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Abstract: Lane mark detection plays an important role in autonomous driving under structural
environments. Many deep learning-based lane mark detection methods have been put forward in
recent years. However, most of current methods limit their solutions within one single image and
do not make use of the de facto successive image input during the driving scene, which may lead
to inferior performance in some challenging scenarios such as occlusion, shadows, and lane mark
degradation. To address the issue, we propose a novel lane mark detection network which takes pre-
aligned multiple successive frames as inputs to produce more stable predictions. A Spatial-Temporal
Attention Module (STAM) is designed in the network to adaptively aggregate the feature information
of history frames to the current frame. Various structure of the STAM is also studied to ensure the
best performance. Experiments on Tusimple and ApolloScape datasets show that our method can
effectively improve lane mark detection and achieve state-of-the-art performance.

Keywords: lane mark detection; pre-aligned multiple frames; Spatial-Temporal Attention

1. Introduction

With the rapid development of autonomous driving technology, lane mark detection
have made great progress in recent years. Accurate and robust lane mark detection is
necessary to ensure the safety of autonomous navigation in terms of its capability to
provide reliable route guidance and proper positioning for the vehicle. However, lane mark
detection under complex scenes and various light conditions still remains a challenge.

Traditional methods for lane mark detection usually involve several basic procedures,
including image pre-processing, feature extraction, and detection by fitting [1–3]. They
heavily rely on highly-specialized and hand-crafted feature extraction [4–6]. Thanks to the
emergence of deep neural network and large-scale datasets, deep learning methods have
significantly improved the performance of lane mark detection. Liu et al. [7] proposed a
style-transfer-based data enhancement method, using Generative Adversarial Networks
(GANs) to solve the problem of lane detection in low-light conditions. RESA [8] shifted
sliced feature map recurrently in vertical and horizontal directions to aggregate global infor-
mation, which helps to conjecture lane marks with weak appearance coherences. To better
infer lane mark positions under occlusion conditions, LaneATT [9] utilized an effective
anchor-based attention mechanism to aggregate global information. However, most of the
methods focus on detecting lane marks in a single image. Under complex environments,
the appearance of lane marks can be frequently degraded by severe stains, heavy shadows,
or serious occlusion, which can result in incomplete or even incorrect predictions for these
single image-based methods. In practice, the image sequence acquired by the vehicle are
continuous and there are large overlaps between adjacent frames, therefore the position
of lane marks in neighboring frames are highly correlated. In other words, lane marks
that cannot be precisely detected in a current single frame is able to be inferred from the
information of former frames. This motivates us to investigate lane mark detection with
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multiple frames as input and explore the inherent spatial-temporal information within
the sequence.

In this work, a novel method using multiple frames for improving lane mark detection
is proposed. To maximize the enhancement for the features of a current key frame, we
first perform multi-frame pre-alignment. While the camera calibration in [10] establishes
one-to-one correspondence between the image plane and the ground, we project each
history frame to the current key frame with the road areas aligned in the image plane.
Moreover, to further aggregate spatial-temporal information, we propose an effective
Spatial-Temporal Attention Module (STAM) and insert it into an encoder-decoder-based
instance segmentation network. Taken multiple continuous images as inputs, sequential
features of all input frames are extracted by the shared CNN encoders and then fed into the
STAM. A two-branch decoder is adopted to reconstruct the aggregated information and
predict lane marks of the current key frame. With richer information from continuous im-
ages, the proposed method is able to greatly improve lane mark predictions on challenging
scenarios and achieve state-of-the-art performance.

The main contributions of this paper can be summarized as:

• We regard lane mark detection as a time-series issue and propose to detect lane marks
from successive pre-aligned multiple images. The frames are pre-aligned according to
the ground plane before feeding to the network. By exploring the spatial-temporal
information hidden in the multiple frames, the negative influence from complex
scenarios like shadow, lane mark degradation, and vehicle occlusion could be largely
mitigated;

• A novel Spatial-Temporal Attention Module (STAM) is proposed and embedded in
the encoder-decoder backbone. The module enhances the features of current frame by
attentively aggregating spatial-temporal information from history frames. Various
structures of the STAM and their performance are also studied;

• Our network is implemented end-to-end and evaluated on two large-scale datasets:
Tusimple and ApolloScape. Comprehensive experiments and ablation studies verified
that the proposed model is effective and can achieve state-of-the-arts performance.

