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Abstract
In this paper, we have formulated and analysed a mathematical model to investigate the impacts of lockdown on the dynamics
of forestry biomass, wildlife species and pollution. For this purpose, we have considered a nonlinear system of four ordinary
differential equations representing rates of change of the density of forestry biomass, the density of wildlife species, the
concentration of pollutants and lockdown. Conditions for the existence, uniqueness and local stability of all equilibria along
with the global stability of the interior equilibrium point are derived. Furthermore, conditions that influence the persistence
of the system are obtained. By formulating an optimal control problem, the optimal strategies for minimizing the cost of
implementation of lockdown as well as the concentration of pollutants are also studied. Numerical simulations are carried
out to verify and validate our analytical findings. By this study, we have observed that implementation of lockdown for a
sufficient period of time minimizes excessive harvesting of both forestry biomass and wildlife species and the concentration
of pollutants in the environment. It is also found that lockdown policy is effective in the optimal control of atmospheric
pollution. Therefore, lockdown plays a significant role in the dynamics of forestry biomass, wildlife species and control of
pollution in the environment.
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1 Introduction

Lockdown is a restriction policy that imposes on human
population to ensure their safety from some major risks.
Pandemics and imminent threats are some of the main
reasons of lockdown. On April 30, 2009, lockdown was
imposed in Mexico due to swine flu [1]. In August 2019, the
Indian government implemented lockdown on Jammu and
Kashmir by restricting communications and media sources
after abrogation of status of state [1]. During COVID-19
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pandemic, several countries had imposed lockdown that
restrict mobility, trade and other socio-economic activities.
On January 23, 2020, the first lockdown during COVID-
19 pandemic was implemented in Wuhan, China [2]. On
March 24, 2020, Indian government declared complete lock-
down for the entire country as a preventive measure against
the COVID-19 pandemic in India [3]. During the lockdown
period, consumption of fuels by industries, thermal power
plants and transportation is restricted. As a consequence,
lockdown affects forestry biomass, wildlife species and pol-
lution in different aspects. The paper [3] gives insight into
the improvement of air quality due to lockdown, using tools
like satellite images of Indian atmosphere and Air quality
index calculated by central pollution control board of India.
Lockdown can do amiraculous change in environmental con-
ditions. However, lockdown policy cannot be implemented
forever as industries cannot be shut for much longer time or
vehicular movement cannot be restricted for a long period
of time but government can change the patterns and adopt
a more effective strategy. This gives an idea that imposition
of lockdown can improve environmental conditions and can
restore disturbed ecology.
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Forests are one of the most essential components for the
survival of human population and wildlife species. Besides
providing habitat and livelihood for humans and wildlife
species, forests offer watershed protection, prevent soil ero-
sion and mitigate climate change. Vogt et al. [4] investigated
the importance of forestry biomass for human survival and
ecological sustainability. Humans are harvesting forestry
biomass for producing electricity, industrial facilities and
transport energy. But the aggressive harvesting of forestry
biomass from forests is a fundamental threat to the health
and productivity of the forest ecosystem. The world’s forest
area has shrunk from the preindustrial level of 5900 million
ha (hectare) to 3999 million ha in 2015 [5,6]. The global
forest area decreased from 31.6 % to 30.6 % of total land
area between 1990 and 2015 [7]. Dubey et al. [8] analysed a
mathematical model to see the effects of increased industrial-
ization on forestry biomass. Their study claimed that human
population pressure and rapid industrialization may increase
the temperature of atmosphere of the earth. Therefore, human
population pressure and rapid industrialization are very
harmful for forestry biomass. Agarwal et al. [9] proposed
a mathematical model to study the impacts of industrial-
ization on depletion of forestry biomass and its consequent
effects on wildlife species. They observed that increase in
industrialization affects forestry biomass adversely, which in
turn affects the wildlife species. Many other authors [10–13]
investigated the impacts of toxicants, population, industrial-
ization and pollution on forestry biomass. Literatures have
also evidenced nonlinear mathematical models that explore
harvesting of vegetation biomass and prey–predator [14–19].
In [20], authors found that predator harvesting can maintain
the stability of the ecological system by terminating persis-
tent oscillations.

Various kinds of pollutants like NO2 and CO2 enter into
the environment due to the use of fuels in industrialization,
transportation and thermal power plants. All these pollutants
negatively affect water, air, vegetation, forestry resources
and the land, which in turn affects the survival of wildlife
species directly or indirectly [21–23]. All above studies sug-
gest that excessive harvesting of both forestry biomass and
wildlife species and increasing concentration of pollutants in
the environment are a serious matter of concern. Therefore,
aggressive harvesting of both forestry biomass and wildlife
species and increasing concentration of pollutants in the envi-
ronment should be controlled by implementing some policy.
Imposition of lockdown can reduce excessive harvesting of
both forests andwildlife species and increasing concentration
of pollutants in the environment. Misra et al. [24] formu-
lated an optimal control problem to investigate the impacts
of reforestation as well as time lag between measuring forest
data and implementing reforestation efforts on the control of
atmospheric concentration of CO2. Verma et al. [25] studied

the effects of the genetically modified tree planting on the
control of CO2 level in the atmosphere.

The implementation of lockdown is useful to decrease the
concentration of pollutants, but the cost of implementation
prevents them from being implemented on broad scale. As
a result, implementation strategies that minimize the con-
centration of pollutants and the cost of implementation of
lockdown are preferred. Keeping all these in mind, in this
paper, we have proposed a mathematical model consider-
ing the density of forestry biomass, the density of wildlife
species, the concentration of pollutants and lockdown. To the
best of our knowledge, no one has formulated a mathemati-
cal model to study the effects of lockdown on the dynamics
of forestry biomass, wildlife species and control of pollu-
tion in the environment. The model is analysed in regard to
boundedness, equilibria, local stability, global stability and
persistence. Furthermore, optimal control strategies for min-
imizing the concentration of pollutants as well as the cost
of implementation of lockdown are studied by formulating
optimal control problem.

