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hydrate and lipid metabolism, female wild�type mice were fed a

high�fat, high�fructose diet supplemented with either 0, 400, or

800 mg nitrate/kg diet for 28 days. Additionally, obese female

db/db mice were fed a 5% fat diet supplemented with the same

levels and source of nitrate. Nitrate decreased the sodium�

dependent uptake of glucose by ileal mucosa in wild�type mice.

Moreover, nitrate significantly decreased triglyceride content and

mRNA expression levels of Pparγ in liver and Glut4 in skeletal

muscle. Oral glucose tolerance as well as plasma cholesterol,

triglyceride, insulin, leptin, glucose and the activity of ALT did not

significantly differ between experimental groups but was higher

in db/db mice than in wild�type mice. Nitrate changed liver fatty

acid composition and mRNA levels of Fads only slightly. Further

hepatic genes encoding proteins involved in lipid and carbo�

hydrate metabolism were not significantly different between the

three groups. Biomarkers of inflammation and autophagy in the

liver were not affected by the different dietary treatments. Overall,

the present data suggest that short�term dietary supplementation

with inorganic nitrate has only modest effects on carbohydrate

and lipid metabolism in genetic and dietary�induced mouse models

of obesity.
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IntroductionFor many years, inorganic nitrate (NO3
-) has been considered

a hazardous chemical in food and drinking water because of
it forms carcinogenic N-nitrosamines and causes methemoglobin-
emia in infants.(1–3) However, recent studies also indicate a protec-
tive function of nitrate against cardiovascular disease, diabetes
and metabolic syndrome.(4,5) Nitric oxide (NO), which is centrally
involved in the regulation of energy metabolism in mammals, is
believed to mediate, at least in part, the positive effects of nitrate.(6)

At the physiological level, NO stimulates the uptake and oxidation
of glucose and fatty acids in the skeletal muscle, heart, liver, and
adipose tissue, while inhibiting the synthesis of glucose, glycogen
and fat in insulin-sensitive tissues and enhancing lipolysis in white
adipocytes.(6–8) For these reasons, it has been hypothesized that
inorganic nitrate and nitrite may serve as sources of endogenous
NO with therapeutic potential against type 2 diabetes.(4,9,10) Further
regulatory actions of NO include stimulation of angiogenesis,
blood flow, insulin sensitivity, and mitochondrial biogenesis.(6) In
addition, NO participates in the regulation of several physiological
and metabolic functions that determine the productivity and health

of farm animals, including reproduction (in females), energy
metabolism, inflammation, and innate immunity.(11) Moreover,
animal studies have indicated that NO synthesis is upregulated
in the myometrium and placenta during pregnancy.(12,13)

In animal cells and tissues, NO is produced from arginine
through a reaction catalysed by NO synthase (Nos).(14) In addition,
NO is also produced from nitrate that is first reduced to nitrite and
then to NO through the nitrate-nitrite-NO pathway. This pathway
is carried out mainly by bacteria or a variety of enzymes and
proteins, acting as nitrite reductases, including flavoproteins and
Cyp450, myoglobin, xanthine oxidase and mitochondrial respira-
tory chain enzymes.(15,16) Dietary arginine supplementation has
been shown to enhance the expression of key genes for mitochon-
drial substrate oxidation (AMPK, nNos, Pgc1α) in diabetic rats.(17)

Supplementation of conventional diets with arginine for growing-
finishing pigs reduced body-fat accretion, enhanced muscle gain,
and improved the metabolic profile.(18,19) Mice lacking the eNos
gene developed symptoms of metabolic syndrome that were partly
counteracted by feeding nitrate for 7 weeks,(20) demonstrating that
nitrate could partially restore the NO-deficiency in this loss-of-
function mouse model. Long-term dietary nitrate/nitrite deficiency
also led to the development of metabolic syndrome in mice,
including endothelial dysfunction and cardiovascular death.(21)

Furthermore, the generation of NO by inducible Nos (iNos) in
response to proinflammatory cytokines and endotoxins plays a
critical role in protecting against pathogens and uncontrolled
inflammation, e.g., via activation of macrophages or the modula-
tion of the epithelial barrier function.(22–24) The expression of iNos
is increased in the skeletal muscle and adipose tissue of both
genetic and diet-induced models of obesity,(5) whereas inorganic
nitrite has been shown to reduce mRNA levels of iNos as well as
superoxide anion free radical production in activated macro-
phages.(25) Increase of iNOS expression in mice paralleled impaired
insulin receptor 1 and 2 expression thereby affecting insulin signal
transduction.(26) Contrary, a constant low production of NO is
crucial for insulin secretion and b-cell function.(27)

Most available evidence on the regulatory roles of the nitrate-
nitrite-NO pathway derives from studies dealing with food and
feed naturally rich in inorganic nitrate.(28,29) In the present study,
we examined the effects of using Ca(NO3)2 as a source of
supplemental inorganic nitrate in a genetic (db/db) and high-fat/
high-fructose diet-induced mouse model of murine obesity. We
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focused on the metabolism of lipids and glucose to gain deeper
insight into the potential metabolic and physiological benefits
of nitrate and the underlying mechanism in the context of obesity
and diabetes.