2. Related Work

Lane mark detection has been intensively researched in recent years. These methods
can be roughly classified into traditional and deep learning approaches.

Traditional methods. Before the advent of deep learning, conventional solutions
for lane mark detection often depend on hand-crafted features such as edge, color, and
texture to identify lane segments [4–6]. Then, Hough transform [11] or curve fitting [12]
is often adopted to eliminate outliers and form the final lane marks. Apart from geomet-
ric modeling, some methods formulate lane mark detection with energy minimization
algorithms [13]. By defining unary/dual potentials and building an optimal associa-
tion of multiple lane marks, Conditional Random Field (CRF) can be used to detect lane
marks. For lane mark detection in successive frames, the particle or Kalman filter is widely
used [14–16]. The particle filter is able to track multiple lanes. The Kalman filter helps
to locate positions and estimate lane curvature with state vectors. However, the perfor-
mance of the above methods would be easily mortified by complex environments and
illumination variance.

Deep-learning-based methods. In recent years, many deep-learning-based methods
on lane mark detection have been proposed. According to the representations of lane,
the existing methods can be divided into four categories: Segmentation-based [8,17–20],
anchor-based [9,21,22], row-wise detection-based [23–25], and parametric regression meth-
ods [26,27]. Segmentation-based methods are the most popular and have an impressive
performance. SCNN [18] employed slice-wise convolution in a segmentation module,
passing a message from different directions to capture spatial continuity. EL-GAN [19]
and SAD [20] respectively adopted GAN and knowledge distillation to improve lane mark
segmentation. Despite their advantages, most segmentation-based methods are limited
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to detecting lane marks with a pre-defined number. Anchor-based methods focus on
specifying the lane mark shape by regressing the position offsets relative to the predefined
anchors. PointLaneNet [21] used point anchors to directly obtain the coordinates of lane
mark points. Line-CNN [22] put forward a novel Line Proposal Unit (LPU) in terms of
discrete direction classification and relative coordinate regression. LaneATT [20] extracted
anchor-based features and utilized an attention mechanism. However, a fixed anchor shape
would be inflexible to describe lane marks with a high degrees of freedom. Row-wise
detection methods predict the most probable location of lane marks from row to row.
Fast-Draw [23] introduced a learning-based approach to decode the lane mark structure
without post-processing. UFSA [24] proposed a lightweight row-based selecting scheme in
global image features, resulting in a high speed algorithm. E2E-LMD [25] predicted lane
mark vertexes in an end-to-end manner. Parametric regression methods directly output
parametric representations of lane marks. PolyLaneNet [26] learned to regress the lane
mark polynomial curve equation. LSTR [27] formulated the lane mark shape model based
on road structures and camera pose, using a transformer to capture a richer context.

In contrast to the above single-frame based methods, a few approaches consider
the lane mark detection as a time-series problem. Zou et al. [28] proposed a hybrid
architecture that seamlessly integrates the CNN (Convolutional Neural Network) [29]
and RNN (Recurrent Neural Network) [30] to detect lane marks. Zhang et al. [31] added
double Convolutional Gated Recurrent Units (ConvGRUs) into an encoder-decoder CNN.
However, they only consider the lane detection as a two-class segmentation problem and
did not provide instance segmentation for each lane. Moreover, in complex scenes such as
lane occlusion by dynamic vehicles, they are also prone to produce erroneous false positive
predictions. Our method takes instance-level discrimination into account and perform
multi-frame pre-alignment before feeding them into the network. Instead of using RNN or
any variants of RNN, we propose STAM to aggregate the spatial-temporal information to
better deal with the challenging scenarios.

3. Proposed Methods

As detecting lane marks from individual images suffers from challenging situations
such as heavy shadow, serious occlusion, and severe lane mark damage, we focus on lane
mark detection under continuous driving scenes. Among consecutive images, lane marks
in adjacent frames are inherently correlative. An overview of our proposed method is
illustrated in Figure 1. The encoder-decoder network takes multiple pre-aligned consecu-
tive frames as inputs and predicts lane marks on the current key frame Ft in an instance
segmentation manner. Sequential encoded features are aggregated by the proposed Spatial-
Temporal Attention Module (STAM), followed by a decoder to receive the fusion feature.
The decoder consists of two branches: The segmentation branch generates a binary lane
mask with two classes (lane or background), the embedding branch is trained to disentan-
gles the segmented lane pixels into different lane instances. Finally, predicted lane mark
points are obtained by the post-processing.
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Figure 1. Overview of the proposed method. Multiple pre-aligned consecutive frames are firstly
sent to the shared encoder. Then, the features of current key frame Ft are enhanced by attentively
aggregating spatial-temporal information from history frames Ft−i. After that, the two-branch
decoder produces a binary lane mask and an N-dimensional embeddings per lane pixel. At last,
the post-processing is applied to gain the final predictions.

