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Significance for public health

With the increasing use of spatially explicit data in public health comes
uncertainty related to spatial resolution, data compatibility at different
scales, and appropriate model selection. Using soil-borne Valley fever, we
quantify how risk mapping changes by scale and provide advice on how to
assess and explore uncertainty within an analysis.

Abstract

Background. Valley fever is a fungal infection occurring in
desert regions of the U.S. and Central and South America.
Environmental risk mapping for this disease is hampered by chal-
lenges with detection, case reporting, and diagnostics as well as
challenges common to spatial data handling.

Design and Methods. Using 12,349 individual cases in
Arizona from 2006 to 2009, we analyzed risk factors at both the
individual and area levels.

Results. Risk factors including elderly population, income sta-
tus, soil organic carbon, and density of residential area were found
to be positively associated with residence of Valley fever cases. A
negative association was observed for distance to desert and pas-
ture/hay land cover. The association between incidence and two
land cover variables (shrub and cultivated crop lands) varied
depending on the spatial scale of the analysis.

Conclusions. The consistence of age, income, population den-
sity, and proximity to natural areas supports that these are impor-
tant predictors of Valley fever risk. However, the inconsistency of
the land cover variables across scales highlights the importance of
how scale is treated in risk mapping.

Introduction

Valley fever (VF) is a fungal infection caused by Coccidioides
species that grow in desert regions of the US and Central and
South America. Of cases reported to the US Centers for Disease
Control and Prevention, most were found to be in Arizona (64%)
and California (33%) (based on 1998-2014 data). In Arizona, 90
cases per 100,000 were reported in 2013 with an associated hospi-
talization cost of $53 million.! In the ten years between 2003 and
2013, VF incidence in Arizona nearly doubled,! but fine scale
(local) risk factors involved in the acquisition of this illness
remain unknown.?? The fungus grows in the arid soil of the US
southwest. Its growth likely follows a seasonal pattern where it
grows during the fall monsoon season and then forms arthroconi-
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dia and may become airborne through wind or mechanical distur-
bance.* Infection occurs when the aerosolized spore lodges in the
lung of humans and other mammals. While much is understood
about the VF pathology, delineating the spatial extent of VF risk
is hampered by challenges with detection of the pathogen in soil,
wide spectrum of disease, imperfect diagnostic tests, and changes
in case reporting.’

Much of the work utilizes the case residence for mapping
cases, which poses an additional problem of representing cases
based on where they live rather than where they may have been
exposed. This is in part because resources are limited to investi-
gate all cases for travel history during the 7-28 day incubation
period restricting the capacity to trace probably environmental
exposures. These residential point data are then matched to expo-
sure/risk variables such as zip-code level demographic data or, in
the US, Landsat level environmental data. In their analysis of VF
cases in Maricopa County, Arizona, Park et al.® standardized the
number of cases by zip-code level age-adjusted population density
in order to map the distribution of VF cases.

In addition, there are no methods to perform large scale soil
sampling for this fungus.? Despite the challenges to mapping the
fungus itself, soils associated with semiarid regions have been
shown to support Coccidioides growth and soil has been used to
map risk.”® Baptista-Rosas et al.® used a variety of climate and
topographical data (~1 km? spatial resolution) trained on 18 soil
sampling sites with 16 from California, and 1 each from Arizona
and Sonora, Mexico to map the ecological niche of Coccidioides
spp. in southern California, Arizona, and in Sonora Mexico. When
overlaid with a scanned map with an unknown resolution of VF
infections in Mexico from 1966,1° ecological niche models identi-
fied areas of increased risk. Others used Landsat TM (~25m? res-
olution) to map proxies,!! like construction and archeologic digs,
a known risk factor for VF because the disturbance of soil or air
may aerosolize the fungal spores.'?!3 Finally, rodent burrows have
been associated with Coccidioides growth and exposure where the
micro-climate created in burrows may help promote fungal
growth 231415

Until a more efficient method for detecting the fungus in soil
is developed, public health prevention messaging tailored to spe-
cific environmental risk areas will continue to be based primarily
on human case data. In this study, we evaluate social and environ-
mental risk factors associated with VF cases for the state of
Arizona. While this study contributes to the VF literature by
examining the spatial distribution of VF cases and the association
with a number of potential risk factors in a high risk state, we also
highlight how the uncertainty associated with spatial scale and
aggregation affects risk mapping. The VF dataset epitomizes the
issues associated with spatial scale in public health studies as it
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has been a common practice that health and demographic data are
aggregated to protect individual identity and the commonly uti-
lized supplemental environmental data are acquired from multiple
sources and at multiple scales. The aim of this study was to not
only evaluate risk factors, but to use the analysis as an example to
highlight the importance of addressing spatial scale in public
health.