Materials and Methods

Experimental animals and diets. Six-week-old female
C57BL/6JRj wild-type (WT) mice as well as BKS(D)-Leprdb/
JOrlRj (db/db) mice were purchased from Janvier Labs (Le
Genest-Saint-Isle; France). Mice had free access to tap water
(nitrate/nitrite content: <1.5 mg/L) and the experimental diets
throughout the experiment. Animals were housed in groups of 4
animals in Makrolon cages with wood-wool bedding within a
regulated room (temperature, 22 ± 2°C; relative humidity, 50–
60%; 12 h light/dark cycle).

The animal experiment was conducted in accordance with the
German regulations on animal care and with permission from the
responsible authority (V 241-46657/2017).

Mice were divided into six groups of 8 mice each with equal
mean body weights (WT: 17.8 ± 0.96 g; db/db: 28.8 ± 2.02 g).
WT mice were fed a purified semisynthetic, energy-dense high-fat
and high-fructose diet (HFD, Ssniff S0065-E220) based on casein,
corn starch and pork lard, and db/db mice were fed a low-fat
control diet (C, Ssniff E15051, modified) based on casein, corn
starch and soybean oil (Table 1). Both diets contained 0.69%
arginine. After 1–2 weeks of adaptation, mice were allocated to
the corresponding experimental diets, supplemented with either 0,
400 or 800 mg of inorganic nitrate/kg of diet. The source of nitrate
was composed of 76% Ca(NO3)2, 7% KNO3, 0.8% NH4NO3, and
16.2% H2O (NitCal K, Yara, Norge AS, Norway). The supple-
mentation rates were chosen to achieve a daily ingestion of 0, 60,
and 120 mg of supplemental nitrate/kg of body weight, which
were in line with the levels of nitrate shown elsewhere to induce
our targeted metabolic phenotypes.(28) Experimental diets were
analysed in terms of their calcium and potassium concentration
by inductively coupled plasma atomic emission spectrometry
(ICP-AES) after pressure digestion (Agrolab LUFA GmbH, Kiel,
Germany) according to the European standard method (DIN EN
15621:2017-10). There were no differences in calcium (0.873 ±
0.02%) and potassium (0.942 ± 0.02%) concentration between
the experimental diets.

The food intake of mice was recorded daily, and body weight
gain was recorded weekly. We lost two db/db mice; one in the
0 mg nitrate/kg diet group (db I) and one in the 400 mg nitrate/kg
diet group (db II). At the end of the trial, mice were fasted for 4 h

prior to anaesthesia, and blood was collected immediately from
the heart. The blood concentration of glucose was measured by a
glucometer (Abbott Freestyle Lite, Wiesbaden, Germany). Plasma
and serum were obtained by centrifugation (3,000 ´ g, 10 min,
4°C) and stored at -80°C until analysis. Tissue samples were
weighed, snap frozen and stored either at -80°C or in RNAlater
(Qiagen, Hilden, Germany) at -20°C.

Oral glucose tolerance test, body composition. After 4
weeks on the experimental diets, mice from each experimental
group were fasted for 5–6 h prior to the oral glucose tolerance
test (oGTT). For the oGTT, 2 g glucose/kg body weight was
administered orally by gavage, and glucose levels were measured
in blood taken from the tail tip (glucometer, Abbott Freestyle Lite)
before and 15, 30, 60 and 120 min after glucose administration.

The body composition in WT mice was measured at the end of
the feeding trial using a MiniSpec (Bruker, BioSpin MRI GmbH,
Ettlingen, Germany). Fat mass, lean mass and free water were
estimated in live animals using X-rays (energy settings: 45 kVp
and 177 mA, voxel size: 76 mm, integration time: 300 ms, 250 pro-
jections per 180°).

Ussing chamber. The distal ileum from WT mice was
collected in ice cold KBR solution, and glucose uptake was
subsequently measured in Ussing chambers (EasyMount chamber
system with P2300 chambers and P2304 sliders; Physiologic
Instruments, San Diego, CA) as described elsewhere.(30) Glucose
(10 mM) was added apically, and 10 mM mannitol was given
basolaterally. The transepithelial potential difference was
continuously monitored under open-circuit conditions using a
DVC 1000 amplifier (WPI) and recorded through Ag-AgCl
electrodes and KBR agarose bridges. The short-circuit current
(ISC; mA/cm) was measured via an automatic VCC MC8 Multi-
Channel Voltage-Current Clamp (Physiologic Instruments) and
recorded using Acquire & Analyze Data II acquisition software
(Physiological Instruments).

Histopathology. Liver tissue from WT mice (4 mice/group)
was fixed in 4% and 1% formaldehyde solution. Samples were
then dehydrated in a graded series of ethanol, infiltrated with
methylbenzoate, and embedded in paraffin. Frontal plane serial
sections of 5 mm thickness were cut and prepared for haematoxylin
and eosin (H&E) staining. Pictures were taken with a Philips
XL 20 (Philips, Norderstedt, Germany), and the histology was
evaluated using an Axiophot with AxioCam HR (Carl Zeiss
MicroImaging GmbH, Goettingen, Germany).