3.1. Multi-Frame Pre-Alignment

To adequately enhance the features of current key frame and avoid introducing
confusion among different images, alignment of multiple frames is necessary. This section
will explain the procedures of multi-frame pre-alignment. The lane marks we are interested
in are all on the ground plane. Assuming the ground area ahead of the vehicle is locally
planar, a 2D homographic transformation can be set up for the ground area between
neighboring frames. We assume the image rows under the predefined vanishing lines are
the ground area and compute the homographic transformation by feature point matching.
However, in practice the ground is often composed of a weak texture area, which means
insufficient feature points could be extract, as shown in Figure 2a. We solve this problem
by extracting evenly distributed ORB (Oriented FAST and Rotated BRIEF) [32] feature
points. Specifically, we divide the area into 30 × 30 grids and detect FAST (Features
from Accelerated Segment Test) [33] corners with Non-Maximum Suppression (NMS).
If insufficient corners are found in the grids, the detector threshold is adjusted adaptively.
After a certain number of FAST corners are extracted, the corresponding rotated BRIEF
(Binary Robust Independent Elementary Features) [34] descriptors are computed. Then,
we employ QuadTree to administrate the features, making them evenly distributed and
having them meet the quantity requirements simultaneously. As shown in Figure 2, our
method for feature points extraction works better than simply using the Opencv library.

(a) (b)

Figure 2. The comparison of feature points extraction between using (a) Opencv and (b) our method.
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After feature extraction, we conduct feature point matching for each pair of images.
RANSAC (RANdom SAmple Consensus) [35] is performed to compute the homographic
matrix between the previous frame and current frame. Then we can warp the previous
frames to the current frame, realizing the multi-frame pre-alignment. The visualization
examples for the procedure of feature points matching and inter-frame warpping are
presented in Figure 3, where we can observe that the lane marks of two frames are exactly
aligned with each other. Note that all the aligned images should be padded to the same
resolution before input to the network.

Figure 3. Illustration of image pre-alignment for consecutive two frames. The top row shows
the example from the Tusimple [36] dataset and the bottom is from the ApolloScape [37] dataset.
(a,c) represent the procedure of feature points matching, (b,d) indicate the results of alignment.

3.2. Instance Segmentation Network

For instance, segmentation of lanes, an encoder-decoder architecture is employed,
which uses VGG16-based FCN [38] as the backbone. The encoder CNN extracts the
sequential features for all input frames. The decoder CNN consists of a binary segmentation
branch and a pixel embedding branch. The binary segmentation branch decides the class of
background or lane mark, while the embedding branch further disentangles the segmented
lane mark pixels into different lane instances. The binary segmentation branch is trained
by the standard cross-entropy loss function, using bounded inverse class weighting [39] to
handle classes (lane/background) unbalance.

The instance embedding branch is trained to assign a lane ID to each lane pixel so
that the pixel embeddings belonging to the same lane are pulled closer, whereas those
belonging to different lanes are pushed away. In this way, the pixel embeddings of the same
lane will cluster together to generate unique instance. The clustering loss function [40]
for the instance embedding branch is: L = αLvar + βLdist + γLreg, where α, β, and γ are
weighting coefficients, and the three loss items are:

Lvar =
1
C ∑C

c=1
1

Nc
∑Nc

i=1[‖µc − xi‖ − δv]
2
+

Ldist =
1

C(C−1) ∑C
cA=1 ∑C

cB=1,cA 6=cB
[δd − ‖µcA − µcB‖]

2
+

Lreg = 1
C ∑C

c=1‖µc‖.

