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Abstract 

Background: Drug repositioning, the strategy of unveiling novel targets of existing drugs could reduce costs and 
accelerate the pace of drug development. To elucidate the novel molecular mechanism of known drugs, consider-
ing the long time and high cost of experimental determination, the efficient and feasible computational methods to 
predict the potential associations between drugs and targets are of great aid.

Methods: A novel calculation model for drug-target interaction (DTI) prediction based on network representation 
learning and convolutional neural networks, called DLDTI, was generated. The proposed approach simultaneously 
fused the topology of complex networks and diverse information from heterogeneous data sources, and coped with 
the noisy, incomplete, and high-dimensional nature of large-scale biological data by learning the low-dimensional 
and rich depth features of drugs and proteins. The low-dimensional feature vectors were used to train DLDTI to obtain 
the optimal mapping space and to infer new DTIs by ranking candidates according to their proximity to the optimal 
mapping space. More specifically, based on the results from the DLDTI, we experimentally validated the predicted 
targets of tetramethylpyrazine (TMPZ) on atherosclerosis progression in vivo.

Results: The experimental results showed that the DLDTI model achieved promising performance under fivefold 
cross-validations with AUC values of 0.9172, which was higher than the methods using different classifiers or different 
feature combination methods mentioned in this paper. For the validation study of TMPZ on atherosclerosis, a total of 
288 targets were identified and 190 of them were involved in platelet activation. The pathway analysis indicated sign-
aling pathways, namely PI3K/Akt, cAMP and calcium pathways might be the potential targets. Effects and molecular 
mechanism of TMPZ on atherosclerosis were experimentally confirmed in animal models.

Conclusions: DLDTI model can serve as a useful tool to provide promising DTI candidates for experimental valida-
tion. Based on the predicted results of DLDTI model, we found TMPZ could attenuate atherosclerosis by inhibiting 
signal transductions in platelets. The source code and datasets explored in this work are available at https ://githu 
b.com/CUMTz ackGi t/DLDTI .
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Background
Research on drug development is becoming increasingly 
expensive, while the number of newly approved drugs 
per year remains quite low [1, 2]. In contrast to the clas-
sical hypothesis of “one gene, one drug, one disease”, 
drug repositioning aims to identify new characteristics 
of existing drugs [3]. Considering the available data on 
safety of already-licensed drugs, this approach could be 
advantageous compared with traditional drug discovery, 
which involves extensive preclinical and clinical studies 
[4]. Currently, a number of existing drugs have been suc-
cessfully tuned to the new requirements. Methotrexate, 
an original cancer therapy, has been used for the treat-
ment of rheumatoid arthritis and psoriasis for decades 
[5]. Galanthamine, an acetylcholinesterase inhibitor for 
treating paralysis, has been approved for Alzheimer’s dis-
ease [6].

Besides the evidence based on biological experiments 
and clinical trials, computational methods could facili-
tate high-throughput identification of novel target pro-
teins of known drugs. To discover targets of drugs with 
known chemical structures, the prediction of drug-target 
interaction (DTI) based on numerous computational 
approaches have provided an alternative to costly and 
time-consuming experimental approaches [7]. In the past 
years, DTI prediction has bolstered the identification of 
putative new targets of existing drugs [8]. For instance, 
the computational pipeline predicted that telmisartan, 
an angiotensin II receptor antagonist, had the potential 
of inhibiting cyclooxygenase. In  vitro experimental evi-
dence also validated the predicted targets of this known 
drug [9]. Further, combined with in silico prediction, 
in vitro validation and animal phenotype model demon-
strated that, topotecan, a topoisomerase inhibitor also 
had the potential to act as a direct inhibitor of human 
retinoic-acid-receptor-related orphan receptor-gamma t 
(ROR-γt) [10].

Most existing prediction methods mainly extract 
information from complex networks. Bleakley et al. [11] 
proposed a support vector machine-based method for 
identifying DTI based on bipartite local model (BLM). 
Mei et al. [12] proposed BLMNII method for predicting 
DTIs based on the bipartite local model and neighbor-
based interaction-profile inference. In addition, some 
researchers adopted kernelized Bayesian matrix factori-
zation to predict DTIs, called KBMF2K [13]. A key step 
of KBMF2K is utilizing dimensional reduction, matrix 
factorization, and binary classification. Although homog-
enous network-based derivation methods have achieved 
good results, they are less effective in low-connectivity 
(degree) drugs for known target networks. The intro-
duction of heterogeneous information can provide more 
perspective for predicting the potential of DTI. Recently, 

Luo et  al. proposed a heterogeneous network-based 
unsupervised method for computing the interaction 
score between drugs and targets, called DTInet [9]. Sub-
sequently, they proposed a neural network-based method 
[14] for improving the prediction performance of DTI. 
Effective integration of large-scale heterogeneous data 
sources is crucial in academia and industry.