Blood and liver biochemical analysis. The concentration
of nitrate/nitrite (NO2

-/NO3
-) in blood was determined using a

QuantiChrom Nitric Oxide Assay Kit (BioAssay Systems,

Table 1. Composition of the experimental diets

†76% Ca(NO3)2, 7% KNO3, 0.8% NH4NO3, 16.2% H2O.

Hight�fat, high�fructose diet 
(WT mice)

Low�fat control diet 
(db/db mice)

Macronutrients

Energy (MJ/kg) 22.2 MJ/kg 18.1 MJ/kg

Crude protein (%) 17.7 17.7

Arginine (%) 0.69 0.69

Crude fat (%) 23.1 5.1

Crude fibre (%) 5.5 5.5

Crude ash (%) 5.4 5.4

Starch (%) 9.6 35.6

Dextrin (%) 7.4 14.8

Sugar, total (%) 27.4 11.0

Fructose (%) 26.5 —

Supplements

Ca(NO3)2
† (mg/kg diet) 0; 400 or 800 0; 400 or 800
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Hayward, CA) according to the manufacturer’s instructions.
Prior to the measurement, samples were deproteinated by NaOH
and ZnSO4. The total NO2

-/NO3
- content was measured by the

improved Griess method, including the reduction of nitrate to
nitrite by VCl3. Insulin (Ultra-sensitive mouse insulin Elisa Kit,
Crystal Chem, Illinois) and leptin (Quantikine ELISA, R+D
Systems, Abingdon, UK) in plasma were measured by ELISA
using commercial kits. The alanine aminotransferase (ALT)
enzyme activity in serum was evaluated fluorometrically at 37°C
(Sigma-Aldrich, St. Louis). Total cholesterol and triglycerides
(TG) in plasma were assayed using commercial kits (Fluitest
Chol, Fluitest TG, Analyticon, Lichtenfels, Germany). For hepatic
TG, lipids were extracted by homogenizing in 5% Triton-X100
and slowly heating to 80°C in a water bath for 5 min.(31) The
samples were cooled down and heated again, and TG in superna-
tants was measured. Thiobarbituric-reactive substances (TBA-RS)
were analysed fluorometrically. In brief, protein in liver homo-
genates was precipitated by adding 5% trichloroacetic acid. After
the addition of 0.5% SDS-BHT and 1% TBA, the samples were
incubated for 20 min at 100°C. The formed complex was extracted
in butanol and measured at 520/560 nm.

Gene expression by quantitative real�time polymerase
chain reaction. RNA was isolated from tissues using
peqGOLD TriFast (PEQLAB Biotechnologie GmbH, Erlangen,
Germany) following the manufacturer’s instructions. Concentra-
tions and quality of RNA were determined and controlled with
a Nano Drop 2000 (Thermo Fisher Scientific GmbH, Life
Technologies, Darmstadt, Germany). Gene expression was anal-

ysed via quantitative real-time polymerase chain reaction (qRT-
PCR) with a SensiFAST SYBR No-ROX One-Step Kit (Bioline
GmbH, Luckenwalde, Germany) with SybrGreen detection
using a Rotorgene 6000 cycler (Corbett Life Science, Sydney,
Australia). Relative mRNA quantification was calculated using a
standard curve. Target gene expression was normalized to the
expression of the housekeeping gene Rn18S. Primers for qRT-
PCR are given in Supplemental Table 1*.

Determination of protein expression levels by Western
blotting. Expression levels of AMPK and LC3 protein were
measured via Western blotting in the cytoplasm fraction from
fresh liver tissues as previously described.(32) Protein concentra-
tions were determined with a Pierce BCA assay (Thermo Fisher
Scientific GmbH). Briefly, 30 mg of protein per sample was heated
with loading buffer, denatured at 95°C for 5 min and separated by
SDS-PAGE (BioRad, Munich, Germany). The fluorescence of
the proteins was activated by UV exposure for 5 min before
transferring the proteins onto a PVDF membrane (BioRad).
Samples were blocked with skim milk dissolved in Tris-buffered
saline plus 0.05% (v/v) Tween 20. Proteins (LC3, AMPK and
pAMPK) were identified using respective primary antibodies
(LC3: 1:500, NB100-2220, Novus Biologicals, Wiesbaden,
Germany; AMPK: 1:100, sc-25792, Santa Cruz Biotechnology,
Heidelberg, Germany; pAMPK (Thr172) 1:1,000, 2535, Cell
Signaling, Frankfurt, Germany) and a secondary antibody (Santa
Cruz Biotechnology). Protein bands were visualized with ECL
reagents (Fisher Scientific, Schwerte, Germany) in a ChemiDoc
XRS system (BioRad), and band intensities were calculated

Fig. 1. Liver fresh weight (A, D), H&E�stained sections (B, 40´ magnification) and liver triglyceride (TG) content (C, E) in WT (A–C) or db/db mice
(D, E), supplemented with either 0, 400, or 800 mg of nitrate/kg of diet. Data are means ± SEM (n = 8 mice/diet). Statistical analyses were performed
using one�way ANOVA, followed by the LSD or Games�Howell post hoc test when variances were heterogeneous. *p<0.05.

