacttcccaagcaga agagacggattccaaggtga

CCL2 catagcggtcactccgacag catgcacctgcagctaatgc

EMR1 gcaagatcctcagtgcgtct gcataccagggagatgaccg

COL1A1 ggtgacaagggtgagacag agagggaccttgttcacc

ACTA2 cttggggttcagtggtgctt tccaatcgaacacggaatcatc

TGFB1 aaagccctgtatgccgtctc cagcaacaattcctggcgtt

SREBF2 ctccgcagacgaggatcatccag cagggctgccatctgtgttcag

SCARB1 gtctacagggagttcagaca taggcagtacaatgtagtcac

LDLR tgacgggctggcggtagact cccaatctgtccagtacatgaagcc

PCSK9 ctgaagttgccccatgtggagta ggtatctaagagatacacctccac

FABP1 gcccatatgaacttctccggcaagtac ctgggatccctaaattctcttgctgactctctt

PPARA tgcatgtccgtggagaccgt cagcatcccgtctttgttcatca

GPAM tgatcagccaggagcagctg agacagtatgtggcactctc

HSL cgagacaggcctcagtgtga aactctgggtctatggcgaatc

LIPE tcgggtgtggtgggtttgg gcgtgagatgtgttgctgagg

MTTP gttctcctctccttcgtcag ccaaccttgtgtcctctcc

ACAT2 tagcattcctcacccaac ccagtccatagccatagg

ABCA1 aaaggaggacagtgtttc gatgaggttggagatagc

PPARD gcccttcagtgacatcattgagccc gcagcttggggaagaggtactgg

CPT1A tgcaaagatcaatcggaccc acgccactcacgatgttcttc

CYP7A1 ctatgatgagggctttgag aataggaggagcattggc

Cyclophilin cccaccgtgttcttcgaca ccagtgctcagagcacgaaa

doi:10.1371/journal.pone.0092656.t001
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gene expression data confirmed that the NASH in P. obesus

appears to be mechanistically similar to that in patients with

NASH.

Brunt and colleagues [4,5] have established criteria for the

histological diagnosis of NASH. The key features are steatosis,

hepatocyte injury and inflammation, typically localised in zone 3,

with or without fibrosis. In this study we have shown the presence

of all of these key features of NASH in livers of P. obesus fed a

cholesterol-supplemented diet for 4 weeks. The steatosis was

closely associated with foci of inflammation, and was particularly

evident in hepatic zone 3. Our evidence for hepatocyte injury were

less clear, although the histological appearance suggested signif-

icant disruption of the cellular architecture, and this was supported

by increased plasma levels of transaminases that are known to be

released from injured hepatocytes. Furthermore, patches of

necrosis observed in two of the animals also support the suggestion

of hepatocyte injury, even though necrosis is not a common

feature of human NASH [4,5]. Overall, the histological appear-

ance of NASH in P. obesus closely resembles that seen in human

patients.

In contrast to other dietary based animal models, the diet used

in this study involved only a minor modification to a standard

rodent diet. Other dietary models are either based on nutrient

deficiency (e.g. MCD diet) or unrealistically high energy diet (e.g.

60–80% kcal/fat, 80% fructose) [7,8]. In this study we added 2%

cholesterol to a standard rodent diet, from which 20% of energy

was derived from fat, which is not considered to be a high fat diet.

The addition of 2% cholesterol to the diet can be considered

relatively high when compared with previous studies using 0.5–1%

dietary cholesterol [19,20]. However, more recently, 2% dietary

cholesterol in the context of high fat, high fructose diet (where the

Figure 1. Effects of dietary cholesterol supplementation on P. obesus liver. A&B) Livers from P. obesus fed the standard diet or cholesterol-
supplemented diet. C) Liver weight, *p,0.001, D) Liver lipid, *p,0.001, and E) plasma ALT and AST in P. obesus fed either the standard diet (20% kcal/
fat, 0% cholesterol; n = 8) or cholesterol-supplemented diet (20% kcal/fat, 2% cholesterol; n = 9).
doi:10.1371/journal.pone.0092656.g001

Figure 2. Hepatic lipid species in P. obesus. Thin layer chroma-
tography analysis of hepatic lipid species in P. obesus fed either the
standard diet or cholesterol-supplemented diet. Note that this
technique is not quantitative, as equal amounts of lipid were analysed
in each lane. CE = cholesterol esters, TAG = triacylglycerides, FFA = free
fatty acids, PL = phospholipids.
doi:10.1371/journal.pone.0092656.g002

NASH in Psammomys obesus
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source of fat was trans-fat) elicited fibrosis in leptin-deficient mice,

but not in normal C57BL6 mice [21], suggesting that multiple

insults are required in other rodent models for the full spectrum of

NASH, not just increased dietary cholesterol [22]. The presence of

significant hepatic damage induced by relatively minor dietary

variation suggests that P. obesus may be an attractive model for

future NASH research compared with other dietary-based models.