Materials and Methods

Study area and Valley fever data

Arizona accounts for approximately two thirds of all reported
cases of VF in the U.S. Individual VF cases in Arizona from 2006
to 2009 provided by the Arizona Department of Health Services
(ADHS) were considered in this study. Approval from the
University of Arizona Institutional Review Board and the ADHS
Human Subjects Review Board was obtained to conduct analysis
of these surveillance data. During this time period the case defini-
tion used by Arizona, i.e., laboratory confirmation only, and diag-
nostic tools were consistent and, since 2006, the Health
Department has used MEDSIS for surveillance. In the middle of
2009, a major commercial laboratory began reporting positive
EIAs, which inflated the incidence of disease compared with pre-
vious reports). Furthermore, subsequent changes in reporting and
testing preclude the use of more recent data. The data contain
information on gender, age group (5 year intervals), date of diag-
nosis, and ethnicity. Because the ethnicity data were incomplete,
this information was not used for this analysis. Of the 19,816
reported cases, 13,940 (70.3%) had sufficient address information
to be successfully geocoded. Due to missing demographic data,
only 12,349 (62.3% of the total reported) individuals were includ-
ed in our analysis (Figure 1). When aggregated, the analysis
included 4178 Census block groups, 1526 Census tracts, and 348
zip codes.

Pseudo-absence data were generated for controls using the
block group because it is the smallest Census unit containing
socioeconomic information. The number of pseudo-absences per
block group were generated as a proportion to the population in the
block group where, for block group i, the number of pseudo-
absences was N#/T, where N is the total number of pseudo-
absences to be generated, #is the population in block group 7, and
T is the total population in the study area. We generated 50,000
pseudo-absences with a random distribution for better model reli-
ability.'¢ Locations in block groups with no population or missing
data were eliminated yielding 45,460 pseudo-individuals with
attributes assigned.

Predictor variables: Data were extracted at the point level and
at aggregations of block group, tract and zip code. The three areal
units represent the geographic scale commonly adopted by
researchers and public health practitioners for risking mapping
given that other socioeconomic data are often available at these
scales.

Because of high incidence rates among elderly individuals,!”
we expected a positive association between age and cases.
Demographic data included the 2010 decennial data from the U.S.
Census Bureau (population, age distribution and income). In the
VF case data set, because age was reported in 5-year groups, the
median value of the age group was assigned to each individual. For
areal units, population over 65 was calculated based on the Census
age group data by summing the population over all age groups over
65. Socioeconomic factors have been found to be associated for
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many other health outcomes and specifically with the development
of severe pulmonary coccidioidomycosis.!$!° As no income infor-
mation was reported for cases, income was interpolated based on
the distribution of income groups at the block group level for each
individual’s residence. Median income data at the block group or
tract level were available, but had to be interpolated using block
group data for the zip code level.

Using raster data from the Gridded Soil Survey Geographic
conducted by USDA,2% we extracted the attributes of soil organic
carbon (SOC) and available water storage (AWS). Generally, the
fungus is associated with dry desert soils.2! However, recovery of
the fungus from those soils tend to be associated with rodent bur-
rows or other more humid loci with higher organic content
areas.2-2223 For the areal analysis, the SOC and AWS value of an
area is defined as the mean value of all raster cells within the geo-
graphic unit. For the individual level analysis, the soil property
was derived based on an individual’s residential site. For the aggre-
gated analyses, soil property data in a study unit were averaged
using observations (10 x 10 m resolution) falling within the unit.