*See online. https://doi.org/10.3164/jcbn.19�43
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with Image Lab 5.0 Software (BioRad). Target protein expression
was related to the total protein load per lane, assessed as PVDF
membrane fluorescence.

Analysis of fatty acid composition. Fatty acid composition
was analysed in frozen liver samples by gas chromatography with
a flame ionization detector as described previously.(33) Fatty acid
methyl esters (FAMEs) were synthesized by incubation with
0.5 M sodium methoxide, and the fatty acid composition was
calculated as a percentage of the total identified FAMEs. Analysis
of FAMEs was conducted in a 7820A Agilent gas chromatograph
(Agilent Technologies Spain) equipped with an Agilent HP-23
capillary column (60 m ´ 250 mm ´ 0.25 mm, Agilent Techno-
logies Spain) and helium (1.0 ml/min) as the carrier gas. The
temperature protocol was as follows: initial temperature 100°C,
ramp 8°C/min to 145°C (20 min), ramp 5°C/min to 195°C
(5 min), ramp 5°C to 215°C (15 min), ramp 5°C to 230°C (5 min).
Chromatograms were recorded and analysed using Agilent EZ-
Chrom Elite software (Agilent Technologies Spain). The method
was validated with original standards for every fatty acid quantified.
Additionally, tridecanoic acid (C13:0) was used as an internal
standard, and in every case, a response factor of 1 was used.

Statistical analysis. Data were analysed using one-way
analysis of variance (ANOVA), followed by a post hoc test as
indicated or in the case of heterogeneous variances, by the Games-
Howell post hoc test. Repeated measures (oGTT, weight, energy

intake) were analysed using a mixed-effects model (factor time
and nitrate) after checking for sphericity, followed by the
Bonferroni post hoc test. Correlation analysis (Spearman’s corre-
lation coefficient) was conducted for selected variables. The area
under the curve (AUC) in the oGTT was determined with
GraphPad Prism (ver. 7.02). Unless stated otherwise, statistical
analyses were performed with SPSS (ver. 24.0).

Results

Body weight and food intake significantly increased over time
in both animal models but were not affected by nitrate supple-
mentation (Supplemental Table 2*). Measurement of body com-
position in WT mice (Supplemental Table 3*) also revealed no
significant differences in the proportion of body muscle, fat and
water among treatment groups. Likewise, the weights of the liver
(Fig. 1A and D), heart and kidney (data not shown) did not differ
significantly among the groups in either animal model. H&E
staining of liver samples revealed signs of hepatic steatosis in WT
mice from all treatment groups (Fig. 1B), which is in line with the
previously described effects of feeding high-fat/high-fructose
diets.(34) The hepatic content of TG in WT mice (Fig. 1C) was
significantly reduced by the feeding of 800 mg nitrate/kg of diet.
Even though a similar trend was observed for the same level of
nitrate supplementation in db/db mice (Fig. 1E), differences were

Fig. 2. Glucose uptake ex vivo (A) and oral glucose tolerance test (oGTT) in WT mice (B, C) fed a high�fat/high�fructose diet supplemented with
either 0, 400 or 800 mg of nitrate/kg of diet for 28 days. Data are means ± SEM (n = 4–8 mice/diet). Statistical analyses were performed using one�
way ANOVA followed by the LSD or Games�Howell post hoc test when variances were heterogeneous. Data for oGTT were analysed using a mixed�
effects method (factor time and nitrate) with repeated measures, after checking for sphericity, followed by the Bonferroni post hoc test. *p£0.01;
**p£0.001. ISC, short�circuit current; TER, transepithelial resistance; AUC, area under the curve.

*See online. https://doi.org/10.3164/jcbn.19�43
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not significant. In addition, feeding 800 mg of supplemental nitrate
increased the hepatic content of protein compared to the other
treatment groups but only in db/db mice (Supplemental Table 3*).

The concentration of NO3
-/NO2

- in blood increased in response
to supplemental nitrate, reaching significance at 800 mg/kg of
diet in WT mice but not in db/db mice (Supplemental Table 3*).
The plasma levels of TG, cholesterol, insulin, and leptin as well
as the activity of ALT did not differ among experimental groups
but were, in all cases, many times higher in db/db mice than in WT
mice (Supplemental Table 3*). Likewise, fasting blood glucose
and hepatic TBARS, a biomarker of lipid peroxidation, were not
influenced by nitrate feeding.

The ex vivo examination of glucose uptake by the ileal mucosa
of WT mice revealed a significant decrease in glucose influx in the
highest nitrate group compared to the other two groups (Fig. 2A).
Mice from this same group, however, did not register any altera-
tion in glycaemia over time or the area under the curve during
the oGTT (Fig. 2B and C).