Tetramethylpyrazine (TMPZ) is a member of pyrazines 
derived from Rhizoma Chuanxiong [15]. According to a 
recent review, TMPZ could attenuate atherosclerosis by 
suppressing lipid accumulation in macrophages [16], alle-
viation of lipid metabolism disorder [17], and attenuation 
of oxidative stress [18]. However, since atherosclerosis is 
a chronic illness involving multiple cells and cytokines 
[19], besides lipoprotein metabolism and oxidative stress, 
other possible targets of TMPZ on atherosclerosis remain 
unexplored.

In this study, a novel model for prediction of DTI 
based on network representation learning and convolu-
tional neural networks, referred to as DLDTI is presented 
for in silico identification of target proteins of known 
drugs. New DTIs were inferred by integrating drug- and 
protein-related multiple networks, to demonstrate the 
DLDTI’s ability of integrating heterogeneous information 
and neural networks to extract deep features of drugs 
and target networks as well as attributes to effectively 
improve prediction accuracy. Moreover, comprehensive 
testing demonstrated that DLDTI could achieve sub-
stantial improvements in performance over other predic-
tion methods. Based on the results predicted by DTDTI, 
new interactions between TMPZ and targets involved in 
atherosclerosis, namely signal transduction in platelets, 
were validated in vivo. The anti-atherosclerosis effect of 
TMPZ was confirmed in a novel atherosclerosis model. 
In summary, these improvements could advance studies 
on drug-target interaction.

Methods
Prediction experiments
Human drug‑target interactions database
In this study, we use the DrugBank established by 
Wishart et  al. as the benchmark dataset, which can be 
downloaded at https ://www.drugb ank.ca [20]. The chem-
ical structure of each drug in SMILES format is extracted 
from and extracted from DrugBank. In the experiments, 
only those that satisfied the human target represented by 
a unique EnsemblProt login number were used. In detail, 
904 drugs and 613 unique human targets (proteins) were 
linked to construct a DTI network A as positive samples, 
and a matching number of unknown drug-target pairs 
(by excluding all known DTIs) were randomly selected as 
negative samples. The labels of training set and testing set 
are binary label.

https://www.drugbank.ca
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Feature representation
Gaussian interaction profile kernel similarity for  drugs 
and  targets On the basis of previous work, drug simi-
larity can be measured by calculating nuclear similarity 
through Gaussian interaction profile (GIP) kernel similar-
ity [21, 22]. The GIP similarity between drug di and drug 
dj is defined as follow:

where the binary vector V (di) and V
(

dj
)

 is the i-th row 
vector and the j-th row vector of the drug-target inter-
action network A . The parameter τd is the kernel band-
width. It computes by normalizing original parameter τ ′d:

Similarly, the GIP similarity for targets can be defined 
as follows:

where the binary vector V (pi) and V
(

pj
)

 is the i-th row 
vector and the j-th column vector of the drug-target 
interaction network A . The parameter τp is the kernel 
bandwidth. It computes by normalizing original param-
eter τ ′p:

Protein sequence feature The sequences for drug tar-
gets (proteins) in Homo sapiens downloaded from the 
String database ( https ://strin g-db.org/) [24]. The k-mer 
algorithm is used to count Subsequence information in 
protein sequences and uses it as a feature vector to solve 
the alignment problem posed by differences in sequence 
length [24].

Drug structure feature The SMILES for drugs down-
loaded from the DrugBank database. We use Morgan 
fingerprint, a circular fingerprint, to map the structure 
information of drugs to feature vectors.

Graph embedding-based feature for  drugs and  tar-
gets Graph data is rich in behavioral information 
about nodes, and behavioral information can be used 
as a descriptor to describe drugs and targets that can 
be more comprehensive description of the characteris-
tics [25]. So how do we map a high-dimensional dense 
matrix like graph data to a low-density vector? Here 
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we introduce the Graph Factorization algorithm [26]. 
Graph factorization (GF) is a method for graph embed-
ding with time complexity O(|E|). To obtain the embed-
ding, GF factorizes the adjacency matrix of the graph to 
minimize the loss functions as follow:

where � is the regularization coefficient. P and Q are the 
adjacency matrix with weights and factor matrix, respec-
tively. E is the set of edges, which includes i and j.

The gradient of the function ε with respect to Qi is 
defined as follow:

where No is the set of neighbors of node o . With the 
Graph Factorization algorithm, graph embeddings of 
drugs and targets in the drug-target interaction network 
can be obtained to describe their behavioral information.