(1)

In Equation (1), C represents the number of lane mark clusters, Nc denotes the number
of elements in cluster c, xi is a pixel embedding, µc is the mean embedding of cluster c, δv
and δd are thresholds, and ‖·‖ indicates the L2 distance, [x]+ = max(0, x). The variance
term (Lvar) applies a pull force on each pixel embedding towards the mean embedding of a
cluster, which is only active when the embedding is farther than δv from its cluster center.
The distance term (Ldist) serves to push the cluster centers away from each other. The push
force is only effective when the distance between these centers is closer than δd.
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3.3. Spatio-Temporal Attention Module

To effectively fuse the encoded features from a multi-frame, we propose a Spatial-
Temporal Attention Module (STAM) and insert it between the encoder and decoder.
The module extracts Channel Attention (CA) and Spatial Attention (SA) from previous
frames and applies them on the current frame for feature aggregation. According to the
different connection manner of the two attentions and their acting target frames, STAM can
be constructed by three modes, i.e., parallel, serial, and mixed mode, as shown in Figure 4.
We assume that the size of the input tensor is C× H×W, where C, H, W are the number of
elements along the channel, height, and width dimension, respectively.

(a)

(b)

(c)

Figure 4. Three configuration modes for Spatial-Temporal Attention Module (STAM). (a) Parallel
mode. (b) Serial mode. (c) The mixed mode.

In parallel mode, CA and SA respectively take the feature of previous frame Ft−i
as input to generate temporal and spatial attention map in a parallel manner. Then,
the two attention maps are multiplied to the feature of current frame Ft followed by
element-wise addition to produce the temporary fused feature Ft−i,t. The temporary
fused features generated by all of the previous frames are then further aggregated by
Ff use = ∑n−1

i=1 Ft−i,t, where n indicates the number of input frames. The second attention
fusion way is to successively aggregate the history frame in a serial mode. As shown
in Figure 4b, the feature of history frame Ft−i is firstly fed to CA, after applying the
resulting attention to Ft−i+1, the intermediate result is further input to SA to generate a
two-frame aggregated feature Ft−i,t−i+1. Then the result is regarded as input of the CA
of the next frame and the aggregation starts until the current frame is processed. Note
that the order of CA and SA is exchangeable. The third way is the mixed mode, where the
attention is applied between each pair of Ft−i and Ft serially, while the final aggregation
is implemented by summation just like in the parallel mode. The detailed experimental
studies for the different modes are conducted in Section 4.2.

The specific architectures of CA and SA in STAM are illustrated in Figure 5. As shown
in Figure 5a, the CA employs global average-pooling and global max-pooling to integrate
spatial information of input features. After being processed by a shared Multi-layer
Perception (MLP), the feature vectors are aggregated by element-wise summation to
generate a channel attention MC(i):

MC(i) = σ(MLP(MaxPool(Ft−i)) + MLP(AvgPool(Ft−i))), i = 1, 2, · · · , n− 1 (2)
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where σ indicates the sigmoid function and n is the number of continuous frames. For SA,
average-pooling and max-pooling operations are applied along the channel axis. The pooled
features are concatenated and transmitted to a standard convolution layer, producing a
spatial attention map MS(i) as:

MS(i) = σ( f 7×7([MaxPool(F
′
i ); AvgPool(F

′
i )])), i = 1, 2, · · · , n− 1 (3)

where f 7×7 denotes a convolution operation with a 7× 7 filter size.

(a) (b)

Figure 5. The detailed architectures of CA and SA in STAM. (a) Channel Attention (CA). (b) Spatial
Attention (SA).

3.4. Post-Processing

As we regard lane mark detection as an instance segmentation problem, the inference
of the arbitrary number of lane marks is allowed and lane changes can be handled. Since
the pixel embedding of the same lane mark has been assigned by the network, DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) [41] algorithm is applied
to determine the clustering category and form the unique lane mark instance. To get the
final detection result, precise coordinates of the lane mark have to be distilled from the
candidate areas. Here, we first sample lane points along the y axis for every 10 pixels, then
perform curve fitting for a simpler description of lane marks and filtering out the outliers.

4. Experiments
4.1. Experimental Setting
4.1.1. Datasets

To extensively evaluate the proposed method, we conduct experiments on two
datasets: Tusimple and ApolloScape. Both of the datasets provide image sequences for
training and testing.