In db/db mice, blood glucose reached concentrations beyond
the detection limit (30 mmol/L), rendering statistical analysis
impossible. However, we observed that 15 min after glucose
administration, 85.5% of mice in group I (0 mg of supplemental
nitrate) were over the detection limit, whereas this percentage was
37.5 in the highest nitrate group (800 mg of supplemental nitrate).
Furthermore, 60 min after glucose administration, 85.7% of mice

receiving 0 mg of supplemental nitrate still had blood glucose
levels over the detection limit compared to 62.5% of mice fed
800 mg of supplemental nitrate (Supplemental Table 4*).

In the livers of WT mice, the relative concentrations of both
linoleic acid (C18:2n6c) and adrenic acid (C22:4n6) were
increased by feeding 400 mg of nitrate/kg compared to those in
the group receiving 0 mg of nitrate/kg (Fig. 3A). The hepatic
profile of fatty acids in db/db mice was not affected by the content
of nitrate in the diet (Fig. 3C and D).

With the exception of Fads1 and Fads2, whose expression was
downregulated in WT mice fed 400 mg of supplemental nitrate,
the mRNA steady state levels of all genes evaluated were similar
among groups (Fig. 4A). We also analysed hepatic expression of
Pparα and Pparγ and their related genes Cd36, Rxr, Pgc1α, Srebp
and Mgat in the liver (Fig. 4B). The highest abundance of Pparγ
mRNA was found in mice fed diets without supplemental nitrate
and were 2-fold higher than that in mice fed 400 mg/kg of nitrate
and more than 3.7-fold higher than that in mice fed 800 mg/kg of
nitrate. Thus, the expression of Pparγ decreased with increasing
nitrate content in the diet (ANOVA, p<0.001). Furthermore, the
expression of Pparα was increased by nitrate supplementation at
800 mg/kg. However, we found no significant alterations in the
expression of Ppar-related genes. It has been previously reported
that skeletal muscle exhibits higher nitrate concentrations than the
liver and blood and might serve as a nitrate reservoir for the direct

Fig. 3. Relative fatty acid distribution in the livers of WT mice (A, B) or db/db mice (C, D) supplemented with either 0, 400 or 800 mg of nitrate/kg
of diet. Data are means ± SEM (n = 7–8 mice/diet). Statistical analyses were performed using one�way ANOVA followed by the Scheffé post hoc test.
*p<0.05.

*See online. https://doi.org/10.3164/jcbn.19�43
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formation of nitrite and NO.(35) We therefore examined samples of
muscle (Fig. 5A) and heart (Fig. 5B) from WT mice for changes in
the expression of some selected genes involved in inflammation,
glucose and fat metabolism and mitochondrial function. Apart
from finding that the expression of Glut4 was highest in the group
receiving 0 mg of supplemental nitrate, no other differences in the
mRNA levels of selected genes were evident.

The expression of the same set of genes was measured in tissues
from db/db mice (Fig. 6). In the liver, the expression of Fads1 was
highest in mice fed a diet supplemented with 800 mg of nitrate/kg.
Mirroring findings from WT mice, the expression of Glut4 was
significantly highest in the group receiving 0 mg of supplemental
nitrate. No other genes were affected by dietary nitrate in db/db
mice.

Finally, we examined the expression of autophagy-related
proteins LC3-I, LC3-II, AMPK, and pAMPK in both WT
(Supplemental Fig. 1*) and db/db mice (Supplemental Fig. 2*).
The relative intensities of bands from mice in group I (0 mg of
supplemental nitrate) were set to 1. None of the examined proteins
was affected by dietary nitrate supplementation either in WT or
db/db mice.

Discussion

Under the conditions investigated, we did not observe any
differences in food intake and body weight gain in response to
nitrate feeding in two models of murine obesity. A recent study
by Matthews et al.(36) similarly did not reveal any significant
nitrate-related differences in body weight, or food intake or
parameters of metabolic syndrome in mice fed either a high-fat
diet (HFD) or a low-fat control diet (C) with or without nitrate
supplementation. Additionally, no significant differences in food
intake or circulating concentrations of glucose, TG, and various
inflammatory markers were detected in mice after 1.5 months of
feeding a low-nitrate diet compared to a nitrate-supplemented
diet.(21) In the same study, however, beneficial effects became
evident after 3 months of nitrate feeding. Furthermore, a long-term
dietary nitrite deficiency caused metabolic syndrome, endothelial
dysfunction and death from cardiovascular failure in mice. It is
reasonable to speculate, therefore, that the results from the present
study represent rather early signs of a nitrate deficiency in the
group receiving no supplemental nitrate, which might have been
more pronounced under a longer feeding period of the experi-