Stacked autoencoder
As DLDTI integrates heterogeneous data from multiple 
sources, including protein sequence information, drug 
structure information, and drug-target interaction net-
work information, the integrated biological data suffers 
from noise, incomplete and high-dimensional. Here, the 
stack autoencoder (SAE) is introduced to find the opti-
mal mapping of drug space to target space to obtain low 
dimensional drug Feature vector [27, 28]. SAE can be 
defined as follows:

where y and z are encoding function and decoding func-
tion respectively. W  and W ′ are the relational parameters 
between two layers. b and b′ are vectors of bias param-
eters. The activation function used is ReLU:

Convolutional neural network
Lecun et  al. proposed convolutional neural networks in 
1989 [29]. Subsequently, they have performed well in 
tasks such as image classification, sentence classification, 
and biological data analysis. Thus, in this study, convo-
lutional neural networks were used to train supervised 
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learning models to predict potential DTIs. In this work, 
convolutional neural networks were chosen as supervised 
learning models to learn deep features and predict poten-
tial DTIs. The model used includes convolutional and 
activation layers, a Maxpooling layer, a fully connected 
layer and a softmax layer. Their roles are, respectively, to 
extract depth features, down-sample, and classify sam-
ples. The convolutional layer is one of the most important 
parts of the CNN and aims to learn the deep characteris-
tics of the input vectors, which is defined as follows

where X is the input feature of lengthL . Nk is the num-
ber of kernels.m ∈ {0, ..., L− N } , W is a weight vector of 
lengthNk . Then, the feature map Cm is put into the activa-
tion function ReLU, which is defined as follow:

The role of the ReLU function is to increase the nonlin-
ear relationship between the layers of the neural network, 
save computation, solve the gradient disappearance prob-
lem, and reduce the interdependence of parameters to 
mitigate the overfitting problem.

The convolutional and maximum pooling layers can 
extract important features from the input vectors. The 
output of all kernels is then concatenated into a vector 
and fed to the fully-connected layer f

(

W · y
)

 . Where y 
is the output of Maxpooling layer and W  is the weight 
matrix. Finally, the softmax layer scores the input vectors 
as a percentage.

Pathway analysis of predicted results from DLDTI
Atherosclerosis-related gene sets were collected from 
GeneCards (https ://www.genec ards.org/) [30]. After 
using retrieve tool on Uniprot database (https ://www.
unipr ot.org/), different identifiers from Drug Bank and 
GeneCards were converted to UniProtKB. Based the 
intersection of potential targets of TMPZ from DLDTI 
model and confirmed target proteins of atherosclerosis, 
the matched targets were regarded as the predicted tar-
gets of TMPZ on atherosclerosis. The predicted targets 
were uploaded to the Search Tool for the Retrieval of 
Interacting Genes/Proteins database (STRING, Version 
11) (https ://strin g-db.org/) [23] for Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway and Gene 
Ontology (GO) biological process analysis.

Validation experiments
Ldlr−/− hamsters
This study was approved by the Animal Ethics Com-
mittee of Xiyuan Hospital and strictly adhered to the 

(10)Cm =

Nk
∑

i=1

WiXm+j

(11)f (x) = max(0, x)

principles of laboratory animal care (NIH publication 
No.85Y23, revised 1996). Male, 8  week aged and low-
density lipoprotein receptor knock-out (Ldlr−/−) ham-
sters were provided by the health science center, Peking 
University. The Ldlr−/− genotype was confirmed using 
polymerase chain reaction (PCR) analysis of DNA 
extracts from ears [31]. After 1 week of acclimatization, 
they were fed on high-cholesterol and high-fat (HCHF) 
diet containing 15% lard and 0.5% cholesterol (Biotech 
company, China) for 8  weeks. The Ldlr−/− hamsters 
were then randomly divided into three groups accord-
ing to their weights (n = 8 per group) and orally admin-
istered with a mixture of volume vehicle (distilled water), 
TMPZ (32 mg/kg/d) and clopidogrel (32 mg/kg/d) drugs 
for 8  weeks. Wild type (WT) golden Syrian hamsters 
(n = 8) purchased from Vital River Laboratory (Charles 
River, Beijing, China) were fed on a standard chow diet as 
healthy control. All hamsters were maintained on a 12 h 
light/12 h dark cycle with free access to water.

Hamsters were fasted for 12  h and anesthetized by 
intraperitoneal injection of 1% sodium phenobarbital 
(70  mg/kg). Blood samples were taken from abdominal 
aortas and plasma was separated by centrifugation for 
10  min at 2700 × g. TC, TG and HDL were determined 
using commercially available kits (BIOSINO, China).

Oil red O staining
As described previously [32], anesthetized hamsters 
were perfused with 0.01 M PBS through the left ventri-
cle. In brief, hearts and whole aortas were placed in 4% 
paraformaldehyde solution overnight, transferred to 20% 
sucrose solution for 1 week. Hearts were then fixed into 
O.C.T compound and cross-sectioned (8  μm per slice). 
The atherosclerotic lesions in aortic root were stained 
with 0.3% Oil red O solution (Solarbio, China), rinsed 
with 60% isopropanol and distilled water and counter-
stained with hematoxylin. The results were represented 
by the percentage positive area of total area (en face anal-
ysis) and net lesion area (aortic root sections). Images 
were analyzed with Image J [33].