2 Mathematical model

Excessive harvesting of both forestry biomass, wildlife
species and atmospheric concentration of pollutants can be
reduced by the imposition of lockdown policy. To model
this scenario, we consider four dynamic variables, namely
forestry biomass F(t), wildlife species W (t), concentra-
tion of pollutants P(t) and lockdown L(t) at time t > 0.
Following assumptions and facts are taken into account in
mathematical modelling process:

A(1): The dynamics of forestry biomass and wildlife
species are governed by the logistic model.

A(2): The density of forestry biomass decreases due to
wildlife species.

A(3): The density of wildlife species decreases due to pol-
lutants and increases with forestry biomass.

A(4): Implementation rate of lockdown is constant, and the
rate of ineffectiveness of lockdown is taken to be pro-
portional to lockdown.

A(5): The emission rate of pollutants depends on lockdown,
and it decreases with the increase in lockdown.

A(6): The uptake rate of pollutants depends on forestry
biomass and pollutants in the atmosphere. Also, it
negatively feedbacks into forestry biomass.

A(7): The removal rate of pollutants by sinks other than
forests is taken to be proportional to the concentration
of pollutants in the atmosphere.

A(8): The decrease in wildlife species caused by pollutants
is assumed to be feedback into the concentration of
pollutants in the atmosphere.
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A(9): Harvesting of both forestry biomass and wildlife
species decreases with the implementation of lock-
down.

Under the above assumptions, our mathematical model is
described by the following set of nonlinear ordinary differ-
ential equations:

dF

dt
= r F

(
1 − F

K

)
− α1WF − π1β1FP − h1(L)F,

dW

dt
= sW

(
1 − W

M

)
+ α2WF − β2WP − h2(L)W ,

dP

dt
= Q(L) − β1FP + π2β2WP − δ0P,

dL

dt
= L0 − ηL,

(1)

with the initial conditions, F(0) ≥ 0, W (0) ≥ 0, P(0) > 0,
and L(0) ≥ 0.
Here, we take h1(L) = h01 − e1L so that h1(0) = h01 > 0
and h′

1(L) < 0 for L > 0. Similarly, we consider h2(L) =
h02 −e2L so that h2(0) = h02 > 0 and h′

2(L) < 0 for L > 0.
Also, we consider Q(L) = Q0−Q1L. Then, Q(0) = Q0 >

0 and Q′(L) < 0 for L > 0.
Therefore, model (1) becomes

dF

dt
= r F

(
1 − F

K

)
− α1WF − π1β1FP − h01F + e1LF,

dW

dt
= sW

(
1 − W

M

)
+ α2WF − β2W P − h02W + e2LW ,

dP

dt
= Q0 − Q1L − β1FP + π2β2W P − δ0P,

dL

dt
= L0 − ηL,

(2)

with the initial conditions, F(0) ≥ 0, W (0) ≥ 0, P(0) > 0,
and L(0) ≥ 0.
The parameters of the model system (2) are positive and
defined in Table 1.

3 Boundedness of solutions

To analyse the model (2), we need the bounds on dependent
variables involved, so we find the region of attraction in the
next lemma:

Lemma 3.1 If (δ0−π2β2Wmax) > 0, then solutions of system
(2) are bounded inside a region � given by

� =
{
(F,W , P, T ) : 0 ≤ F ≤ Fmax, 0 ≤ W ≤ Wmax,

0 < P ≤ Pmax, 0 ≤ L ≤ Lmax

}
,

where Fmax = K

r
(r + e1Lmax),Wmax = M

s
(s + α2Fmax

+e2Lmax) , Pmax = Q0

(δ0 − π2β2Wmax)
and Lmax = L0

η
.

Proof From the fourth equation of system (2), we have

dL

dt
= L0 − ηL.

This implies that,

lim sup
t→∞

L(t) = L0

η
= Lmax, (say).

From the first equation of system (2), we get

dF

dt
≤ F

(
r + e1Lmax − r

K
F
)

.

This gives,

lim sup
t→∞

F(t) ≤ K

r
(r + e1Lmax) = Fmax, (say).

Proceeding in a similar manner, the second equation of sys-
tem (2) gives

dW

dt
≤ W

(
s + α2Fmax + e2Lmax − s

M
W
)

,

which implies that

lim sup
t→∞

W (t) ≤ M

s
(s + α2Fmax + e2Lmax) = Wmax, (say).

From the third equation of system (2), we have

dP

dt
≤ Q0 − (δ0 − π2β2Wmax)P.

This implies that

lim sup
t→∞

P(t) ≤ Q0

(δ0 − π2β2Wmax)
= Pmax, (say).

Here, Pmax > 0, if (δ0 − π2β2Wmax) > 0. This completes
the proof of Lemma 3.1. ��
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Table 1 Model parameters

Parameter Description

r Intrinsic growth rate of forestry biomass

s Intrinsic growth rate of wildlife species

K Carrying capacity of the environment for the density of forestry biomass

M Carrying capacity of the environment for the density of wildlife species

α1 Decrease rate of forestry biomass due to wildlife species

α2 Growth rate of wildlife species due to forestry biomass

π1(< 1) A proportionality constant that represents the depletion of forestry biomass due to pollutants

π2(< 1) A proportionality constant that represents the growth of pollutants due to wildlife species

β1 Depletion rate of pollutants in the environment due to increase in the density of forestry biomass

β2 Depletion rate of wildlife species due to increase in the concentration of pollutants

h01 Harvesting rate of forestry biomass in the absence of lockdown

h02 Harvesting rate of wildlife species in the absence of lockdown

e1 Growth rate of forestry biomass due to lockdown

e2 Growth rate of wildlife species due to lockdown

Q0 Emission rate of pollutants

Q1 Depletion rate coefficient of pollutants due to increase in lockdown

δ0 Natural depletion rate coefficient of pollutants

L0 Implementation rate of lockdown

η Rate of ineffectiveness of lockdown

4 Equilibrium analysis

System (2) has following four nonnegative equilibrium
points:
(i) E0(0, 0, P̂, L̂) (ii) E1(F̄, 0, P̄, L̄) (iii) E2(0, W̃ , P̃, L̃)

(iv) E3(F∗,W ∗, P∗, L∗).