Fig. 4. Steady�state level of hepatic mRNA (A, B) in WT mice fed a high�fat/high�fructose diet over 4 weeks, supplemented with either 0, 400 or
800 mg of nitrate/kg of diet. Data are means ± SEM (n = 8 mice/diet). Statistical analyses were performed using one�way ANOVA followed by the
LSD or Games�Howell post hoc test when variances were heterogeneous. *p£0.05; **p£0.001. iNos, inducible nitric oxide synthase; Crp, c�reactive
protein; mTor, mammalian target of rapamycin; Pck1, cytosolic phosphoenolpyruvate carboxykinase 1; G6pc, catalytic subunit of glucose�6�
phosphatase; Cgc, glucagon (precursor of glucagon, Glp1); Fabp4, fatty acid binding protein4; Fasn, fatty acid synthase; Fads, fatty acid desaturase;
Scd1, stearoyl�Coenzyme A desaturase 1; Tfam, mitochondrial transcription factor A; Fxr, farnesoid X receptor; Pparα, peroxisome proliferator�
activated receptor a; Pparγ, peroxisome proliferator�activated receptor g; Cd36, cluster of differentiation 36; Rxr, retinoid X receptor; Pgc1α,
peroxisome proliferator�activated receptor g coactivator 1a; Srebp, sterol regulatory element binding transcription factor; Mgat, monoacylglycerol
O�acyltransferase; 18S, 18S ribosomal RNA.

*See online. https://doi.org/10.3164/jcbn.19�43
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mental diets. This suggestion is supported by the observation
that NO production declines with age due to decreased eNos-
dependent NO synthesis.(37,38) In such a context, inorganic nitrate
has been shown to alleviate the senescence-related decline in liver
function.(39)

Notably, group I, which did not receive supplemental nitrate
in our study, still received nitrate, nitrite or NO (NOx) from
consuming tap water (nitrate/nitrite content: <1.5 mg/L) and
through dietary arginine (0.69%), the levels of which exceeded
the recommendations for growing mice (<0.1% for mice, gaining
0.8 g/day, NRC).(40) Furthermore, we did not observe any differ-
ences in the mRNA level of Nos, despite different concentrations
of supplemental nitrate. In contrast, significant alterations were
often reported in animals fed a complete NOx-free diet.(21,41) We
found an increase in the blood content of nitrate/nitrite with
increasing nitrate feeding, except for the highest supplemental
nitrate group in db/db mice. Changes in serum nitrate, nitrite
and NOx levels are a controversial issue, and elevated,(29) un-
changed,(20,42) or even decreased levels have been reported in
response to dietary nitrate.(43) Raat et al.(44) evaluated the effects
of supplementing drinking water with 0, 300, or 1,500 mg of
nitrite/L in rats receiving deionized water and a complete NOx-

free diet. The results were also compared to a control group given
tap water and a control diet. Nitrite feeding led to a significant
increase in plasma nitrate compared to the NOx-free rats but not
compared to the control rats. The activity levels of ALT and AST
was higher in the plasma of NOx-free mice. When the authors
looked into differential gene expression in the liver, no differences
were detected between groups using the standard analysis of
differential gene expression. After applying a more statistically
powerful analytic approach, they detected differences in gene
expression but only between the control diet and the low-NOx
diet. In addition to nitrite feeding, the authors applied ischaemia-
reperfusion to the rats and observed a robust effect of nitrite on
differential gene expression, confirming their hypothesis that
nitrite preferentially activates gene expression during hypoxia,
whereas nitrite by itself in the absence of hypoxia had little effect
on gene expression. In the present study, challenging conditions
were the feeding of a high-fructose/high-fat diet and the use of a
genetic mouse model of obesity and type II diabetes. Other
research groups also examined the effect of dietary enrichment
with nitrate on HFD-induced atherosclerosis in mice compared
to ApoE KO-induced atherosclerosis over 12 weeks.(45) The
beneficial effects of inorganic nitrate were apparent in mice fed a

Fig. 5. Steady�state levels of mRNA in muscle (A) or heart (B) of WT mice fed a high�fat/high�fructose diet over 4 weeks, supplemented with either
0, 400 or 800 mg of nitrate/kg of diet. Data are means ± SEM (n = 8 mice/diet). Statistical analyses were performed using one�way ANOVA followed
by the LSD or Games�Howell post hoc test when variances were heterogeneous. *p£0.05. iNos, inducible nitric oxide synthase; nNos, neuronal nitric
oxide synthase; mTor, mammalian target of rapamycin; Glut4, glucose transporter 4; Pparγ, peroxisome proliferator�activated receptor g; Pgc1α,
peroxisome proliferator�activated receptor g coactivator 1a; Atf4, activating transcription factor 4; Pparα, peroxisome proliferator�activated
receptor a; 18S, 18S ribosomal RNA.
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low-fat control diet (C) but not in those fed a HFD. The authors
concluded that inorganic nitrate at the dose tested was insufficient
to overcome the proinflammatory effects of a HFD. Presumably,
this situation could also have been the case in our study. However,
this proposition cannot be confirmed as we did not include a C-fed
WT-mice group. Furthermore, the db/db mice exhibited a strongly
defined phenotype that could not be counteracted by short-term
nitrate feeding.