Histological analysis
Analysis of atherosclerotic plaque cell composition was 
determined by immunohistochemistry (IHC) analysis of 
the aortic root. Macrophages and smooth muscle cells 
(SMC) were stained with CD68 (BOSTER, BA36381:100) 
antibody and a-SMA antibody (BOSTER, A03744, 1:100) 
as reported previously in hamster researches [31]. Then 
biotinylated second antibody (Vector Laboratories, ABC 
Vectastain, 1:200) were used for incubation under 2% 
normal blocking serum. The cryosections were visualized 
using 3,3-diaminobenzidine (Vector Laboratories, DAB 

https://www.genecards.org/
https://www.uniprot.org/
https://www.uniprot.org/
https://string-db.org/
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Vectastain). The results were represented by the percent-
age positive area of total cross-sectional vessel wall area 
in the aortic root sections and analyzed using Image J 
[33].

Washed platelet preparation
Blood per hamster, 3 to 4 mL was collected from abdomi-
nal aortas into a tube containing an acid-citrate-dextrose 
anticoagulant (83.2 mM D-glucose, 85 mM trisodium cit-
rate dihydrate, 19  mM citric acid monohydrate, pH5.5). 
Platelet-rich plasma (PRP) was prepared after centrifu-
gation at 300 × g for 10  min in room temperature. For 
washed platelet preparation, PRP was centrifuged at 
1500 × g for 2  min. After collecting supernatant con-
sisting of platelet-poor plasma into another centrifuge 
tube, the remaining PRP was washing three times, and 
the pellet was re-suspended in a modified Tyrode buffer 
(2.4  mM HEPES, 6.1  mM D-glucose, 137  mM NaCl, 
12 mM HaHCO3, 2.6 mM KCl, pH7.4).

Assessment of platelet activity
Washed platelets were loaded with fura-2/AM(5  μM, 
Molecular Probe) in the presence of Pluronic F-127 
(0.2  μg/mL, Molecular Probe) and then incubated at 
37 °C for 1 h in the dark [34]. Platelets were washed and 
re-suspended in Tyrode buffer containing 1 mM calcium. 
After activation of ADP (20 μM, Sigma), intracellular cal-
cium concentration was measured using a fluorescence 
mode of Synergy H1 microplate reader (Biotek, USA). 
Excitation wavelengths was alternated at 340 and 380 nm. 
Excitation was measured at 510  nm. TritonX-100 and 
EGTA were used for calibration of maximal and minimal 
calcium concentrations, respectively. Washed platelets 
were activated by ADP and then lysed by 0.1 M HCl on 
ice. According to the manufacturer’s instructions, the 
level of intracellular cAMP was determined by ELISA 
(Enzo Life Sciences, ADI-900-066).

Western blot analysis
Washed platelets from each group were lysed with radi-
oimmunoprecipitation assay buffer with the presence 
of protease and phosphatase inhibitor mixtures on ice 
(Solarbio, China). Lysates were separated by 10,000 × g 
centrifugation for 10  min at 4  °C. Total protein con-
centrations were determined by BCA method. Equal 
amounts of total protein (40  μg) were resolved in SDS-
PAGE and electroblotted. The nitrocellulose membranes 
were blocked with 5% skimmed milk at room tempera-
ture for 2 h and incubated with primary antibodies tar-
geting PI3K(CST, 4257 T, 1:500), Akt(CST, 9272, 1:2000), 
p-Akt(CST,2965,1:1000) and GADPH (Abcam, ab8245, 
1:5000) overnight at 4  °C. The membranes were then 
incubated with the HRP-conjugated anti-rabbit antibody 

for 1  h at 37  °C, followed by enhanced chemilumines-
cence detection.

Statistical analysis
All data were expressed as mean ± standard error. Shapiro-
Wild test and Levene’s test were used for normality of data 
distribution and homogeneity of variances, respectively. 
An unpaired student’s t-test were used to compare data 
in different groups when data normally distributed and 
variances were equal among groups. Unpaired t test with 
Welch’s correction were used when unequal standard devi-
ation among groups. Mann–Whitney test were used for 
nonparametric test. All p values less than 0.05 were con-
sidered statistically significant. All statistical analyses were 
performed using GraphPad Prism 8.0 (GraphPad, United 
states).