4.1 Existence of E0(0, 0, P̂, L̂)

Here, equilibrium values of P̂ and L̂ are obtained by solving
following equations

Q0 − Q1 L̂ − δ0 P̂ = 0

L0 − ηL̂ = 0.
(3)

From the second equation of the system (3), we get

L̂ = L0

η
.

Substituting the above value of L̂ in the first equation of
system (3) , we have

P̂ = ηQ0 − Q1L0

ηδ0
.

Clearly, P̂ is positive if (ηQ0 − Q1L0) > 0.
The inequality ηQ0 > Q1L0 implies that ineffectiveness of

lockdown should be large enough and implementation rate
of lockdown should be small enough, for the existence of the
equilibrium point E0(0, 0, P̂, L̂).

4.2 Existence of E1(F̄, 0, P̄, L̄)

In this case, equilibrium values of F̄ , P̄ and L̄ are obtained
by solving following equations:

r

(
1 − F̄

K

)
− π1β1 P̄ − h01 + e1 L̄ = 0

Q0 − Q1 L̄ − β1 F̄ P̄ − δ0 P̄ = 0

L0 − ηL̄ = 0.

(4)

From the third equation of system (4), we have

L̄ = L0

η
.

Substituting the above value of L̄ in the second equation of
system (4), we get

P̄ = ηQ0 − Q1L0

η(β1 F̄ + δ0)
= f1(F̄), (say). (5)

Now, we define a function

φ1(F) = r − r F

K
− π1β1 f1(F) − h01 + e1

L0

η
. (6)
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From (6), we get

φ1(0) = r − π1β1 f1(0) − h01 + e1
L0

η

= r − π1β1

(
ηQ0 − Q1L0

ηδ0

)
− h01 + e1

L0

η

=
(
r + e1

L0

η

)
−
(

π1β1

(
ηQ0 − Q1L0

ηδ0

)
+ h01

)
.

Here, φ1(0) > 0, if

(
r + e1

L0

η

)
−
(

π1β1

(
ηQ0 − Q1L0

ηδ0

)
+ h01

)
> 0.

Again, from (6) we have

φ1(Fmax)

=
(
r + e1

L0

η

)
−
(
r Fmax

K
+ π1β1 f1(Fmax) + h01

)

= −
(

π1β1

(
ηQ0 − Q1L0

η(β1Fmax + δ0)

)
+ h01

)
.

Thus, φ1(Fmax) < 0, by the existence of equilibrium point
E0.
Then, there exists a root F̄ in the interval 0 < F̄ < Fmax

such that

φ1(F̄) = 0.

For the uniqueness of F̄ , the sufficient condition is
dφ1

dF
< 0

at F̄, where

dφ1

dF
= − r

K
− π1β1 f

′
1(F)

= − r

K
+ π1β

2
1

(
ηQ0 − Q1L0

η(β1F + δ0)2

)
.

Therefore,
dφ1

dF
< 0 at F̄ , if

− r

K
+ π1β

2
1

(
ηQ0 − Q1L0

η(β1 F̄ + δ0)2

)
< 0.

After knowing the value of F̄, the value of P̄ can be obtained
by (5) which is positive by the existence of E0.

4.3 Existence of E2(0, W̃, P̃, L̃)

In equilibrium E2(0, W̃ , P̃, L̃), W̃ , P̃ and L̃ satisfy the fol-
lowing equations:

s

(
1 − W̃

M

)
− β2 P̃ − h02 + e2 L̃ = 0

Q0 − Q1 L̃ + π2β2W̃ P̃ − δ0 P̃ = 0

L0 − ηL̃ = 0.

(7)

From the third equation of system (7), we get

L̃ = L0

η
.

Substituting the above value of L̃ in the second equation of
system (7), we get

P̃ =
(

ηQ0 − Q1L0

η(δ0 − π2β2W̃ )

)
= f2(W̃ ), (say). (8)

Now, we define a function

φ2(W ) = s − sW

M
− β2 f2(W ) − h02 + e2

L0

η
. (9)

From (9), we get

φ2(0) = s − β2 f2(0) − h02 + e2
L0

η

= s − β2

(
ηQ0 − Q1L0

ηδ0

)
− h02 + e2

L0

η

=
(
s + e2

L0

η

)
−
(

β2

(
ηQ0 − Q1L0

ηδ0

)
+ h02

)
.

Thus, φ2(0) > 0 if

(
s + e2

L0

η

)
−
(

β2

(
ηQ0 − Q1L0

ηδ0

)
+ h02

)
> 0.

Again from (9), it is obtained that

φ2(Wmax)

=
(
s + e2

L0

η

)
−
(
sWmax

M
+ β2 f2(Wmax) + h02

)

= −
(

α2Fmax + β2

(
ηQ0 − Q1L0

η(δ0 − π2β2Wmax)

)
+ h02

)
.

Therefore, φ2(Wmax) < 0, if

(
α2Fmax + β2

(
ηQ0 − Q1L0

η(δ0 − π2β2Wmax)

)
+ h02

)
> 0.
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Then, there exists a root W̄ in the interval 0 < W̃ < Wmax

such that

φ2(W̃ ) = 0.

For the uniqueness of W̃ , the sufficient condition is
dφ2

dW
< 0

at W̃ , where

dφ2

dW
= − s

M
− β2 f

′
2(W )

= −
(

s

M
+ π2β

2
2

(
ηQ0 − Q1L0

η(δ0 − π2β2W )2

))
.