The liver is an important tissue for energy homeostasis and is
actively involved in the synthesis, storage and redistribution of
free fatty acids and glucose.(46) Feeding a HFD could result in
hepatic lipid accumulation, which could lead to the development
of hepatic steatosis. As fructose intake is associated with non-
alcoholic fatty liver disease (NAFLD) and fructose has been
shown to rapidly increase hepatic TG synthesis and deposition,(47)

the diet of WT mice contained high fructose in addition to high
fat. In the present study, the feeding of 800 mg/kg of supplemental
nitrate to WT mice reduced hepatic TG and the expression of
Pparγ, whereas it induced the expression of Pparα. Importantly,
the mRNA levels of Pparγ were significantly (r = 0.429, p<0.05)

correlated with hepatic TG (Fig. 7).
The mechanistic relationship between steatosis and increased

Pparγ expression in the liver is still unclear,(48) but there is a causal
link between hepatic Pparγ expression and steatosis.(49,50) Under
control conditions, Pparγ is poorly expressed in the liver and
represents only 10–30% of the level in adipose tissue.(48,51) In
general, Pparγ regulates fatty acid storage via the activation of
genes that stimulate lipid uptake and adipogenesis.(52) It has been
shown that overexpression of Pparγ activates lipogenesis and
increases TG in the liver.(53) Conversely, a hepatocyte-specific
deletion of Pparγ in mice was associated with a reduction in
hepatic TGs and reduced expression of Pparγ target genes (Cd36
and Mgat1) except those involved in lipogenesis (e.g., Srebp1c,
Fasn, Scd1).(54) These changes, which were most prominent when
animals were fed a HFD for 14 weeks, were proposed by authors
to partly account for the protection against steatosis in mice with
reduced (or absent) Pparγ expression. In our case, therefore, it is
possible that 4 weeks of feeding supplemental nitrate might
have been too short to affect the expression of Pparγ target genes.
Thus, we consider the change in expression of Pparγ as an early

Fig. 6. Steady�state levels of mRNA in liver (A) and muscle (B) of db/db mice fed a control diet over 4 weeks, supplemented with either 0, 400 or
800 mg of nitrate/kg of diet. Data are means ± SEM (n = 7–8 mice/diet). Statistical analyses were performed using one�way ANOVA followed by the
LSD or Games�Howell post hoc test when variances were heterogeneous. *p£0.05; **p£0.01. iNos, inducible nitric oxide synthase; Crp, c�reactive
protein; mTor, mammalian target of rapamycin; Cd36, cluster of differentiation 36; Pck1, cytosolic phosphoenolpyruvate carboxykinase 1; G6pc,
catalytic subunit of glucose�6�phosphatase; Fasn, fatty acid synthase; Fads, fatty acid desaturase; Scd1, stearoyl�coenzyme A desaturase 1; Pparα,
peroxisome proliferator�activated receptor a; Pparγ, peroxisome proliferator�activated receptor g; Pgc1α, peroxisome proliferator�activated
receptor g coactivator 1a; Tfam, mitochondrial transcription factor A; Fxr, farnesoid X receptor; nNos, neuronal nitric oxide synthase; Glut4, glucose
transporter 4; Atf4, activating transcription factor 4.
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event in the beginning of steatosis. Activation of Pparα, which we
have also seen in our study, has been shown to improve steatosis,
inflammation and fibrosis in models of non-alcoholic fatty liver
disease and Pparα agonists,(41) such as fibrates, have been reported
to improve fatty acid oxidation in mice.(55) Furthermore, Pparα
activation stimulates fatty acid and TG metabolism,(49) thereby
decreasing hepatic TG levels. Thus, simultaneous activation of
Pparα and inhibition of Pparγ through nitrate supplementation
may be a target for the prevention and treatment of HFD-induced
steatosis.

The hepatic autophagy pathway is another mechanism involved
in lipid metabolism,(56) which is regulated by Ppars in several
manners. The Pparα-responsive genes AMPK and Pgc1α are
believed to activate autophagy pathways, whereas Pparγ seems
to block them.(57) Furthermore, NO may modulate AMPK activity
via changes in gene expression and AMPK activation via per-
oxynitrite through a phosphatidylinositol 3-kinase-dependent

pathway.(17) On the other hand, AMPK may be able to regulate NO
production through phosphorylation of eNos at position Ser1177.(58)

Even though we did not observe any significant changes in
biomarkers of autophagy, there was a trend towards a higher
pAMPK/AMPK ratio in animals fed 800 mg of supplemental
nitrate/kg of diet (Supplemental Fig. 1 and 2*).

We found a significant reduction in glucose uptake in response
to increasing levels of dietary nitrate. However, this reduction
was not paralleled by improvements in oGTT, blood glucose, or
insulin level, or changes in the expression of genes encoding
proteins involved in glucose metabolism. Likewise, there were
no significant differences in fasting plasma insulin or the intra-
peritoneal glucose tolerance test (iGTT) between the mice fed a
nitrate-deficient diet or control diet for 1.5 months,(21) whereas
after 3 months, significant differences became evident. Dietary
supplementation with nitrite for 10 weeks restored insulin-
mediated signal transduction and improved Glut4 expression in
skeletal muscles in diabetic mice but not in WT mice.(59) In another
study, nitrate supplementation did not significantly change iGTT,
insulin, glucose or the abundance of Glut4 mRNA and protein in
control rats; however, chronic nitrate supplementation in diabetic
rats significantly improved glucose homeostasis.(43) In these rats,
insulin secretion could not be restored to normal values by dietary
nitrate. In our study, we found a downregulation of Glut4 in
muscle with increasing levels of supplemental nitrate in the diet
in both murine models of obesity. Our data are in contrast to some
of the published data showing increased expression of Glut4 in
response to nitrate or nitrite supplementation.(17,59–61) However,
Glut4 expression in isolated muscle cells from diabetic and
healthy donors only increased at supratherapeutic doses of an NO
donor.(62) These levels of NO are higher than those achievable
under physiological conditions, as in our mouse study. Another
research group demonstrated that NO and nitrite stimulated Glut4
translocation independently of insulin in Glut4-overexpressing
cells, presumably through nitrosation of Glut4.(60) Therefore, we
cannot rule out the possibility that Glut4 translocation was
increased in our study, thereby counteracting any effect of the
nitrate-induced reduction in Glut4 expression.