Tusimple. TuSimple [36] is widely used in the existing works of lane mark detection.
It is collected on highway roads under nice weather conditions at different daytimes.
The images have a resolution of 1280× 720 and contain 2–5 lanes for detection. The dataset
consists of 3626 and 2782 image sequences for training and testing, respectively. Each
sequence comprises 20 continuous frames with only the last frame annotated by sampling
points. To construct the ground-truth binary and instance segmentation map for training,
we connect all of the annotated points together to form an intact curve per lane.

ApolloScape. ApolloScape [37] is a large scale dataset that is provided by Baidu
corporation. It contains seven different tasks for autonomous driving including lane
segmentation. For this task, a diverse set of stereo video sequences are recorded in ur-
ban traffic scenarios with high quality pixel-level annotations. The resolution of images
in ApolloScape is 3384× 2710. Since the Apolloscape lane dataset only provides pixel-
level semantic annotations without instance-level discrimination, and we only focus on
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detecting lane marks rather than recognizing all of the 35 categories in the dataset. We
selected 5519 frames and annotated them with sampling points interpolated by cubic spline.
For each training image, the previous 4 frames are provided for input without labeling.
The split dataset is divided into 3317 frames for training, 608 for validation, and 1595
for testing.

4.1.2. Implementation Details

Our model is implemented on Tensorflow [42] with GPU GTX 1080Ti. The network is
trained with an embedding dimension of 4 with δv = 0.5, δd = 3, α = 1, β = 1, γ = 0.001.
All images are rescaled to 512× 256 with nearest interpolation. During the training process,
we employ a SGD (Stochastic Gradient Descent) [43] optimizer with a base learning rate
of 5× 10−3, momentum of 0.9 and batch size of 4. A poly learning rate policy is used
with power 0.9 and maximal iteration 100 K. We also applied data augmentation including
random cropping, random horizontal flipping, and color augmentations.

4.1.3. Evaluation Criteria

For ablation studies and comparisons with other lane mark detection methods, differ-
ent metrics are adopted to evaluate the results on each particular dataset.

Tusimple. Here, we follow the official evaluation criteria [36]. The predicted lanes are
sampled by points with fixed intervals along the y axis. Predicted points whose distance to
the ground truth is less than 20 pixels are regarded as the correct points. The accuracy is
calculated as:

acc = ∑im
Cim
Sim

(4)

where Cim is the number of correct points and Sim is the total number of lane points in the
image. Lane marks with an accuracy greater than 85% are considered as True Positive (TP),
otherwise False Positive (FP) or False Negative (FN). The F1-measure is taken as the
primary evaluation metric, which is computed as:

F1 = 2× Precision× Recall
Precision + Recall

(5)

where Precision = TP
TP+FP , Recall = TP

TP+FN .
ApolloScape. While Tusimple uses distance metric, evaluation on ApolloScape refers

to the area-metric used in the CULane dataset [18]. Each lane marking is viewed as a
30-pixel-width line connecting the sampled lane points. We calculate the IoU (Intersection-
over-Union) [44] between the ground-truth and prediction. In lane-wise fashion, predicted
lane instance is counted as True Positive (TP) when its IoU is higher than a certain threshold.
We consider 0.3 and 0.5 thresholds corresponding to loose and strict evaluations for the
experiments on ApolloScape. The F1 score is also treated as the major evaluation metric,
which is defined as mentioned earlier.

4.2. Ablation Study

To verify our method, we will make comprehensive ablation studies on the Tusimple
dataset carried out in this section.

Effects of multi-frames. Firstly, we investigate the effectiveness of aggregating infor-
mation from multiple frames. As shown in Table 1, compared with a single frame baseline,
using multiple frames does help to increase the accuracy and reduce the wrong predictions.
It can be explained that multi-frame fusion brings richer information and enhances the
feature of current frame, which helps to improve the performance. Note that in the 2nd
row of Table 1, we also list the results of baseline equipped with the proposed STAM for
comparison. The results show that employing 4 frames can obtain the best performance
with a F1 score 3.51% higher than the original single-frame baseline. Although adopting
5 frames has a comparable accuracy with 4 frames, we empirically use 4 frames in our
method by considering the trade-off between the computing cost and performance.
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Table 1. Experimental results with the input of a different number of frames.