Figure 3. Histopathology of NASH in P. obesus. Masson’s trichrome stained livers at 6400 magnification except F (x40). A: Control group with
minimal steatosis and no fibrosis, B: Lipid droplets in most cells, and sinusoidal foamy macrophages (arrows), C: Parenchymal inflammation with
neutrophils (arrow), D: Strands of pericellular and perisinusoidal collagen (arrows), E: Fibrous expansion of portal tracts, with oval cells/ductular
reaction, F: Distorted architecture, with portal septum formation.
doi:10.1371/journal.pone.0092656.g003

Figure 4. Hepatic gene expression in P. obesus with NASH. Gene expression of markers of inflammation and fibrosis in livers of P. obesus with
NASH, n = 8–9 per group. *p,0.05, **p,0.005.
doi:10.1371/journal.pone.0092656.g004
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In this study we have shown the development of NASH in P.

obesus occurs after only four weeks. Such rapid onset is not

observed in other dietary models with exposure to MCD diet

requiring up to 10 weeks to lead to the development of NASH

(depending on species/strain), whilst exposure to a high fat diet,

fructose diet, or an atherogenic diet can take up to several months

before NASH is observed [7,8]. We note that the animals in this

study were not obese. It will be of interest to repeat this study in

animals with pre-existing obesity and/or type 2 diabetes and

investigate how this affects the development of NASH.

In P. obesus fed the cholesterol-supplemented diet for 4 weeks

there was a consistent reduction in the liver mRNA levels of genes

encoding proteins involved in the delivery and uptake of lipids. Of

note, LDL receptor (LDLR) mRNA was 61% lower in animals fed

the cholesterol-supplemented diet, which would be expected to

result in reduced lipid and cholesterol uptake by the cells. This is

opposite to what has been observed in mouse models of NASH

[23], but consistent with observations in African Green Monkeys

with NASH [24]. We also observed reductions in genes encoding

proteins involved in de novo fatty acid and triglyceride synthesis.

Notably, fatty acid binding protein 1 mRNA was significantly

reduced in P. obesus with NASH, as it is in human cases [25], but

not in mouse models of NASH [26]. Gene expression of PPARA

and hormone sensitive lipase (LIPE) were reduced in P. obesus with

NASH, as they are in humans with NASH [27,28].

Hepatic gene expression of ACAT2, which is involved in the

removal of cholesterol from hepatocytes via VLDL, and ABCA1,

which is involved in direct cholesterol efflux from hepatocytes,

were both significantly increased in P. obesus with NASH.

Increased ACAT2 gene expression is also a feature of human

NASH [29]. Gene expression of MTTP was unexpectedly

reduced, as has been seen in various mouse models of NASH

[30,31]. CPT1A gene expression was also unexpectedly reduced,

similar to what has been observed in human NASH [28,32],

possibly due to excessive accumulation of malonyl-CoA in

advanced NASH. Finally, the gene expression of cholesterol 7

alpha hydroxylase (CYP7A1), the rate limiting step in bile acid

synthesis, was reduced by 47% (p = 0.02) in livers of P. obesus with

NASH. This is counterintuitive, as bile acid synthesis is a major

path for removal of cholesterol from the liver. However a similar

result was also found in monkeys with NASH [24], and is thought

to represent a measure to reduce intestinal cholesterol absorption

by limiting bile acid availability, in an attempt to restore hepatic

cholesterol homeostasis.

In summary we observed a general decrease in the expression of

genes encoding proteins involved in the uptake and synthesis of

fatty acids and triglycerides in the liver, and an increase in the

expression of genes encoding proteins that function in the export

or oxidation of lipids. Collectively these data indicate that the

hepatic molecular characteristics of NASH in P. obesus resemble

those seen in the human disease.

P. obesus rapidly develop NASH when fed a cholesterol-

supplemented diet including marked steatosis, inflammation,

hepatocyte injury and fibrosis. In general, the gene expression

patterns and biochemical and histological features observed in P.

obesus with NASH closely resembled the human condition. We

conclude that P. obesus is a new animal model of NASH with

significant advantages over existing models.
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Table 2. Gene expression in livers of P. obesus fed the cholesterol-supplemented diet, expressed as fold difference relative to
animals fed the standard diet.

Gene Name Gene Symbol Fold difference P

Delivery and uptake of lipids

Sterol regulatory element binding transcription factor 2 SREBF2 0.6360.07 0.019

Scavenger receptor class B, member 1 SCARB1 0.5260.08 0.002

Low density lipoprotein receptor LDLR 0.3960.04 ,0.001

Proprotein convertase subtilisin/kexin type 9 PCSK9 0.5860.12 0.022

Lipogenesis

Fatty acid binding protein 1, liver FABP1 0.5260.09 0.012

Peroxisome proliferator-activated receptor alpha PPARA 0.4160.08 ,0.001

Glycerol-3-phosphate acyltransferase, mitochondrial GPAM 0.5960.09 0.016

Hormone-sensitive lipase LIPE 0.5160.05 0.005

Fatty acid synthase FASN 0.7260.06 0.18

Lipid export

Acetyl-CoA acetyltransferase 2 ACAT2 1.6360.24 0.034

ATP-binding cassette, sub-family A (ABC1), member 1 ABCA1 3.3060.49 0.001

Microsomal triglyceride transfer protein MTTP 0.5760.08 0.007

Lipid oxidation

Peroxisome proliferator-activated receptor delta PPARD 2.7060.18 0.007

Carnitine palmitoyltransferase 1A (liver) CPT1A 0.5960.12 0.027

Bile acid synthesis

Cholesterol 7 alpha hydroxylase CYP7A1 0.5360.10 0.016

doi:10.1371/journal.pone.0092656.t002
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