In addition to the duration of nitrate feeding, structural and
pharmacokinetic differences between inorganic and organic forms
of nitrate might also account for the differential impact of nitrate
on metabolism among studies. Inorganic nitrates are small, water-
soluble ions present in the diet and are produced endogenously

Fig. 7. Correlation between hepatic triglyceride content and Pparγ
mRNA level in the livers of WT mice fed a high�fat/high�fructose diet
over 4 weeks, supplemented with either 0, 400, or 800 mg of nitrate/kg
of diet. Spearman’s correlation analysis revealed a significant relation�
ship of p<0.05. TG, triglyceride; Pparγ, peroxisome proliferator�activated
receptor g; r, Spearman’s correlation coefficient.

Fig. 8. Proportion of saturated fatty acids, MUFAs and PUFAs in the livers of WT mice fed a high�fat/high�fructose diet over 4 weeks, supplemented
with either 0, 400, or 800 mg of nitrate/kg of diet. Data are means ± SEM (n = 8 mice/diet). Statistical analyses were performed using one�way
ANOVA followed by the LSD or Games�Howell post hoc test when variances were heterogonous. *p<0.05. FA, fatty acid; MUFA, monosaturated FA;
PUFA, polysaturated FA.

*See online. https://doi.org/10.3164/jcbn.19�43
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by oxidation of NO, whereas organic nitrates are synthetic
compounds produced by nitrooxylation with more complex
structures.(63) It is also possible that the use of different nitrate
salts among studies may have resulted in differences in the renal
clearance of the anion.(45) We did not collect urine, making it
impossible to determine renal nitrate excretion. In vitro observa-
tions demonstrated that nitrate-rich beetroot could promote Glut4
expression and stimulate myocyte metabolism through Pgc1α
activation.(64) Li et al.(28) revealed beneficial effects of nitrate-rich
spinach on insulin resistance, endothelial dysfunction and inflam-
mation in mice fed a high-fat and high-fructose diet. In contrast to
our study, nitrate was administered via gavage and fructose via
drinking water, which could have led to the different outcomes
between studies.

Several studies have shown that the activities of delta-6 and
delta-5-desaturases are depressed in type II diabetes.(65,66) In a
study by Mohan and Das,(65) the intraperitoneal administration of
50 mg of L-arginine led to a significant improvement in the levels
of various polysaturated fatty acids (PUFAs) in the liver, plasma
and muscle of rats through enhanced activity of delta-6 and delta-
5-desaturases. Similarly, we found an increase in the relative
concentration of total PUFAs in the livers of WT fed 400 mg of
nitrate/kg of diet (Fig. 8). The fatty acid pattern in db/db mice was
not affected by supplemental nitrate. Altogether, nitrate feeding
had only a minor influence on the hepatic profile of fatty acids in
WT and db/db mice. It is important to consider that we used
female mice, whereas most results available in the literature were
derived from male rodents.(28,43,59) The progression of liver steatosis
and the development of insulin resistance have been shown to be
sex specific, in particular due to different hormonal statuses
between sexes.(37,67) Likewise, male hyperlipidaemic mice developed
endothelial dysfunction at an earlier age than females, which was
associated with impaired NO bioavailability.(46) In this latter study,
the feeding of a HFD led to differential outcomes between sexes
in lipid (e.g., hepatic fatty acids, Cd36 level) and glucose metabo-
lism (e.g., Glut2), iNos expression and nitrite/nitrate production,
contributing to sex-specific differences in the development of
insulin resistance.

Taken together, the results from the current study suggest that
short-term dietary supplementation with inorganic nitrate has only
moderate effects on carbohydrate and lipid metabolism in genetic
and dietary models of murine obesity. Differences between the
present study and previous literature may be related to sex, dose,
type and duration of administration as well as to the total NOx
content of the diet. Although we did not observe highly significant
changes in lipid and glucose metabolism, supplemental nitrate
tended to improve the metabolic phenotypes. In particular, the

concurrent activation of hepatic Pparα and inhibition of Pparγ
by supplemental nitrate suggest a potential application for the
prevention and treatment of HFD-induced steatosis. Therefore, it
would be interesting to investigate the impact of chronic dietary
supplementation with inorganic nitrate compared to NOx-free
treatment on the metabolic profile in humans and animals.
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