Frames F1 (%) Acc (%) 1 FP 2 FN 3

1 (w/o STAM) 93.30 95.14 0.0845 0.0488
1 94.65 95.29 0.0654 0.0413
2 96.41 96.12 0.0412 0.0306
3 96.40 96.12 0.0404 0.0315
4 96.81 96.20 0.0339 0.0299
5 96.44 96.26 0.0417 0.0294

1: Accuracy. 2: False Positive. 3: False Negative.

Effectiveness of each component. Here, we study the advantages of multi-frame pre-
alignment and the proposed STAM. The performance of each component is summarized in
Table 2. For the baseline, we take 4 frames as input without pre-alignment and directly fuse
the extracted multi-frame features together by an element-wise sum. To make comparison,
we perform multi-frame alignment and then replace element-wise sum with STAM step by
step. As the result shows, both the proposed modules can enhance the F1 metric, which
proves the capabilities of them.

Table 2. Experimental results for the designed components. The number of input frames is set 4.

Alignment STAM F1 (%) Acc (%) 1 FP 2 FN 3

95.41 95.53 0.0528 0.0390√
96.05 96.01 0.0460 0.0330√
96.22 96.22 0.0422 0.0333√ √
96.81 96.20 0.0339 0.0299

1: Accuracy. 2: False Positive. 3: False Negative.

Different modes of STAM. We further try STAM with different modes. As introduced
in Section 3.3, STAM has three modes, i.e., parallel, serial, and the mixed mode. Depending
on whether CA is placed in front of SA, the serial and mixed modes have two configurations:
“C-S” and “S-C”. The results of these modes are compared in Table 3. As we can see, for the
proposed STAM, the mixed mode with the C-S order is able to achieve the highest F1 score.

Table 3. Experimental results with different modes for STAM. The number of frames is 4 and
multi-frame pre-alignment is used.

Modes F1 (%) Acc (%) 1 FP 2 FN 3

Parallel 96.26 96.22 0.0441 0.0305
Serial (C-S) 96.38 96.19 0.0389 0.0336
Serial (S-C) 96.52 96.20 0.0377 0.0318
Mixed (S-C) 96.71 96.06 0.0359 0.0299
Mixed (C-S) 96.81 96.20 0.0339 0.0299

1: Accuracy. 2: False Positive. 3: False Negative.

Comparison with other aggregation strategies. To further verify the effectiveness of
STAM, we compare it with other aggregation strategies. The results are presented in Table 4.
In the first three rows, the features of multiple frames are aggregated respectively by simple
element-wise summation, a double-layer ConvLSTM(Convolutional Long Short-Term
Memory) [45] and a cosine-similarity-based weighted sum. The bottom three rows use
attention aggregation mechanisms. ST-DANet(Spatial-Temporal Dual Attention Network)
is based on DANet [46], using a pure matrix operation with softmax and two learnable
weighted coefficients. ST-PSA(Spatial-Temporal Polarized Self-attention) refers to the PSA
block [47], which employs convolution, pooling, and normalization operations to further
enhance the representation capacity along the channel and spatial dimension. It can be
discovered that using an attention mechanism could achieve higher F1 scores than other
methods, among which the proposed STAM works best.
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Table 4. Experimental results with different aggregation strategies. The number of frames is 4 and
multi-frame pre-alignment is used.

Aggregation Methods F1 (%) Acc (%) 1 FP 2 FN 3

Simple add 96.05 96.01 0.0460 0.0330
ConvLSTM [45] 96.21 96.06 0.0419 0.0339
Weighted sum 96.40 96.31 0.0434 0.0286

Attention

ST-DANet [46] 96.46 96.25 0.0398 0.0310
ST-PSA [47] 96.54 96.09 0.0357 0.0336
STAM (ours) 96.81 96.20 0.0339 0.0299

1: Accuracy. 2: False Positive. 3: False Negative.

In summary, we proved the effectiveness of using multiple frames, pre-alignment, and
the STAM. The ablation results also show that an input of 4 frames and using mixed mode
with the C-S order for STAM can achieve the best performance. Therefore, this setting is
kept for later evaluation on the Tusimple dataset.

4.3. Evaluation Results
4.3.1. Experiments on Tusimple

We compare our method with other existing lane mark detection methods on the
Tusimple dataset and the results are shown in Table 5. The highest rank is in bold and the
second one is underlined. Our method is able to achieve competitive performance in terms
of a high F1 value, which is very close to first place. Note that the proposed network is
trained from scratch without any pre-trained models or extra training datasets.