Since
s

M
+ π2β

2
2

(
ηQ0 − Q1L0

η(δ0 − π2β2W̃ )2

)
> 0, therefore,

dφ2

dW
< 0 at W̃ .

After knowing the value of W̃ , the value of P̃ can be obtained
by (8) which is positive if equilibrium point E0 exists and
(δ0 − π2β2W̃ ) > 0.

4.4 Existence of E3(F∗,W∗, P∗, L∗)

In this case, equilibrium values of F∗, W ∗, P∗ and L∗ are
solutions of following equations:

r

(
1 − F∗

K

)
− α1W

∗ − π1β1P
∗ − h01 + e1L

∗ = 0

s

(
1 − W ∗

M

)
+ α2F

∗ − β2P
∗ − h02 + e2L

∗ = 0

Q0 − Q1L
∗ − β1F

∗P∗ + π2β2W
∗P∗ − δ0P

∗ = 0

L0 − ηL∗ = 0.

(10)

From the fourth equation of system (10), we have

L∗ = L0

η
. (11)

Substituting the above value of L∗ in the second equation of
system (10), we get

W ∗ = M

s

(
s + α2F

∗ − β2P
∗ − h02 + e2

L0

η

)
. (12)

Using (11) and (12) in the first equation of system (10), it is
obtained that

F∗ =

⎛
⎜⎜⎝
r − α1M +

(
α1β2M

s
− π1β1

)
P∗ + α1Mh02

s
− α1e2ML0

ηs
− h01 + e1

L0

η

α1α2M

s
+ r

K

⎞
⎟⎟⎠ = f3(P

∗), (say). (13)

Equation (12) gives

W ∗ = M

s

(
s + α2 f3(P

∗) − β2P
∗ − h02 + e2

L0

η

)

= f4(P
∗), (say). (14)

For the existence of E3(F∗,W ∗, P∗, L∗), we define a func-
tion

φ3(P) = Q0 − Q1
L0

η
− β1 f3(P)P

+π2β2 f4(P)P − δ0P. (15)

From (15), we get

φ3(0) =
(

ηQ0 − Q1L0

η

)
.

Here, φ3(0) > 0, by the existence of equilibrium point E0.
Again from (15), we note that

φ3(Pmax) = Q0 − Q1
L0

η
− β1 f3(Pmax)Pmax

+π2β2 f4(Pmax)Pmax − δ0Pmax,

=
(

ηQ0 − Q1L0

η
+ π2β2 f4(Pmax)Pmax

)

−(β1 f3(Pmax) + δ0)Pmax.

Therefore, φ3(Pmax) < 0 if

(
ηQ0 − Q1L0

η
+ π2β2 f4(Pmax)Pmax

)

−(β1 f3(Pmax) + δ0)Pmax < 0.

Then, there exists a root P∗ in the interval 0 < P∗ < Pmax

such that

φ3(P
∗) = 0.

For the uniqueness of P∗, the sufficient condition is dφ3

dP
< 0

at P∗, where

dφ3

dP
= −β1 f3(P) − β1 f

′
3(P)P

+π2β2 f4(P) + π2β2 f
′
4(P)P − δ0
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= π2β2 f4(P) + π2β2 f
′
4(P)P

−(β1 f3(P) + β1 f
′
3(P)P + δ0)

Thus
dφ3

dP
< 0 at P∗, if

π2β2 f4(P
∗) + π2β2 f

′
4(P

∗)P∗ − (β1 f3(P
∗)

+β1 f
′
3(P

∗)P∗ + δ0) < 0.

After knowing the value of P∗, values of F∗ and W ∗ can be
found by (13) and (14), respectively. Further, F∗ andW ∗ are
positive if f3(P∗) > 0 and f4(P∗) > 0, respectively.

5 Stability analysis

5.1 Local stability analysis

Local stability of any equilibrium point can be determined
by finding the eigenvalues of variational matrix at that point.
The variational matrix V (E) of system (2) is given by

V (E) =

⎡
⎢⎢⎣

a11 −α1F −π1β1F e1F
α2W a22 −β2W e2W
−β1P π2β2P π2β2W − β1F − δ0 −Q1

0 0 0 −η

⎤
⎥⎥⎦ ,

where

a11 = r

(
1 − 2F

K

)
− α1W − π1β1P − h01 + e1L,

a22 = s

(
1 − 2W

M

)
+ α2F − β2P − h02 + e2L.

The variational matrix V (E) at E0 reduces into

V (E0) =

⎡
⎢⎢⎣
r − π1β1 P̂ − h01 + e1 L̂ 0 0 0

0 s − β2 P̂ − h02 + e2 L̂ 0 0
−β1 P̂ π2β2 P̂ −δ0 −Q1

0 0 0 −η

⎤
⎥⎥⎦ .

From V (E0), we note that two eigenvalues of V (E0) are
(r − π1β1 P̂ − h01 + e1 L̂) and (s − β2 P̂ − h02 + e2 L̂).
Thus, E0 is unstable in F − W plane, provided that r +
e1 L̂ > π1β1 P̂ + h01 and s + e2 L̂ > β2 P̂ + h02 . Other
two eigenvalues of V (E0) are −δ0 and −η which are always
negative. Therefore, E0 is asymptotically stable in P − L
plane.
The variational matrix V (E) at E1 is given by

V (E1) =

⎡
⎢⎢⎢⎣

− r

K
F̄ −α1 F̄ −π1β1 F̄ e1 F̄

0 s + α2 F̄ − β2 P̄ − h02 + e2 L̄ 0 0
−β1 P̄ π2β2 P̄ −β1 F̄ − δ0 −Q1

0 0 0 −η

⎤
⎥⎥⎥⎦ .

