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A B S T R A C T   

Glioma is the most common primary malignant tumor in the brain, characterizing by high 
disability rate and high recurrence rate. Although low-grade glioma (LGG) has a relative benign 
biological behavior, the prognosis of LGG patients still varies greatly. Glioma stem cells (GSCs) 
are considered as the chief offenders of glioma cell proliferation, invasion and resistance to 
therapies. Our study screened a series of glioma stem cell-related genes (GSCRG) based on 
mDNAsi and WCGNA, and finally established a reliable single-gene prognostic model through 101 
combinations of 10 machine learning methods. Our result suggested that the expression level of 
TNFAIP6 is negatively correlated with the prognosis of LGG patients, which may be the result of 
pro-cancer signaling pathways activation and immunosuppression. In general, this study revealed 
that TNFAIP6 is a robust and valuable prognostic factor in LGG, and may be a new target for LGG 
treatment.   

1. Introduction 

Gliomas, derived from neuroepithelial cells, are the most common malignant tumor of the central nervous system. They can be 
classified into four grades, and grade II and III gliomas were generally defined as LGG [1,2]. The incidence rate of LGG accounts for 
20–30 % in adult with the median survival time of 5.6–13.3 years, which depends on the growth rate of the tumor, histopathological 
characteristics and the molecular phenotype [3–6]. Although significant progress has been made in recent years in the glioma, the 
long-term survival rate is still poor [7–9]. Therefore, it is urgent to probe out more meaningful prognostic monitoring indicators and 
determine novel effective treatment strategies for glioma. 

Cancer stem cells, namely a kind of cells with high reproductive potential and self-renewal ability in cancer, have been discovered 
in various cancers and highly express embryonic or tissue stem cell genes [10]. The cancer stem cells play an important role in tumors 
genesis, development, invasion, metastasis, recurrence and drug resistance [11–13]. GSCs also have the same general characteristics as 
mention above, and they characteristically express a series of stem cells-related markers, such as CD133, CD44, and so on; among 
which CD133 is one of the most reliable markers [14–17]. Studies have found that GSCs have strong resistibility to exogenous DNA 
damage, and can reconstruct tumors microenvironment after treatment, therefore leading to therapy resistance and tumor recurrence 
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[18,19]. 
Stem cell index (si) was firstly be proposed by Malta et al. and has been widely used to assess the similarity between cancer cells and 

stem cells [20]. According to Malta et al.‘s study, the mDNAsi score can more accurately reflect the stem cell levels in glioma samples 
[20], and therefore, it was chosen as the key evaluation index of glioma stemness in this study. 

This research identified a set of GSCRGs by evaluating the mDNAsi of each LGG samples and conducting WCGNA analysis. Finally, 
TNFAIP6 was identified as the most valuable prognostic GSCRG and a robust prognostic model was established. The results of 
immunohistochemistry further verified the accuracy of the results. 

2. Materials and methods 

2.1. Data sources 

The DNA methylation data, RNA sequencing data and corresponding clinical information of 477 LGG patients were obtained from 
the Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov). The RNA sequencing data and corresponding clinical information of 
3 validation cohorts were obtained from Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/). Specifically, 431 LGG 
samples (CGGA-1) from CGGA mRNAseq-693 dataset, 172 LGG samples (CGGA-2) from CGGA mRNAseq-325 dataset, 170 LGG 
samples (CGGA-3) from CGGA mRNA-array-301 dataset. The TPM data from TCGA was transform to log 2 (TPM+1) for susquent 
analysis. 

2.2. Evaluation of glioma cell stemness 

The mDNAsi score was calculated base on the DNA methylation data of each sample and standardized according to Malta et al.‘s 
study [20]. The higher stemness level the samples have, the higher mDNAsi they score. According to the median of mDNAsi score, the 
selected LGG samples were grouped into high- and low-stem cell index groups, and their overall survival were analyzed. 