Results
Overview of DLDTI and performance evaluation 
on predicting drug‑target interaction
A new computational model referred to as DLDTI was 
developed to predict potential DTIs to identify novel 
behavior of traditional drugs based on complex networks 
and heterogeneous information. As an overview (Fig.  1), 
DLDTI integrates learning from complex network’s various 
heterogeneous information to obtain low-dimensional and 
deep rich features (Fig.  2), through a processing method 
known as compact feature learning. During compact fea-
ture learning, the resulting low-dimensional descriptor 
integrates attribute characteristics, interaction information, 
relational properties, and network topology of each pro-
tein or target node in the complex network. DLDTI then 
determines the optimal mapping from the plenary map-
ping space to the prediction subspace, and whether the fea-
ture vector is close to the known correlations. Afterwards, 
DLDTI infers the new DTIs by ranking the DTI candidates 
according to their proximity to the predicted subspace.

DLDTI yields accurate DTI prediction. Firstly, the pre-
dictive performance of DLDTI was assessed using five-fold 
cross-validation, where randomly selected subset of one-
fifth of the validated DTI were paired with an equal number 
of randomly sampled non-interacting pairs to derive the 
test set. The remaining 75% of known DTI and same num-
ber of randomly sampled non-interacting pairs were used 
to train the model. DLDTI was compared with three meth-
ods based on different classifiers used for DTI prediction, 
including DTI-ADA, DTI-KNN, and DTI-RF [35–37]. The 
comparison revealed that DLDTI consistently outperforms 
the other three methods, with 0.93% higher AUC, 3.55% 
higher AUPR, 0.61% higher accuracy (Acc), 3.96% higher 
precision (Pre) than the second-best method (Fig.  3c–e). 
Compared to DTI-ADA (which predicts DTI based on the 
AdaBoost classifier), the DLDTI of the area under AUROC 
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and AUPR was 6.96 and 7.81% higher, respectively, which 
could have been due to the inability of traditional machine 
learning to extract deeper abstract features for prediction, 
resulting in poor performance, while DLDTI applies a 
deep convolutional neural network approach and is able to 
capture the potential structural properties of complex net-
works and heterogeneous information.

Enrichment analysis suggested TMPZ might affect signal 
transduction pathways involved in platelet activation
To elucidate the potential function of TMPZ on athero-
sclerosis, the predicted results from DLDTI model were 
uploaded to the search tool for retrieval of interacting 
genes/proteins database (STRING) to determine over-
represented KEGG pathways and GO categories. GO 
analysis demonstrated that 31.4% of genes were involved 
in signal transduction (Additional file  1: Table  S1). As 
shown in Table 1, PI3K/Akt signaling pathway, neuroac-
tive ligand-receptor interaction, MAPK signaling path-
way, calcium signaling pathway, Rap1 signaling pathway, 
cGMP-PKG signaling pathway, and cAMP signaling 
pathway were the top-ranked results of KEGG enrich-
ment. It is noteworthy that ADP-mediated platelet acti-
vation via purinergic receptors included almost all signal 
transduction pathways shown in Table  1 [38, 39]. Inter-
estingly, among the 288 predicted targets of TMPZ on 
atherosclerosis, 190 proteins were also involved in the 
platelet activation process (Additional file  2: Table  S2). 
Therefore, it was assumed that the anti-atherosclerosis 
potential of TMPZ could be largely attributed to its inhi-
bition of purinergic receptor-dependent platelet activa-
tion, which involves signal transduction pathways such as 
PI3K/Akt. Based on the predicted result, clopidogrel, an 
anti-platelet drug widely used in the clinical application, 
was chosen as the positive control.

Validation
Ldlr−/− hamsters developed severe hyperlipidemia 
and atherosclerosis lesions when fed with HFHC diet
Before dietary induction, genotypes were determined 
by PCR analysis. Using ear genomic DNA, 194-nucleo-
tide deletion (Δ194) was detected in homozygous (−/−) 
hamsters (Fig. 4a). After feeding them on HCHF diet for 
16  weeks, Ldlr−/− hamsters developed severe hyper-
lipidemia. As an antiplatelet medication, clopidogrel 
did not influence circulating levels of TC, TG, HDL and 

non-HDL (Fig.  4b–e). Compared with vehicle-treated 
hamsters, decreased levels of TC (p < 0.05) and non-HDL 
(p < 0.05) were observed in TMPZ-treated group (Fig. 4b 
and d). However, TMPZ did not influence TG or HDL 
levels.

TMPZ ameliorated atherosclerosis lesion progression
The en face analysis demonstrated that vehicle-treated 
hamsters developed significant atherosclerotic lesions 
(mean value 28.38%) throughout the whole aorta. How-
ever, atherosclerotic lesions induced by the same die-
tary manipulation in TMPZ- and clopidogrel-treated 
groups were significantly decreased (mean value 10.02% 
and mean value 17.47%, respectively) (Fig.  5a, b). It’s 
noteworthy that the lesion area in TMPZ-treated group 
was also less than that in clopidogrel-treated group 
(Fig. 5b). As the blank control group, WT hamsters on 
chow diet did not develop any lesions throughout the 
aorta.