Table 5. Comparison with other state-of-the-art methods on the Tusimple dataset.

Methods Publications F1 (%) Acc (%) FP FN

LaneNet-HNet [17] IV2018 94.80 96.38 0.0780 0.0244

SCNN 1 [18] AAAI2018 95.97 96.53 0.0617 0.0180

EL-GAN 2 [19] ECCVW2018 96.26 94.90 0.0412 0.0336

FastDraw [23] CVPR2019 93.92 95.20 0.0760 0.0450

PointLaneNet [21] IV2019 95.07 96.34 0.0467 0.0518

ENet-SAD [20] ICCV2019 95.92 96.64 0.0602 0.0205

UFSA 3 [24] ECCV2020 88.02 95.86 0.1891 0.0375

PolyLaneNet [26] ICPR2020 90.62 93.36 0.0942 0.0933

E2E-LMD 4 [25] CVPRW2020 96.58 96.22 0.0308 0.0376

Line-CNN [22] TITS2020 96.79 96.87 0.0442 0.0197

Zou et al. [28] TVT2020 96.98 97.30 0.0416 0.0186

LaneATT-R18 [9] CVPR2021 96.71 95.57 0.0356 0.0301

LaneATT-R34 [9] CVPR2021 96.77 95.63 0.0353 0.0292

LaneATT-R122 [9] CVPR2021 96.06 96.10 0.0564 0.0217

Ours / 96.81 96.20 0.0339 0.0299
1: Spatial-CNN. 2: Embedding Loss-GAN. 3: Ultra Fast Structure-aware. 4: End-to-End Lane Marker Detection.

Figure 6 presents visual comparisons to the methods with lane instance segmentation
on the Tusimple dataset. It can be observed that our method has less wrong or missing
detection, reaching a better consistency with the ground-truth. Compared with those
single-frame-based methods, such as ENet [39], DenseNet [48], as well as our single-
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frame baseline, our segmentation results have a higher localization accuracy with thinner
lane contours centralizing on the true lane areas. It depresses the possibility of wrongly
predicting background pixels near the ground-truth as lane mark pixels, and reduces the
fuzzy adhesive region between adjacent lane marks. Besides, our method is robust to
segment the entire instance of lane marks when they are occluded by vehicles.

Figure 6. The visualization results of lane mark detection on the Tusimple dataset. We compare the
proposed method with ENet [39], DenseNet [48], and our single-frame baseline. The color of lane
marks is random, only for distinguishing different lane mark instances.

When comparing with the best RNN-based multi-frame method [28], our method
is able to overtake it in some challenging scenarios such as occluded lane marks caused
by vehicles, as shown in Figure 7. To further quantitatively compare the robustness of
our method and [28] under such cases, we selected 583 testing images with occlusion or
shadow in Tusimple datasets for evaluation. Since the public source code of [28] does
not provide instance segmentation among lanes, we added post-processing of instance
segmentation above it. As shown in Table 6, although the resulting performance for total
testing images is not as good as those published by the authors of [28], we only pay attention
to performance degradation caused by the challenging occlusion or shadow situations.
As shown in Table 6, when encounter challenging scenes, the performance of [28] decreases
more than our method. The results indicate that our method does have high robustness
under occlusion situations, thanks to the special design of the spatial-temporal fusion
of multi-frames.

Figure 7. Visual comparison with the best method [28] in the Tusimple benchmark under occlu-
sion situations.
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Table 6. Robustness comparison with the best method [28] in the Tusimple benchmark. The less the
∆F1 is, the higher robustness of the method. ? means reproduced results by using its source code.

Methods Testing Images Acc (%) 1 FP 2 FN 3 F1 (%) ∆F1 (%)

Zou et al. [28] ? total 95.84 0.0448 0.0446 95.53 /
Zou et al. [28] ? challenging 95.13 0.0904 0.0617 92.37 −3.16

Ours total 96.20 0.0339 0.0299 96.81 /
Ours challenging 95.37 0.0533 0.0483 94.92 −1.89

1: Accuracy. 2: False Positive. 3: False Negative.