Coccidioides species are not typically associated with cultivat-
ed land cover.?! To assess land cover, five land cover types (medi-
um density residential area, high density residential area,
shrub/scrub, pasture/hay and cultivated crops) at 30 by 30 m reso-
Iution were extracted from the National Land Cover Database
2006.24 These data were categorical variables and for the individ-
ual level analysis, class was assigned based on the location of res-
idence. For the aggregated analyses, each land cover variable was
calculated as the percentage of the particular land cover relative to
the entire unit.

Distance to desert (shrub-brush rangeland in USGS classifica-
tion)?* was calculated using shapefiles from the USGS.2¢ Distance
was measured from an individual’s residence to the nearest desert
identified in the shapefile. For the aggregated analyses, distance
was measured from a unit’s centroid to the nearest desert identified
in the shape file.

Figure 1. Valley fever cases in Arizona rasterized to protect privacy.
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In addition to land cover above, we calculated distance to
water which has been associated with burrows in an arid region.?’
In Arizona, while waterways may be dry for most of the year, they
serve as wildlife thoroughfares and represent more natural habitat
within a city. Distance to wetland (km) was measured from an indi-
vidual’s residence or from the aggregation unit’s centroid to the
nearest wetland identified in the US Fish and Wildlife shapefile.?8

Analysis details

We conducted the analysis at individual and area (block group,
tract and zip code) levels to assess how scale influences predictors
of VF incidence. At the individual level, a logistic regression
model was built to examine the individual-based risk factors, while
the Poisson distribution was found to be appropriate for modeling
the observed cases at each of the three aggregation scales.
Predictors included age (or total population over 65 for aggregated
analysis within the uniform populations of Census units), soil
property (i.e., SOC and AWS), land cover types (or percent in unit
for aggregated analysis), distance to wetland, distance to desert,
and income level. All predictor variables were included in the final
models to map VF incidence. The incidence calculated by the pre-
dict function in R was mapped using ArcGIS. Choropleth maps
with five categories were generated to show the predicted value
and the 95% confidence interval of the regressions.

Results

Regression results

While eight variables were found to have a consistent associa-
tion with VF cases across the scales of analysis and are factors
found to be associated with VF incidence in the literature, three
were inconsistent across scale (Table 1). Distance to wetland was
significant at the block group and tract levels, but not at the indi-
vidual and zip code levels. Although regression results at the tract
level and zip code level indicated a significant positive association
with shrub/scrub land cover, results at the block group level were
not significant and the association was negative at the individual
level analysis. Similarly, while area-based analysis results suggest-

ed a positive association between cultivated crops and VF cases,
results at the individual level revealed an opposite association.

While certain variables were found to vary more at a coarser
scale with a higher level aggregation (e.g., distance to wetland),
some variables (e.g., median income) demonstrated a smoothing
effect at larger scales with smaller variation (Table 2). Some other
variables (e.g., distance to desert and soil organic carbon) showed
inconsistent variation across the spatial scales. Although the five
land cover types computed using three aggregation schemes pro-
vide a similar amount of overall coverage of the entire study area
(about 80% at the block group level and the tract level and 77% at
the zip code level), the greater aggregation to the zip code exhibit-
ed much variation among these land covers. For example, among
the five land covers, medium/high density residential areas on
average account for 69% at the block group level and 61% at the
tract level but a much smaller percentage, 28%, at the zip code
level, with shrub/scrub as it’s effective reciprocal (25%, 31%, and
65% respectively) .

In addition to the land cover variables where spatial uncertain-
ty with great variation is inherently embedded in the spatial aggre-
gation process due to change of analysis scale, uncertainty was
also introduced when the distance variables were created, with the
average decreasing at coarser analysis scales. For the two distance
variables examined in this study, the maximum distance to wetland
decreased from 24 km at the block group level to 2 km at the zip
code level, and the maximum distance to desert reduced from 39
km at the block group level to 17 km at the zip code level.

Implications of scale

Using the coefficient weightings identified for the model at
each scale (Table 1), we mapped expected VF incidences across
the three area-based aggregation scales, a) block group, b) tract,
and c) zip code (Figure 2, expected VF cases per 1000 people). The
foci — darker colors indicating greater number of cases per popula-
tion — move in space depending upon the level of aggregation. The
error associated with these scales is also presented (Figure 3) by
mapping the width of 95% confidence intervals around the inci-
dence estimates. These error maps show that the error differs
across scales and the analysis at the largest scale, the zip code level
(Figure 3C), tends to give high error at more locations and in more
northerly areas where endemicity is less established.