2.3. Identification of GSCRGs 

WGCNA is executed using the “WGCNA” R package. Genes that are highly correlated were classified into the same module. The 
module that had the strongest correlation with the sample trait was defined as interested module for subsequent analysis. Genes in 
interested module that are strongly corrlated with the mDNAsi were finally identified by setting the threshold of gene significance (GS) 
value > 0.5 as well as module membership (MM) value > 0.8 [21]. 

2.4. Machine learning algorithms establish prognosis-related GSCRGs 

In order to establish reliable predictive features, 101 different models were developed based on 10 excellent machine learning 
algorithms, including “Lasso, generalized boosted modeling regression (GBM), survival support vector machine (survival-SVM), elastic 
network (Enet), ridge, stepwise Cox, CoxBoost. Partial least squares regression for Cox (plsRcox), random survival forest (RSF) and 
supervised principal component (SuperPC) methods”. The TCGA dataset is used as the training cohort, and three CGGA datasets are 
used as the verification cohorts. We set nodesize as 15, ntree as 1000 and applied Random Seed in machine learning. 

The Harrell Consistency Index (C-index) of each model was calculated in the training and verification cohorts. The average C-index 
of the three independent verification queues is calculated, and the model with the highest average C-index is defined as the most 
valuable model. The risk score (RS) was established using the RSF algorithm (the same as the most valuable model). 

2.5. Survival analysis 

Kaplan-Meier (K-M) survival analysis was used to evaluate the prognosis by R package “survival”. The survfit function of R software 
package “survival” was used to analyze the prognostic between different groups. The log-rank test method was used to evaluate the 
statistical significance [22]. 

2.6. Operating characteristic curve (ROC) analysis of TNFAIP6 

Time-dependent ROC analysis was performed using the “timeROC” R package to display the practice value of TNFAIP6 in pre-
dicting 1-, 2-, 3-, 4-, and 5- overall survival (OS). Visualize the data using the ‘ggplot 2’ R package [23]. 

2.7. The immune microenvironment of LGG in different TNFAIP6 expression groups 

The “ESTIMATE” R package and the single sample gene set enrichment analysis (ssGSEA) were used to calculate the infiltration 
scores of 28 immune-related cells of each sample [24]. The immune score and stromal score of each sample were also calculated. 
Wilcoxon rank sum test was used to evaluate the statistical significance between two TNFAIP6 expression group. The association 
between TNFAIP6 expression and immune checkpoints of each sample was also analyzed. 
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2.8. Functional analysis 

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Hallmarks and Gene set enrichment analysis (GSEA) 
were performed using R “clusterProfiler” package [25]. Protein-protein interaction (PPI) analysis was conducted on STRING (https:// 
cn.string-db.org/) and visualized by cytoscape (version 3.7.0). 

2.9. Immunohistochemistry 

Immunohistochemical (IHC) staining was performed on 18 LGG paraffin sections obtained from 9 LGG samples (3 grade III gliomas 
and 6 grade II gliomas), which was authorized by the Ethics Committee of Zhujiang Hospital of Southern Medical University. The 
sections were incubated with primary antibodies against CD133 (rabbit, 1:400; YT5192; Immunoway, America), and TNFAIP6 (rabbit, 
1:200; AF5492; Affinity, America). The lHC score was calculated by two experienced pathologists. The samples were divided into two 
groups according to the median CD133 IHC score. 

2.10. Statistical analysis 

All statistical analyses were performed using R software (version 4.3.1). The hazard ratio was employed to reflect the effect of genes 
on prognosis. When HR larger than 1.00, the relative gene is considered as a risk factor. The Wilcoxon rank sum test was used to test the 
statistical significance between two groups. Correlation analysis was performed using spearman correlation analysis. P < 0.05 indi-
cated statistical significance (p < 0.05*; p < 0.01**; p < 0.001***). 