From V (E1), we note that one eigenvalue of V (E1) is (s +
α2 F̄−β2 P̄−h02 +e2 L̄) and another eigenvalue is−ηwhich

is always negative. However, by Gerschgorin’s theorem [26],
other two eigenvalues have negative real part if the following
conditions hold:

β1 P̄ <
r

K
F̄

π1β1 F̄ < β1 F̄ + δ0

The second inequality canbewritten asβ1 F̄(1−π1)+δ0 > 0,
which obviously holds as π1 < 1. Therefore, E1 is stable in

F−P−L manifold, provided that β1 P̄ <
r

K
F̄ and unstable

along W -direction if s + α2 F̄ + e2 L̄ > β2 P̄ + h02 .
The variational matrix V (E) at E2 is given by

V (E2) =

⎡
⎢⎢⎢⎣
r − α1W̃ − π1β1 P̃ − h01 + e1 L̃ 0 0 0

α2W̃ − s

M
W̃ −β2W̃ e2W̃

−β1 P̃ π2β2 P̃ π2β2W̃ − δ0 −Q1
0 0 0 −η

⎤
⎥⎥⎥⎦ .

From V (E2), we note that two eigenvalues are (r − α1W̃ −
π1β1 P̃ − h01 + e1 L̃) and −η. Other two eigenvalues V (E2)

are roots of a quadratic equation, which are either negative or
have negative real part. Therefore, E2 is stable inW − P− L
manifold and unstable along F-direction if r+e1 L̃ > α1W̃+
π1β1 P̃ + h01 .
The variation matrix V (E) at the interior equilibrium point
E3 reduces into

V (E3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

− r

K
F∗ −α1F∗ −π1β1F∗ e1F∗

α2W ∗ − s

M
W ∗ −β2W ∗ e2W ∗

−β1P∗ π2β2P∗ −
(
Q0 − Q1L∗

P∗
)

−Q1

0 0 0 −η

⎤
⎥⎥⎥⎥⎥⎥⎦

.

ByGerschgorin’s theorem [26], all eigenvalues of variational
matrix V (E3) have negative real part if following conditions
are satisfied

α2W
∗ + β1P

∗ <
r

K
F∗,

α1F
∗ + π2β2P

∗ <
s

M
W ∗,

π1β1F
∗ + β2W

∗ <

(
Q0 − Q1L∗

P∗
)

,

e1F
∗ + e2W

∗ + Q1 < η.

Therefore, E3 is locally asymptotically stable under above
conditions.
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5.2 Global stability analysis

Theorem 5.1 If the following inequalities hold:

(α1 − m1α2)
2 <

4

9

rs

KM
,

e21 <
4

9

rη

K
,

m1e
2
2 <

4

9

sη

M
,

where m1 = β1F∗ + δ0

π2β2W ∗ , then equilibrium point E3 is glob-

ally stable with respect to all solutions initiating in �.

Proof Consider the following positive-definite function

S =
(
F − F∗ − F∗ln F

F∗

)
+ m1

(
W − W ∗ − W ∗ln W

W ∗

)

+1

2
(P − P∗)2 + 1

2
(L − L∗)2.

where m1 is positive constant to be chosen appropriately.
Now, differentiating S with respect to t , we get

dS

dt

= (F − F∗)
[
r − r

K
F − α1W − π1β1P − h01 + e1L

]

+m1(W − W ∗)
[
s − s

M
W + α2F − β2P − h02 + e2L

]
+(P − P∗) [Q0 − Q1L − β1FP + π2β2WP − δ0P]

+(L − L∗) [L0 − ηL] .

Using (10) and then after doing some algebraic manipula-
tions, we have

dS

dt

= −1

3

r

K
(F − F∗)2 − (α1 − m1α2)(F − F∗)(W − W ∗)

−1

3

s

M
(W − W ∗)2

−1

3

r

K
(F − F∗)2 − (π1β1 + β1P)(F − F∗)(P − P∗)

−1

3
(β1F

∗ − m1π2β2W
∗ + δ0)(P − P∗)2

−1

3

r

K
(F − F∗)2 + e1(F − F∗)(L − L∗)

−1

3
η(L − L∗)2 − 1

3

m1s

M
(W − W ∗)2

−m1(β2 − π2β2P)(W − W ∗)(P − P∗)

−1

3
(β1F

∗ − m1π2β2W
∗ + δ0)(P − P∗)2

−1

3

s

M
(W − W ∗)2 + m1e2(W − W ∗)(L − L∗)

−1

3
η(L − L∗)2 − 1

3
(β1F

∗ − m1π2β2W
∗ + δ0)

×(P − P∗)2 − Q1(P − P∗)(L − L∗) − 1

3
η(L − L∗)2.

Selecting m1 = β1F∗ + δ0

π2β2W ∗ ,
dS

dt
is negative definite if the

following inequalities hold:

(α1 − m1α2)
2 <

4

9

rs

KM
(16)

e21 <
4

9

rη

K
(17)

m1e
2
2 <

4

9

sη

M
. (18)

Thus, S is Lyapunov function on� provided conditions (16)–
(18) hold. This completes the proof of Theorem 5.1. ��

6 Persistence

A population F(t) of a system is said to be persistent if
F(t) > 0 and lim inf

t→∞ F(t) > 0whenever F(0) > 0.Further,

F(t) is said to be uniformly persistent if F(t) is persistent and
∃ δ > 0 (independent of F(0)) such that lim inf

t→∞ F(t) ≥ δ. A

system is said to be uniformly persistent if each component
of the system persists uniformly.

Biologically, uniform persistence of a systemmeans all of
its population will survive in future.

Theorem 6.1 System (2) persists uniformly if the following
conditions hold:

r − h01 > α1Wmax + π1β1Pmax,

s − h02 > β2Pmax − α2Fmin,

and

β1Fmax − π2β2Wmin + δ0 > 0,

where Fmin = K

r
(r − α1Wmax − π1β1Pmax − h01),

Wmin = M

s
(s + α2Fmin − β2Pmax − h02) and Pmin =(

Q0 − Q1Lmax

β1Fmax − π2β2Wmin + δ0

)
.