Similar to the en face analysis, the HFHC fed vehicle 
group had significantly increased lesion areas (mean 
area 29.58 × 104  μm2) in aortic roots compared to the 
blank controls measured by image analysis of Oil Red O 
staining, and either TMPZ (mean area 13.25 × 104 μm2) 
or clopidogrel (mean area 16.99 × 104  μm2) treatment 
reduced the lipid-rich areas (Fig. 5c, d).

Under the stimulation of adhesion molecules, mono-
cytes infiltrate into the intima and differentiate into 
macrophages [40]. Besides macrophage accumulation, 
diminished SMC could also exacerbate the formation of 
unstable plaques [41]. To determine the components of 
atherosclerosis lesions in the aortic root, IHC staining 
for macrophages and SMC was performed. As shown in 
Fig. 5e, f, the percentage of macrophage positive staining 
in lesions was increased by atherosclerosis progression in 
the vehicle-treated group. WT group (mean value 1.48%) 
had significantly fewer macrophage accumulation than 
vehicle-treated group (mean value 6.65%). Infiltrated 
macrophages in lesions were significantly decreased by 
TMPZ (mean value 2.52%) or clopidogrel (mean value 
3.07%) treatment. As shown in Fig. 5 g,  h, the percentage 
of a-SMA positive staining was diminished in Ldlr−/− 
hamsters (mean value 9.27%) compared with the WT 
hamsters (mean value 16.76%). Administration TMPZ 
(mean value 16.50%) or clopidogrel (mean value 16.09%) 

Fig. 1 The flowchart of the DLDTI pipeline. DLDTI first integrates a variety of drug-related information sources to construct a heterogeneous 
network and applies a compact feature learning algorithm to obtain a low-dimensional vector representation of the features describing the 
topological properties for each node. Next, DLDTI determines the optimal mapping from the plenary mapping space to the prediction subspace, 
and whether the feature vector is close to the known correlations. Afterwards, DLDTI infers the new DTIs by ranking the candidates according to 
their proximity to the predicted subspace

(See figure on next page.)



Page 7 of 15Zhao et al. J Transl Med          (2020) 18:434  



Page 8 of 15Zhao et al. J Transl Med          (2020) 18:434 

for 8  weeks could ameliorate SMC reduction in athero-
sclerosis lesions.

TMPZ inhibited signaling transduction in ADP‑mediated 
platelet activation
In addition to the surrogates of platelet activation, cal-
cium and cAMP signaling are also essential in signal 
transduction. Downstream from Gq signaling, protein 
kinase C activation results in the formation of inositol 
triphosphate, which leads to an elevation of intracellu-
lar calcium [38]. Calcium mobilization is also required 
for the phosphorylation of Akt (also known as protein 
kinase B) in PI3K/Akt signaling pathway [42]. In response 
to ADP, Gi signaling activation mediates the inhibition of 
AC, resulting in the diminished synthesis of cAMP. The 
inhibitory effect of Gi on cAMP synthesis could cause 
platelet activation [39].

Figure  6 shows that fura-2/AM is a membrane-per-
meant calcium indicator. The ratio of F340/F380 is 
directly correlated to the amount of intracellular calcium. 
The data revealed that TMPZ and clopidogrel markedly 
inhibited calcium mobilization, as detected using fluores-
cence mode of Synergy H1 microplate reader. Moreover, 
TMPZ-and clopidogrel-treated groups showed a higher 
concentration of cAMP in the active platelets. These find-
ings indicate that TMPZ and clopidogrel could inhibit 
calcium mobilization and elevate intracellular concentra-
tion of cAMP, thereby inhibiting platelet activation.

As the major downstream effector of PI3K, Akt plays 
an essential role in the regulation of platelet activation. 
Stimulation of platelets with ADP could result in Akt 
activation, which was indicated by Akt phosphorylation 
[42]. The protein expressions of PI3K, Akt, and p-Akt 
in the top-ranked signal transduction pathway were 

Fig. 3 Performance of DLDTI. a ROC curves performed by DLDTI model on DrugBank dataset. b PR curves performed by DLDTI model on DrugBank 
dataset. c Performance comparison (AUC scores) among four different prediction model which are DTI-ADA, DTI-KNN, and DTI-RF. d Performance 
comparison (AUPR scores) among four different prediction models including DTI-ADA, DTI-KNN, and DTI-RF. e Performance comparison (Acc., F1, 
Pre., Rec. scores) among DTI-ADA, DTI-KNN, and DTI-RF prediction models

(See figure on next page.)