3. Results 

3.1. Relationship between mDNAsi and the prognosis of LGG patients 

The mDNAsi were calculated to evaluate the stem cell levels of each samples and the result suggested that grade III glioma had 
higher stemness level than grade II glioma, which is consistent with the known fact. Then, all the TCGA samples were grouped into 
high- and low-stem cell index groups according to the median of mDNAsi score. K-M curve demonstrated that mDNAsi is negatively 
correlated with the prognosis of LGG patients, that is, patients in high-stem cell index group suffered from significantly poorer 
prognosis than those in stem cell index group (Fig. 1A and B). 

3.2. The identification of GSCRGs by WCGNA 

Based on the established gene co-expression network, WCGNA was applied to identified genes that are most correlated with 
mDNAsi. 14 modules were obtained, and among all the modules, the pink module displayed the closest relationship with mDNAsi (cor 
= 0.73, p = 1e− 91), which was chose for subsequent analyses. Finally, by setting the GS and MM values (cor. gene MM > 0.8 and cor. 
gene GS > 0.5), 103 genes were identified as the GSCRGs (Fig. 2A–C). 

3.3. Functional enrichment analysis of GSCRGs 

GO analysis showed that in cellular components (CC), 103 GSCRGs were mainly enriched in endomembrane system and vesicle 
(Fig. 3A). In biological processes (BP), the GSCRGs were mainly enriched in processes such as establishment of localization, trans-
portation and cellular response to chemical (Fig. 3B). In molecular function (MF), the GSCRGs were mainly enriched in the activities of 
signaling receptor binding, enzyme regulator activity and structural molecule activity (Fig. 3C). Hallmark pathway analysis showed 
that the GCSRGs were mainly concentrated in angiogenesis, apoptosis, cholesterol homeostasis, coagulation and inflammatory 

Fig. 1. Survival analysis based on mDNAsi 
(A): The mDNAsi level in different grade LGG; (B): Kaplan-Meier curve of OS between high- and low-score groups. 
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response pathways (Fig. 3D); while KEGG pathway analysis showed that the GCSRGs were mainly concentrated in hippo signaling 
pathway, ferroptosis, valine, leucine and isoleucine metabolism, arachidonic acid metabolis and leukocyte transendothelial migration 
process (Fig. 3E). 

3.4. Prognostic GSCRGs signature establishment 

The Univariate Cox regression analysis was conducted to pre-screen the potential prognostic GSCRGs, and 95 prognostic GSCRGs 
were identified (Supplemental Table 1). 10 outstanding machine learning algorithms were conducted, and among 101 different 
combination models, the model established by RSF algorithm displayed the highest C-index in the TCGA training cohorts. Moreover, 
only one valuable prognostic GSCRG was identified by RSF algorithms, which is TNFAIP6. The RS of the model was also calculated 
using the RSF algorithm based on the expression levels of TNFAIP6. Reverse validation presented that TNFAIP6 expression is positively 
correlated with mDNAsi (Supplemental Fig. 1). K-M curves were conducted in all the cohorts, whose result revealed that high-RS 
subgroup suffered from significantly poorer prognosis than low-RS subgroup (Fig. 4A–E). 

Time-dependent ROC curves were conduct to evaluate the prognostic value of TNFAIP6. Results of ROC curves of 1-, 2-, 3-, 4-, and 
5-year OS in TCGA dataset (AUC values, 0.96, 0.97, 0.98, 0.97, 0.97, respectively), CGGA-1 dataset (AUC values, 0.76, 0.81, 0.80, 0.79, 
0.75, respectively), CGGA-2 dataset (AUC values, 0.79, 0.82, 0.84, 0.84, 0.84, respectively), and CGGA-3 dataset (AUC values, 0.78, 
0.79, 0.78, 0.74, 0.73, respectively). all supported the excellent performance of the TNFAIP6 in evaluating prognosis (Fig. 4F–I). 