4.3.2. Experiment on ApolloScape

To verify the effectiveness of the proposed method under urban environments, we
further test our method in the ApolloScape dataset. As far as we know, few performances
have been publicly reported on the ApolloScape Lane Segmentation dataset. Therefore, we
only demonstrate the ablation results of our own method.

Firstly, we investigate the effect of fusing a different number of frames. As shown
in Table 7, no matter how many frames are used, aggregating multiple frames works
better than detecting lane marks in a single frame. For the ApolloScape dataset, adopting
two frames can achieve optimal performance, with 3.87% and 5.02% gains on F1 scores
when the threshold of IoU is 0.5 and 0.3, respectively. As the number of frames increases,
the results tend to be worse. In comparison with the TuSimple dataset, a larger movement
exists between the acquired neighboring images in ApolloScape, which may cause less
correlations among the images.

Table 7. Experimental results of using a different number of frames.

IoU_tr Frames TP 1 FP 2 FN 3 Precision Recall F1 ∆F1

0.5 1 2436 1643 3778 0.5972 0.3920 0.4733 /
0.5 2 2751 1781 3463 0.6070 0.4427 0.5120 +3.87%
0.5 3 2647 1720 3567 0.6061 0.4260 0.5003 +2.70%
0.5 4 2601 1811 3613 0.5895 0.4186 0.4896 +1.63%

0.3 1 3303 776 2911 0.8098 0.5315 0.6418 /
0.3 2 3804 977 2410 0.7957 0.6122 0.6920 +5.02%
0.3 3 3676 901 2538 0.8032 0.5916 0.6813 +3.95%
0.3 4 3683 1020 2531 0.7831 0.5927 0.6747 +3.29%

1: Ture Positive. 2: False Positive. 3: False Negative.

For ApolloScape, we also evaluate the impact of each proposed component (one at
a time): Alignment of multiple frames and STAM. The ablation study results are shown
in Table 8. For baseline, unaligned frames are taken as input, whose features are simply
aggregated by element-wise sum. To verify the effects of the proposed modules step by
step, we first align the multiple frames and then insert the STAM. As we can see, no matter
which IoU threshold we adopt, both multi-frame alignment and STAM are beneficial to
improve performance.

The visualization results on ApolloScape are demonstrated in Figure 8. Compared
with the single-frame baseline, using multiple frames can better preserve the integrity and
continuity of lane marks. Besides, integrated with richer information of multiple frames,
our method shows strong robustness in challenging scenarios such as low illumination,
vehicle occlusion, heavy shadow, and curve lanes.
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Table 8. Effectiveness study results on ApolloScape. Here, the number of input frames is set 2.

IoU_tr Alignment STAM Precision Recall F1 ∆F1

0.5 0.5333 0.4223 0.4714 /
0.5

√
0.5762 0.4434 0.5012 +2.98%

0.5
√

0.5775 0.4276 0.4914 +2.00%
0.5

√ √
0.6070 0.4427 0.5120 +4.06%

0.3 0.7755 0.5687 0.6562 /
0.3

√
0.7957 0.5803 0.6712 +1.50%

0.3
√

0.7831 0.5927 0.6747 +1.85%
0.3

√ √
0.7957 0.6122 0.6920 +3.58%

Figure 8. The visualization of lane mark detection results on the ApolloScape dataset. The color of
lane marks is random, only for distinguishing different lane mark instances.

5. Conclusions

In this work, we performed lane mark detection using multiple frames of continuous
driving scenes rather than detecting the lane marks from one single image. With richer
information extracted from multiple continuous images, the proposed method could
achieve accurate and robust detection, despite serious vehicle occlusion, heavy shadow,s
and severe lane mark abrasion in some difficult conditions.

To better utilize the spatial and temporal information from multiple frames, the history
frames were pre-aligned with the current key frame before entering into the encoder-
decoder instance segmentation network. The sequential encoded features were attentively
aggregated using the proposed STAM, followed by the two-branch decoder and post-
processing to obtain the final lane mark predictions. In ablation studies, we verified the
advantage of using multiple frames and the effectiveness of each proposed component.
We also tried different modes of STAM and compared the STAM with other aggregating
methods.

The evaluation results demonstrated that our method could achieve state-of-the-art
performance, with higher F1 scores and fewer incorrect predictions than most of the
single-frame methods. Furthermore, the proposed method also worked better than other
multi-frame methods in some challenging scenarios, which shows stronger robustness.
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