Fig. 2 Schematic illustration of compact feature learning. The Node2Vec algorithm is firstly used to calculate the topology information in complex 
networks. GIP kernel similarity and drug structure information are then extracted by a stacked automatic encoder, and the heterogeneous 
information is integrated to obtain a low-dimensional representation of the feature vector of each node. The resulting low-dimensional descriptor 
integrates the attribute characteristics, interaction information, relationship attributes and network topology of each protein or target node in the 
complex network



Page 9 of 15Zhao et al. J Transl Med          (2020) 18:434  



Page 10 of 15Zhao et al. J Transl Med          (2020) 18:434 

measured to validate the predicted pathways. ADP-
induced P2Y12 receptor activation could cause PI3K 
dependent Akt phosphorylation, a critical positive regu-
lator pathway for signal amplification. There was no dif-
ference in PI3K expression levels between WT, vehicle, 
TMPZ, and clopidogrel groups (Fig. 6c). Phosphorylation 
of Akt was inhibited by TMPZ or clopidogrel adminis-
tration when compared with vehicle-treated group. It 
is noteworthy that phosphorylation of Akt did not dif-
fer between WT, TMPZ and clopidogrel groups, which 
indicates that platelet activity in atherosclerosis hamsters 
treated with TMPZ or clopidogrel could be comparable 
to that in healthy ones (Fig. 6d). These findings indicate 
that TMPZ and clopidogrel could attenuate Akt signal-
ing, thereby blocking the platelet activation induced by 
ADP.

Discussion
In summary, we provide a novel DTI model and validate 
its efficacy in animal model. This DLDTI model could 
provide an alternate to the high-throughput screening 
of drug targets. The proposed approach simultaneously 
fuses the topology of complex networks and diverse 
information from heterogeneous data sources, and copes 
with the noisy, incomplete, and high-dimensional nature 
of large-scale biological data by learning the low-dimen-
sional and rich depth features of drugs and proteins. The 
low-dimensional descriptors learned by DLDTI that 
capture attribute characteristics, interaction informa-
tion, relational properties, and network topology attrib-
utes for each drug or target node in a complex network. 
The low-dimensional feature vectors were used to train 
DLDTI to obtain the optimal mapping space and to infer 

new DTIs by ranking potential DTIs according to their 
proximity to the optimal mapping space. We inferred 
new DTIs by integrating drug- and protein-related multi-
ple networks, demonstrating the DLDTI’s ability to inte-
grate heterogeneous information and that deep neural 
networks are capable of extracting drug and target net-
works and the deep features of attributes can effectively 
improve the prediction accuracy. Compared with three 
methods based on different classifiers used for DTI pre-
diction, including DTI-ADA, DTI-KNN, and DTI-RF 
[35–37], DLDTI consistently outperforms the other three 
methods. More importantly, compared to DTI-ADA, 
the AUROC and AUPR of DLDTI was 6.96% and 7.81% 
higher. This result could be attributed to the inability of 
traditional machine learning to extract deeper abstract 
features for prediction, resulting in poor performance, 
while DLDTI applies a deep convolutional neural net-
work approach and is able to capture the potential struc-
tural properties of complex networks and heterogeneous 
information.

Furthermore, in the validation study of the DLDTI 
model, we used TMPZ (a drug with known structure) 
to explore its effects on atherosclerosis in vivo. Consist-
ent with previous studies [16–18], the results revealed 
that TMPZ could ameliorate the phenotyping of ath-
erosclerosis in Ldlr−/− hamsters, a novel atheroscle-
rosis model [31, 43]. Diminished lipid deposition and 
macrophage accumulation, and increased percentage of 
SMC were observed in TMPZ- and clopidogrel-treated 
hamsters. Interestingly, the majority of potential path-
ways of TMPZ on atherosclerosis were involved in 
signal transduction of platelet activation. From the 
initial endothelial dysfunction in the early stage to 

Table 1 KEGG pathway enrichment analysis of DLDTI results

Class KEGG term Count P value

Signal transduction PI3K-Akt signaling pathway 36 2.49E−17

Neuroactive ligand-receptor interaction 32 6.04E−17

MAPK signaling pathway 29 1.08E−13

Calcium signaling pathway 26 1.01E−15

Rap1 signaling pathway 22 2.99E−11

cGMP-PKG signaling pathway 20 2.99E−11

cAMP signaling pathway 16 3.83E−07

Metabolism Metabolism of xenobiotics by cytochrome P450 23 4.27E−20

Steroid hormone biosynthesis 17 1.28E−14

Retinol metabolism 15 5.89E−12

Immune system Complement and coagulation cascades 21 3.06E−17

Th17 cell differentiation 15 1.77E−09

Others Regulation of actin cytoskeleton 16 6.90E-07

Gap junction 15 2.74E-10

Fluid shear stress and atherosclerosis 15 2.91E-08
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the destabilized plaques in the advanced stage, plate-
let plays a pivotal role [44]. Activated platelets act as 
the key trigger for rupture-prone plaque formation. 
Current evidence shows that platelet hyperactivity is 
associated with a prothrombotic state and increased 
incidence of recurrent cardiovascular events among 
patients with coronary artery disease [45]. Platelets can 
be activated by various stimuli like collagen, thrombin, 
and ADP. Based on the pathway analysis of predicted 