3.5. TNFAIP6 affects LGG immune microenvironment 

Tumor immune microenvironment (TIME) of each LGG sample was evaluated in order to explore the possible reason how TNFAIP6 
affect the prognosis. Obviously, the expression level of TNFAIP6 is positively correlated with immune score and stromal score. Strong 
positive correlations were also observed between TNFAIP6 expression level and classical immune checkpoints, such as PD-L1, PD-1, 
CTLA4 and so on. Similarly, results also demonstrated that high-RS group suffered from severer immune infiltration. MeTIL analysis 
also demonstrated that high-RS group suffered from severer infiltration of tumor infiltrating lymphocytes (Fig. 5). 

3.6. Functional effects of TNFAIP6 on LGG 

GSEA was applied to presented some most differential enriched pathway between two RS groups (Fig. 6A–D). Results demonstrated 

Fig. 2. WCGNA was used to identify genes related to LGG stemness 
(A): The cluster dendrogram of WGCNA; (B): The clustered modules of WGCNA; (C): Identification of GSCRGs in the MEpink module. 
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that intercellular interaction pathways, cell adhesion-related pathways, classic pro-cancer pathways, inflammation signaling pathway 
and immunology signaling pathway were all enriched in high TNFAIP6 expression group, which indicated that LGG of high TNFAIP6 
expression group had more malignant biological behavioral characteristics. PPI network revealed the top 50 proteins that are closely 
related to TNFAIP6, which included CD44, a novel glioma stem cell marker, and some kinds of inflammatory factors, such as IL-1B and 
IL-6, and so on (Fig. 6E). 

3.7. Expression level of TNFAIP6 in different stemness groups 

CD133 is a widely acknowledged GSCs marker, therefore, we divided ther Zhujiang cohort into high- and low-stemness groups 
based on the expression levels of CD133. According to the median pathology score of CD133, 5 samples were included in the low- 
stemness group, and 4 samples were classified into high-stemness group. The results displayed that the expression level of 
TNFAIP6 has strong correlation with CD133 (cor. = 0.74, p < 0.02) (Fig. 7A–C). 

4. Discussion 

LGG accounts for about 43.2 % of gliomas, and the prognosis of patients varies greatly [26,27]. Some patients may experience the 
same extremely short survival time as glioblastoma patients, while others may luckily achieve clinical cure, which may due to the 
heterogeneity of the glioma itself [28–30]. Because GSCs have the characteristics of proliferation, differentiation, and drug resistance, 
they are thought to be the main responsible for the heterogeneity [15,31,32]. Therefore, further exploration of more specific GSC 
markers and potential therapeutic targets is the priority in current research. 

Based on the above description, this study is aiming to explore the potential impact of GSCRGs on the prognosis of LGG patients and 
to establish a robust prognosis prediction model. We used mDNAsi and WCGNA to identify the GSCRGs, and 10 machine learning 
algorithms was applied to establish a robust and stable prognosis prediction model. Finally, the result suggested that the model 
constructed by RSF algorithms is the most valuable one, no matter in training cohort or in validation cohorts. Notably, only TNFAIP6 
was included in this high-value prognostic model. Both survival analysis and time-depend ROC analysis display the excellent per-
formance of TNFAIP6 in evaluating prognosis. 

TNFAIP6 (aliases: TSG-6) was firstly discovered in 1990 by Lee et al. [33], which was subsequently found to be a secreted protein 
composed of 260 amino acids [34]. As a kind of secreted protein, TNFAIP6 has been shown to be associated with cell stemness. It can 

Fig. 3. Functional analysis of 103 GSCRGs 
(A): GO analysis in cellular components (CC), biological processes (BP) and molecular function (MF); (B) Hallmark pathway analysis; (C) KEGG 
pathway analysis. 
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bind to hyaluronic acid (HA) and stabilized CD44 (a novel GSCs marker) by regulate the interaction between HA and CD44 [35], and 
therefore promoted the formation of CD44-EGFR complex on the cell membrane, which induced ERK activation and 
epithelial-mesenchymal transition, ultimately leading to the metastasis and invasion of tumor cells [36]. Moreover, TNFAIP6 has been 
identified as a potential cellular marker of mouse mesenchymal stem cells (MSCs) and its anti-inflammatory and immunosuppression 
function have been demonstrated in multiple models outside of glioma [37–40]. 