Proof From the first equation of system (2), we get

dF

dt
≥ F

(
r − α1Wmax − π1β1Pmax − h01 − r

K
F
)

.
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This implies that,

lim inf
t→∞ F(t) ≥ K

r
(r − α1Wmax − π1β1Pmax − h01)

= Fmin, (say).

Here, we note that Fmin > 0, if

r − h01 > α1Wmax + π1β1Pmax.

In a similar manner, the second equation of system (2) gives

dW

dt
≥ W

(
s + α2Fmin − β2Pmax − h02 − s

M
W
)

,

which implies that,

lim inf
t→∞ W (t) ≥ M

s
(s + α2Fmin − β2Pmax − h02)

= Wmin, (say).

Here, Wmin > 0, if

s − h02 > β2Pmax − α2Fmin.

From the third equation of system (2), we have

dP

dt
≥ Q0 − Q1Lmax − (β1Fmax − π2β2Wmax + δ0)P.

This implies that,

lim inf
t→∞ P(t) ≥

(
Q0 − Q1Lmax

β1Fmax − π2β2Wmin + δ0

)

= Pmin, (say).

Therefore, Pmin > 0, if equilibrium point E0 exists and

β1Fmax − π2β2Wmin + δ0 > 0.

From the fourth equation of system (2), we get

dL

dt
≥ −ηL.

This gives that,

lim inf
t→∞ L(t) ≥ 0 = Lmin, (say).

Therefore, from above arguments and lemma 3.1, we have

Fmin ≤ lim inf
t→∞ F(t) ≤ lim sup

t→∞
F(t) ≤ Fmax,

Wmin ≤ lim inf
t→∞ W (t) ≤ lim sup

t→∞
W (t) ≤ Wmax,

Pmin ≤ lim inf
t→∞ P(t) ≤ lim sup

t→∞
P(t) ≤ Pmax,

Lmin ≤ lim inf
t→∞ L(t) ≤ lim sup

t→∞
L(t) ≤ Lmax.

Therefore, system (2) persists uniformly under the above
inequalities. This completes the proof of Theorem 6.1. ��
Remark 1 If harvesting rates of forestry biomass andwildlife
species in the absence of lockdown are small and natural
depletion rate coefficient of pollutants is high, then the system
(2) persists uniformly. This illustrates the feasibility of our
mathematical model.

7 Ecological interpretation of some key
findings of local and global stability

Ecological interpretation of some key findings from the con-
ditions of local as well as global stability reveals insight of
results. From these conditions, we note that e1, e2 and Q1

should be small and η should be large, which is ecologically
feasible because e1 and e2 represent growth rates of forestry
biomass and wildlife species due to lockdown, respectively,
Q1 represents depletion rate coefficient of pollutants due
to increase in lockdown and η represents ineffectiveness of
lockdown. Therefore, to establish local as well as the global
stabilities of the interior equilibrium point, we observed that
ineffectiveness of lockdown should be large enough and
growth rates of forestry biomass and wildlife species due to
lockdown as well as depletion rate coefficient of pollutants
due to increase in lockdown should be small. This demon-
strates the feasibility of ourmathematicalmodel as lockdown
is not very effective on broad scale and cannot be imple-
mented for long time.

8 Local bifurcation analysis

8.1 Transcritical bifurcation between E2 and E3

From the eigenvalue r − α1W̃ − π1β1 P̃ − h01 + e1 L̃ of
V (E2), it can be observed that the stability of E2 depends on
the parameter r . Also, from the first equation of (10), we can
see that

F∗ = K

r
(r − α1W

∗ − π1β1P
∗ − h01 + e1L

∗)

This shows that the interior equilibrium point exists if r >

α1W ∗ + π1β1P∗ + h01 − e1L∗. Therefore, we can observe
that the stability of E2 and existence of E3 are interconnected
and depend on the parameter r . For small values of r , the
equilibrium point E2 is stable but as r crosses a threshold
value r∗ = α1W̃ + π1β1 P̃ + h01 − e1 L̃ , the equilibrium
point E2 becomes unstable. Also, if r = α1W̃ + π1β1 P̃ +
h01 − e1 L̃ , one eigenvalue of V (E2) is zero and other three
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eigenvalues are negative. This shows that if we consider r
as bifurcating parameter, transcritical bifurcation can exist
between the equilibrium points E2 and E3.

9 Optimal control model

The implementation of lockdown is useful to decrease the
concentration of pollutants, but the cost of implementation
prevents them from being implemented on broad scale. As a
result, implementation strategies that reduce the concentra-
tion of pollutants as well as the cost of implementation are
preferred. For this, we have chosen the implementation rate
of lockdown (i.e. L0) as a control parameter in the model
system (2). On a finite interval [0 t f ], Lebesgue-measurable
functions u(t) reflect the parameter L0. Our goal is to mini-
mize total cost functional J , which is provided by:

J =
∫ t f

0
(AP(t) + Bu2(t))dt, (19)

subject to

dF

dt
= r F

(
1 − F

K

)
− α1WF − π1β1FP − h1(L)F,

dW

dt
= sW

(
1 − W

M

)
+ α2WF − β2WP − h2(L)W ,

dP

dt
= Q(L) − β1FP + π2β2WP − δ0P,

dL

dt
= u(t) − ηL, (20)

where F(0) ≥ 0, W (0) ≥ 0, P(0) > 0, L(0) ≥ 0, h1(L) =
h01 − e1L , h2(L) = h02 − e2L and Q(L) = Q0 − Q1L .
Here, the quantities A and B are positive weight parameters
that balance the size of terms in an objective functional. We
figure out the optimal control u∗(t) so that

J
(
u∗(t)

) = min
u(t)∈X J (u(t)) , (21)

where control set is defined as X = {u(t): u(t) is measurable
and 0 ≤ u(t) ≤ umax for t ∈ [0, t f ]}.
Theorem 9.1 There exists an optimal control u∗ such that

J
(
u∗(t)

) = min
u(t)∈X J (u(t)) , (22)

associated with the system of differential equations (20) with
nonnegative initial conditions.