Table 1. Regression coefficients based on the four different analysis scales.

Intercept -1.64%** 0.19%* 0.19* -0.19
Population (1000) 0.20%** 0.12%** 0.03%**
Population over 65 (1000)/Age over 65 0.96%** 0.96%** 0.47%** 0.17%**
Median income ($10,000) 0.02%*% 0.07*** 0.10%** 0.02%**
Distance to wetland (km) -0.01 -0.07*** -0.05%** -0.01
Distance to desert (km) -0.01%** 0.07x** -0.05%** -0.04%**
Soil organic carbon -3 ATE-05+** -9.35E-05%** -9.62E-05%** -4.9TE-05+**
Available water storage 1.50E-04%** 2.55E-03*** 2.19E-03*** 2.28E-03***
Medium density residential area 0.62%** 0.68%** L15%** 2.56%**
High density residential area 0.67*** (st 0.967*** 2.24%**
Shrub/scrub -0.91%** 0.12 0.38%** 1.53%**
Pasture/hay -1L1T** 6.71%** -1.69%** 1.97H**
Cultivated crops -0.69*** 0.28** 0.47%* 1.85%**

***Significant at 0.001 level; **significant at 0.01 level; *significant at 0.05.

OPEN 8ACCESS

[Journal of Public Health Research 2017; 6:]

[page 95]



e <

area (high/medium density) and pasture/hay, and distance to desert
Discussion were found (Table 2). The positive association with elderly is con-
sistent with previous research!” as elderly in Arizona may be more
susceptible because of length of residency/immigration (Phoenix
and Tucson hosting a large number of retirement communities) or
compromised immune systems. The positive association with

Across analytic scales, consistent associations with the number
of reported VF cases and risk factors including proportion elderly,
income status, the two soil properties, the land covers of residential

0 % 50 100 Miles
T T T - |

CASE / 1000 people * year
I

Figure 2. Predictive model of Valley fever incidence (per 1000) at A) census block group, B) census track, and C) zip code. Darker colors
indicate higher incidence.

Table 2. Descriptive statistics summary.

Case 12349 Mean 3.09 8.46 36.97
St. dev 3.50 8.36 49.97
Population 1000 people Mean 1.55 425 18.42
St. dev 0.84 1.82 1741
Population over 65 (1,000 people) (areal)/age over 65 (individual) 9777 Mean 0.23 0.61 2.66
St. dev 0.24 0.58 3.00
Median income (10000 dollars) 6.88 (5.56) Mean 5.36 5.30 3.71
St. dev 2.87 2.54 2.12
Distance to wetland (km) 1.26 (1.58) Mean 0.58 0.31 0.03
St. dev 1.88 2.14 3.50
Distance to desert (km) 4.63 (3.79) Mean 1.62 1.18 0.33
St. dev 429 3.99 531
Soil organic carbon (g) 3795.7 (2574.5) Mean 370.0 373.0 378.0
St. dev 1977.9 1768.3 2024.9
Available water storage (mm) 193.0 (87.15) Mean 176.6 175.6 140.61
St. dev 7157 70.61 60.07
Medium density residential area 16782 Mean (%) 0.27 0.25 0.11
St. dev 0.17 0.16 0.14
High density residential area 17047 Mean (%) 0.28 0.24 0.11
St. dev 0.21 0.20 0.16
Shrub/scrub 10382 Mean (%) 0.20 0.25 0.50
St. dev 0.28 0.30 0.34
Pasture/hay 128 Mean (%) 0.003 0.003 0.005
St. dev 0.020 0.015 0.016
Cultivaed crops 3226 Mean (%) 0.049 0.062 0.050
St. dev 0.150 0.158 0.122
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income level might not necessarily mean that people with higher
income are more likely to contract VF rather a bias may exist in the
reported cases considering the associated access to and ability to
pay for healthcare. That is, when symptomatic, people with lower
income level have been found to be more likely to delay health
care (and for the VF disease, the symptom generally resolve within
weeks) due to the cost concern.?’