However, there is still a lack of research on TNFAIP6 in LGG. Our study found that the expression level of TNFAIP6 was significantly 
positively correlated with immune score, stromal score and classical immune checkpoint expression, which indicated that LGG with 
high expression of TNFAIP6 suffered from severer immunosuppression. Existing studies have clarified that immune checkpoint 
molecules play an immunosuppressive role in tumors [41], for instance, the increased expression of PD-1 and its ligand PD-L1 reduced 
the activity of both CD8+ and CD4+ T lymphocytes, and inhibit their proliferation, thereby contributing to a suppressive immune 
ircoenvironment in tumor [42–44]; CTLA-4, a classic negative regulator of T cell activation and function, can transduce inhibitory 
signals by antagonizing the activity of co-stimulatory ligands on CD28 [45–47]. Similarly, higher immune cell infiltration abundance is 
also associated with immunosuppression [48–51]. Current research believed that the increased infiltration of immune cells in glioma 

Fig. 4. Establishment of prognostic GSCRG signature 
(A): 101 combination models of 10 machine learning algorithms; (B–E): Survival analysis between LGG patients with high and low RS; (F–I): The 
Time-dependent ROC curves of 1-, 2-, 3-, 4-, and 5-year OS in the training and validation cohorts. 

Q. Huang et al.                                                                                                                                                                                                         



Heliyon 10 (2024) e33030

7

burdened the anti-glioma immune and resulted in the formation of immunosuppressive microenvironment [52–54]. Moreover, a study 
on lung adenocarcinoma directly revealed that TNFAIP6 led to ‘N2’ subtype neutrophil polarization, thereby promoting lung 
adenocarcinoma development [55]. Based on the above statement, we inferred that the high expression of TNFAIP6 may affect the 
prognosis by enhancing the stemness of LGG cells and strengthening immunosuppression. 

Function analysis further verified the above result. It is obviously to see that various immune cells signaling pathways and in-
flammatory signaling pathways were enriched in TNFAIP6 high expression group, while pro-cancer pathways also significantly 
enriched in high TNFAIP6 expression group, especially p53 pathway and glioma pathway. These suggested that TNFAIP6 high 
expression LGG had more malignant biological behaviors. Besides, the result of immunohistochemistry further verified that TNFAIP6 is 
highly glioma stemness related. 

5. Conclusion 

Our study established a robust and stable LGG prognosis prediction model by conduct a series of bioinformatics analysis. Finally, 
TNFAIP6 was identified as the most valuable prognostic GSCRG, and the classification based on theexpression of TNFAIP6 can 
accurately reflect the biological characteristics of different LGG samples. Moreover, as we know, our study innovative focus on the 
impact of TNFAIP6 on LGG, making up for the vacancy of previous research and provides a new research direction. In all, TNFAIP6 
may be a novel marker of glioma stem cells, playing an essential role in the regulation of LGG microenvironment and prognosis 
prediction. 
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Fig. 5. Immune-related characteristics of different RS group 
Heatmap revealing the correlation between different RS group and immune-related characteristics. 
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Fig. 7. Expression level of TNFAIP6 in Low- and High- CD133 expression groups 
(A): Representative IHC staining images of CD133 and TNFAIP6 in two stemness group in the Zhujiang in-house cohort. (B): Box plot displaying the 
pathology score levels of TNFAIP6 and CD133 based between two stemness group in the Zhujiang in-house dataset; (C): The correlation of 
expression level between TNFAIP6 and CD133. 
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