results, this work focused on signal transduction in 
ADP-mediated platelet activation (Table 1). The results 
revealed that the activated signal transductions, char-
acterized by increased calcium mobilization, decreased 
cAMP concentration and increased phosphorylation 
of Akt were observed in ex  vivo platelets from vehi-
cle-treated hamsters, while platelets from TMPZ- and 
clopidogrel-treated hamsters showed inhibited platelet 
activation.

Fig. 4 Genotyping and lipid parameters between different groups. a PCR analysis was performed using ear genomic DNA from WT (+ / +) and 
homozygote (− / −) with the Δ194 deletion. The concentrations of plasma TC b, HDL (c), non-HDL (d) and TG (e) were measured in WT, vehicle, 
TMPZ and clodipogrel groups at the endpoint of this experiment. Differences were assessed by unpaired student’s t-test or Mann–Whitney test. 
*p < 0.05 vs Vehicle, **p < 0.01 vs Vehicle. ##p < 0.01 vs WT
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A future direction of our study is to solve the “cold-
start” problem, which is a challenge that all algorithms 
that apply collaborative filtering technology will face. In 
this paper, the feature vectors with the highest ranked 

protein or drug are weighted, based on the similarity of 
protein sequences and the similarity of drug structures, 
to obtain new interaction feature vectors to solve the 
cold start problem. After experiments, we found that the 

Fig. 5 Histological analysis. a Representative images of en face analysis. n = 6. b Quantitative analysis of lesion areas in whole aortas. Differences 
were assessed by unpaired students’ t-test. c Representative images of Oil Red O staining of aortic root sections. d Quantitative analysis of lesion 
areas in aortic root sections. e Representative images of macrophage (CD68) analysis (b) Quantitative analysis of lesions area in macrophage 
analysis. f Representative images of SMC (SMA) analysis (g) Quantitative analysis of lesions area in SMC. Differences were assessed by unpaired 
students’ t-test. *p < 0.05 vs Vehicle, **p < 0.01 vs Vehicle. #p < 0.05 vs clopidogrel. Scale bar = 250 μm. n = 3.
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model works best when the feature vector of the highest 
ranked protein or drug is weighted by 60, 30, and 10%. 
Without adverse event databases inserted, although our 
prediction model is particularly helpful for understand-
ing the unknown pharmacological effects of drugs with 
known chemical structures, it could offer little help to 
tell reported DTIs would be beneficial or harmful. As 
reviewed previously, drug adverse effects are compli-
cated phenomena. It might be difficult to predict adverse 
effects, only relying on the information of DTIs [46]. The 
more promising way is to use pharmacological informa-
tion such as drug side effects and adverse drug reactions. 
We will consider using multi-task model algorithms and 
adverse event databases to solve this problem in future 
work.

In addition, in the validation study, we only exam-
ined the top-ranked pathways of signal transduction 
involved in platelet activation, although reduced TC and 

non-HDL levels and diminished macrophage accumula-
tion in lesions are also observed. These effects might also 
contribute to the diminishment of total lesions area as 
revealed by Oil Red O staining of this study.

Conclusion
The current study proposes a learning-based frame-
work called DLDTI for identifying the association of 
drug targets. The structural characteristics of drug and 
the characteristics of the protein properties were firstly 
extracted. An automatic encoder-based model was then 
proposed for feature selection. Using this feature repre-
sentation, a convolutional neural network architecture 
was proposed for predicting the DTI. The advantages 
of DLDTI were demonstrated by comparing it with 
three different methods. Experiments on DTI showed 
that the performance of DLDTI was better than that of 

Fig. 6 Signaling transduction in ADP-mediated platelet activation. a Intracellular calcium concentration. b Intracellular cAMP concentration. 
Western blot analyses of the expression of PI3K (c), Akt (d) and p-Akt (d). Differences were assessed by unpaired student’s t-test with or without 
Welch’s corrections. **p < 0.01 vs Vehicle, *p < 0.05 vs Vehicle. n = 4–6
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the alternative method, which shows that the proposed 
learning-based framework was properly designed. Con-
sistent with predicted results, the effects and molecular 
mechanism of TMPZ on atherosclerosis were experi-
mentally confirmed in a novel animal model. With 
the source code and datasets available at https ://githu 
b.com/CUMTz ackGi t/DLDTI , we hope this efficient 
and feasible computational methods to predict the 
potential associations between drugs and targets might 
be of great aid.
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