Proof Using a result in Lukes [27], the existence of a solu-
tion to the system (20) is assured because the solutions are
bounded on finite-time intervals. The set X is a closed and
convex set. Also, the integrand of the functional (19) is con-
vex on X . In system (20), the right side of the equations is

bounded by a linear control and state. In addition, c1 > 0,
c2 > 0 and q > 1 exist, such that

AP(t) + Bu2(t) ≥ c1(|u(t)|)q − c2. (23)

Therefore, the existence of optimal control is guaranteed,
using Fleming and Rishel’s [28] result (Theorem 4.1, pp.
68-69). The Hamiltonian at time t is defined as:

H(F,W , P, L, u1, u2, u3, u4) = AP(t) + Bu2(t)

+ u1

[
r F

(
1 − F

K

)
− α1WF − π1β1FP − h1(L)F

]

+ u2

[
sW

(
1 − W

M

)
+ α2WF − β2WP − h2(L)W

]

+ u3[Q(L) − β1FP + π2β2WP − δ0P] + u4[u(t) − ηL],

where ui (i = 1, 2, 3, 4) are adjoint variables at time t . The
adjoint variables can be determined from the following sys-
tem of equations:

u̇1 = −∂H

∂F
= u3β1P − u2α2W − u1

[
r

(
1 − 2F

K

)

−α1W − π1β1P − (h01 − e1L)] ,

u̇2 = − ∂H

∂W
= u1α1F − u2

[
s

(
1 − 2W

M

)

+α2F − β2P − (h02 − e2L)] − u3π2β2P,

u̇3 = −∂H

∂P
= −A + u1π1β1F + u2β2W

−u3(π2β2W − δ0 − β1F),

u̇4 = −∂H

∂L
= u3Q1 + u4η − u1e1F − u2e2W . (24)

The transversality conditions are u1(t f ) = u2(t f ) =
u3(t f ) = u4(t f ) = 0.

With the help of optimality condition, i.e.
∂H

∂u
= 0, we have

u(t) = − u4
2B

.

Then, the optimal controls u∗(t) are given as:

u∗(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, i f − u4
2B

≤ 0,

− u4
2B

, i f 0 < − u4
2B

< umax,

umax, i f − u4
2B

≥ umax.

(25)

As a result, the characterization of optimum control u∗(t),
which minimizes J across the set X when applied to a state
system, is provided by

u∗(t) = max
{
min

(
− u4
2B

, umax, 0
)}

. (26)

The optimality system comprises the control system (20), the
adjoint system (24), optimal control (26) and transversally
conditions. ��
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10 Numerical simulations

To visualize our mathematical findings, some numerical
simulations have been performed. For this, we choose the
following set of parameter values

r = 3, K = 30, α1 = 0.01, π1 = 0.1, β1 = 0.06,

h01 = 0.6, e1 = 0.01, s = 1, M = 20, α2 = 0.03,

π2 = 0.1, β2 = 0.03, h02 = 0.4, e2 = 0.01, Q0 = 4,

Q1 = 0.1, δ0 = 0.6, L0 = 8, η = 2. (27)

For the above set of parameters, the interior equilibriumpoint
exists uniquely which is given by

F∗ = 24.1647, W ∗ = 12.8602,

P∗ = 1.7785, L∗ = 4.000.

Here, we note that all conditions of local stability, global
stability and persistence of the interior equilibrium point are
satisfied by set of parameters given in (27). The main aim
of this paper is to see the impacts of lockdown on forestry
biomass, wildlife species and pollution. Therefore, firstly we
accentuate on the parameters and factors affecting lockdown.
Figures 1 and2 represent variations in the densities of forestry
biomass and wildlife species with respect to t for different
values of the implementation rate of lockdown (L0), respec-
tively. From these figures, it can be observed that the increase
in the value of L0 increases the equilibrium values of F and
W , respectively. It depicts that the increased implementa-
tion rate of lockdown positively affects forestry biomass and
wildlife species bot. From these figures, we can also infer that
the absence of lockdown decreases the equilibrium values of
F and W .

In Fig. 3, the concentration of pollutants is plotted against t
for different values of the implementation rate of lockdown,
L0. This figure shows that the increase in the implementation
rate of lockdown decreases the concentration of pollutants in
the environment. Here, we also noted that the absence of
lockdown increases the equilibrium level of P.

In Figs. 4 and 5, the densities of forestry biomass and
wildlife species are plotted against time t for different values
ofη (rate of ineffectiveness of lockdown), respectively. These
figures reveal that the increase in the value of η decreases the
equilibrium levels of F and W . Here, it is noted that if we
increase the value of η from 2 to 4, then there is a noticeable
change in the levels of F andW but there is very slight change
in the levels of F and W if we increase η from 4 to 6.

Figure 6 is the plot for P against time t for different values
of η (rate of ineffectiveness of lockdown). This figure shows
that increasing value of η increases the level of P . Here, we
observe that if we increase the value of η from 2 to 4, then
change in the levels of P is quite considerable, while if we

increase η from 4 to 6, then there is a very moderate change
in the levels of P .

Figure 7 is the plot for F against t for different values of
h01 = (0.6, 0.7, 0.8). This figure shows that the quantitative
behaviour of F for increasing values of h01 is different in
the presence and absence of lockdown. Here, it is noted that
if the harvesting rate of forestry biomass is increasing and
we impose lockdown, then the equilibrium level of F can be
maintained.