The associations with certain land cover types identified (e.g.,
residential), soil properties, and proximity to desert were consis-
tent with the previous research with respect to desert soil types
supporting the fungal growth,223% as well as places were soil dis-
turbance has been associated with exposures.®!213 The negative
correlation between soil organic carbon and the VF cases may be
indicative that this predictor is capturing the soil type that supports
Coccidioides species rather than the association with rodent bur-
rows where the fungus has been more often recovered.??!-23 Some
studies found a significant association with the timing of precipita-
tion and growth of Coccidioides,*?! the amount of water and
organic carbon in soil supports fungal competitors which may
impede Coccidioides species growth.!'> The positive association
with medium and high density residential land cover may relate to
case attribution: patient’s home addresses, which are mostly locat-
ed in residential areas. The consistent predictors identified across
the state as well as multiple spatial scales lend additional support
to these as environmental risk factors for VF.

The inconsistent association of VF cases with possible risk fac-
tors of two land cover types (shrub/scrub and cultivated crops) and
distance to wetland suggests the existence of biased and/or ineffi-
cient estimates when analysis scale changes. In light of the lack of
methods for field recovery of specimens and reporting changes
associated with surveillance for VF, the issues with scale of analy-
sis further complicate public health risk messaging and attempts at
quantifying the association between VF incidence and weather.3!
Moreover, this finding highlights the importance of considering
scale when interpreting spatial risk or when comparing between
studies conducted at multiple scales.

While it is challenging to identify the mechanism behind how
spatial scale affects analysis results, the somewhat contradicting
results at the area level with several predictors highlight problems

associated with scale and aggregation.3233 The kind of data used
here, especially distance/proximity based evaluation of potential
environmental exposure are one of the most common spatial meth-
ods in public health studies.>* Our study suggests that the spatial
uncertainty introduced in the modeling process may relate to the
scale of the spatial units used to compute distances.

In addition to uncertainties due to spatial scale, other uncer-
tainty may be associated with exposure site in deriving the risk fac-
tors or the accuracy of the available environmental data to capture
the biological processes being explained. Similar to many other
public health studies, variables included in the model are simply
proxies of the potential exposure. For example, the distance to
desert variable (measured from an individual’s home) was used to
approximate the possibility and frequency of an individual visiting
desert where the exposure may occur or that they might be exposed
to blown spores at the home. An improvement may come from data
on time spent outdoors, which has been shown to be an important
risk factor in childhood lead exposure.’® Alternatively, error may
also arrive from utilizing national databases to describe local phe-
nomena. For example, the shrub/scrub classification for Arizona
encompasses the Sonoran Desert of the south as well as the
Colorado Plateau in the northeast. Failing to construct an appropri-
ate exposure measurement can lead to systematic bias.3%37 A more
accurate way to model the risk factors or identify potential expo-
sure sites would be to derive an individual’s activity space with the
associated time duration and then evaluate its overlay with the
potential risk factors of soil, desert, water or various land covers.
However, deriving such activity space can be challenging given
our limited knowledge on how each individual moves in space-
time. An integration of travel diary data,’® geotagged social media
data, or GPS data appears promising in more accurately delineat-
ing one’s exposure territory.

Conclusions

In this study, we explored the association of VF cases with a
range of socioeconomic and environmental variables and analyzed
the potential spatial scale related uncertainty. Our findings support

Figure 3. Width of the 95% Confidence interval maps for Valley fever incidence at each scale (A) census block group, B) census track,

and C) zip code). Darker colors indicate wider confidence intervals.
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other work indicating social factors of age and income as well as
environmental factors associated with increased risk of VF inci-
dence. However, we also found inconsistent associations across
spatial scales for certain variables. Potential issues associated with
spatial data alignment and variable construction at alternative
scales were discussed. The analysis highlights both the signifi-
cance of uncertainty with respect to spatial data manipulation and
how that is compounded when we have limited exposure data to
correct or train the models.

While there is no consensus as to which scale should be adopt-
ed in a public health study or how to select an optimal scale, com-
paring across scales for consistency and being aware of the impli-
cations of choosing a given scale will affect the effectiveness of
public health interventions on populations at risk. In the absence of
a global solution, evaluating associations at multiple scales, espe-
cially for spatially explicit variables or factors that vary signifi-
cantly in space, may help to identify factors with greater uncertain-
ty if the direction of the association changes across spatial scales.
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