In Fig. 8 , variations in W are plotted with respect to t for
different values of h02 = (0.4, 0.5, 0.6). Here, we observe
that, in the presence and absence of lockdown the quantita-
tive behaviour of W for increasing values of h02 is different.
It depicts that if the wildlife harvest rate increases and lock-
down is implemented, then the equilibrium level of W can
be maintained.

Figure 9 is the plot of P against t for different values of
Q0 = (4, 5, 6). It shows that the quantitative behaviour of
P for increasing values of Q0 differs in the presence and
absence of lockdown. Here, it is noted that, for increas-
ing emission rate of pollutants, the presence of lockdown
decreases the equilibrium level of P . Therefore, the equi-
librium level of P can be maintained by implementation of
lockdown.

The optimality system, which consists of the control sys-
tem (20), adjoint system (24), optimal control (26) and
transversally criteria, is numerically integrated for the set
of values given in equation (27) to indicate the optimum
implementation scenario (20). Figure 10 is the plot of the
optimal control profile u(t) against t for different values of
umax. As the value of themaximum implementation rate umax

increases, the time span over which lockdown efforts are
implemented at their maximum rate decreases.
Figure 11 is the plot of the optimal control profile u(t) against
t for different values of weights A and B.With an increase in
B, the time span over that lockdown efforts are executed
at maximum rate decreases, whereas it increases with an
increase in A. If the weight of the cost of implementing lock-
down efforts is large, the efforts are applied at their higher
rate for a shorter period of time and then reduced afterwards.
In addition, we conducted a cost design study to determine
the most effective control mechanisms to use in Fig. 12. The
cost of using control measures differs from the cost of not
using control measures, as shown in this graph. Therefore,
we recommend that control measures be implemented for
sufficient period of time, as this will reduce the impact of the
concentration of pollutants.
For the above set of parameters, trajectories with different
initial conditions are drawn in Figs. 13, 14 and 15. From
these figures, it can be seen that all trajectories with different
initial points converges to same equilibriumpoint. Therefore,
the interior equilibrium point is globally stable.
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Fig. 13 Graph of F − W − L
for different initial starts
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Fig. 14 Graph of W − P − L
for different initial starts
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Figures 16, 17 and 18 are the plots of F , W and P against t
for different values of r . Graph of L against t is not plotted
for different values of r here, equilibrium value of L does
not depend r , and we do not plot L . These figures depict
that for small values of r ≤ r∗, equilibrium point E2 is
stable. As value of r increases and crosses its threshold value
r∗ = 0.6067, equilibrium point E2 loses its stability and
the interior equilibrium point E3 emanates. This shows that
transcritical bifurcation occurs between equilibrium points
E2 and E4 for threshold value r∗ = 0.6067.

11 Conclusion

In this paper, a mathematical model to see the impacts of
lockdown on the dynamics of both forestry biomass, wildlife
species and control of atmospheric pollution has been formu-

lated and analysed. Equilibrium analysis revealed that four
equilibrium points exist for system (2). Conditions of local
stability as well as global stability of the interior equilibrium
point and persistence of system (2) have been obtained. By
formulating an optimal control problem, the optimal strate-
gies for minimizing the cost of implementation of lockdown
aswell as the concentration of pollutants have also been stud-
ied.We looked at the optimal control problem by plotting the
implementation rate of lockdown as a function of time t . The
optimal control theory was used to determine the charac-
terization of the control parameter. The optimality problem
is numerically solved, and the best strategies are presented.
After performing numerical simulations, we have noted fol-
lowing results:

• Presence of lockdown increases the equilibrium levels
of the densities of forestry biomass and wildlife species
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Fig. 15 Graph of F − P − L
for different initial starts
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both and as rate of implementation of lockdown increases
the densities of forestry biomass and wildlife species
increases (Figs. 1 and 2).

• As rate of implementation of lockdown increases, the
concentration of pollutants decreases (Fig. 3).

• There is noticeable increase in the densities of forestry
biomass and wildlife species for small values of the rate
of ineffectiveness of lockdown, but larger values are not
much effective (Figs. 4 and 5).

• Small values of the rate of ineffectiveness of lockdown
decreases P considerably but larger values are not much
effective in controlling P (Fig. 6).

• The densities of forestry biomass and wildlife species
decrease for increasingharvesting rate of forestry biomass
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Fig. 16 Graph of F against t for different values of r illustrating con-
vergence at equilibrium E2 for r ≤ r∗ and convergence at equilibrium
E3 for r > r∗

andwildlife species, respectively, but these decreases can
be maintained by implementing lockdown (Figs. 7 and
8).

• As emission rate of pollutants increases, the concen-
tration of pollutants increases but this increase can be
reduced by imposing lockdown (Fig. 9).

• Optimal control model (20) reveals that under the opti-
mal scenario, the burden of pollutant’s concentration
is reduced. On the optimal profile of the implementa-
tion rate, the effect of modifications in the maximum
implementation rate of lockdown and weight constants
is noticed. As the value of the maximum implementation
rate umax increases, the time span over which lockdown
efforts are implemented decreases. In the optimal sce-
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Fig. 17 Graph of W against t for different values of r illustrating con-
vergence at equilibrium E2 for r ≤ r∗ and convergence at equilibrium
E3 for r > r∗
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Fig. 18 Graph of P against t for different values of r illustrating con-
vergence at equilibrium E2 for r ≤ r∗ and convergence at equilibrium
E3 for r > r∗

nario, the time span during which lockdown attempts
are conducted at maximum rate decreases as the weights
A and B of cost of implementation rate of lockdown
decreases and increases, respectively (Figs. 10 and 11).

• The cost functional has different behaviour in the pres-
ence and absence of control. Presence of control measure
decreases the cost functional (Fig. 12).

Therefore, to tackle the problem of excessive harvesting of
both forestry biomass and wildlife species and increasing
concentration of pollutants in the environment, implementa-
tion of lockdown will definitely work. It is also found that
lockdown policy is effective in the optimal control of atmo-
spheric pollution.
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