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Oscillating modes of driven colloids in overdamped
systems
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Clemens Bechinger1,2,4

Microscopic colloidal particles suspended in liquids are a prominent example of an over-

damped system where viscous forces dominate over inertial effects. Frequently, colloids are

used as sensitive probes, e.g., in biophysical applications from which molecular forces are

inferred. The interpretation of such experiments rests on the assumption that, even when the

particles are driven, the liquid remains in equilibrium. Here we experimentally demonstrate

that this is not valid for particles in viscoelastic fluids. Even at small driving forces, we observe

particle oscillations with several tens of seconds. They are attributed to non-equilibrium

fluctuations of the fluid being excited by the particle’s motion. The oscillatory dynamics is in

quantitative agreement with an overdamped Langevin equation with negative friction-

memory term being equivalent to a stochastically driven underdamped oscillator. Such

oscillatory modes are expected to widen the use of colloids as model systems but must also

be considered in colloidal probe experiments.

DOI: 10.1038/s41467-018-03345-2 OPEN

1 2. Physikalisches Institut, Universität Stuttgart, D-70569 Stuttgart, Germany. 2 Fachbereich Physik, Universität Konstanz, D-78464 Konstanz, Germany.
3 Institut für Theoretische Physik IV, Universität Stuttgart, D-70569 Stuttgart, Germany. 4Max-Planck-Institut für Intelligente Systeme, D-70569 Stuttgart,
Germany. 5Present address: Universität Göttingen, Institut für Theoretische Physik, D-37077 Göttingen, Germany. Correspondence and requests for
materials should be addressed to C.B. (email: clemens.bechinger@uni-konstanz.de)

NATURE COMMUNICATIONS |  (2018) 9:999 | DOI: 10.1038/s41467-018-03345-2 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4526-5024
http://orcid.org/0000-0002-4526-5024
http://orcid.org/0000-0002-4526-5024
http://orcid.org/0000-0002-4526-5024
http://orcid.org/0000-0002-4526-5024
mailto:clemens.bechinger@uni-konstanz.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Brownian motion is a paradigmatic example of a Markovian
process where each incremental step along the particle’s
trajectory is fully determined by its previous position1,2.

Such memory-free behaviour is valid for time scales larger than
the relaxation times of the fluid and inertial relaxation times of
the colloid (typically below nanoseconds) where the collisions
with the solvent’s molecules can be regarded as an entirely ran-
dom process2. As the velocity distribution of the molecules, i.e.,
that of the thermal bath, is not influenced by the colloidal’s
motion, it can be considered as a true, inert thermostat, providing
purely white noise. Many experiments confirmed, that this
assumption remains valid even when the colloid is subjected
to external driving forces (see, e.g., Ref. 3 and references
therein). Accordingly, the postulation of a weak coupling of
colloidal particles to the thermal bath, as, e.g., considered within
the framework of stochastic thermodynamics4,5, provides a
faithful description of the non-equilibrium properties of such
systems.

The assumption of a rapidly relaxing thermal bath is not
applicable to viscoelastic fluids like semi-dilute polymer solutions,
micellar systems, or dense colloidal suspensions. Such systems are
characterised by stress relaxation times τs comparable or even
larger than that of the colloidal motion2,6. Accordingly, when
colloidal particles are driven through such a fluid (e.g., by means
of an optical trap), it can not be regarded to remain in equili-
brium. Theoretical studies predicted that in this regime the par-
ticle dynamics becomes largely affected by the fluid’s non-
equilibrium microstructural deformations, and that the measured
viscosity may exhibit a non-trivial dependence on the trap stiff-
ness7. In particular for large driving velocities (high shear rates),
several experiments reported the occurrence of unsteady particle
motion8,9 and strong deviations from the behaviour in simple
viscous liquids10–19. These findings originate from the nonlinear
rheological properties in viscoelastic fluids (e.g., shear thinning),
which is generally observed in micro- and macro-rheological
experiments2,11,17,20.

In contrast, the experiments presented here are performed at
low driving velocities, where the viscosity is constant, and within
the linear response regime. When we analyse the motion of the
particle inside the harmonic optical trap, which moves with
constant velocity through a worm-like micellar solution, we
observe a new harmonic oscillator state with non-trivial fluctua-
tions. Despite all motion being overdamped, it shows
oscillating (underdamped) modes, which are strictly ruled out in
equilibrium systems. These oscillations are accompanied by large
fluctuation amplitudes, so that the particle’s mean squared dis-
placement (MSD) is drastically different from the equilibrium
one. Although the main text focuses on a worm-like
micellar solution, we observe similar particle oscillations in
other viscolelastic fluids comprising different chemistry and
microstructure (see Methods). Therefore, we believe that the
reported oscillations are a generic feature of particles in non-
equilibrium baths.

Results
Experiments. Our experiments are performed in an equimolar
solution of surfactant, cetylpyridinium chloride monohydrate
(CPyCl) and sodium salicylate (NaSal) in deionised water at a
concentration of 7 mM and at temperature T= 298 ± 0.2 K.
Under such conditions, these mixtures form an entangled vis-
coelastic network of worm-like micelles21 with a structural
relaxation time τs= 2.5 ± 0.2 s determined by a recoil experi-
ment19, where the length of the worm-like micelles is typically
found in between 100 and 1000 nm22, and the typical mesh size is
on the order of 30 nm23. A small amount of silica particles with

diameter 2R= 2.73 μm is added to this fluid and a single particle
is optically trapped by a focused laser beam, which creates a
parabolic potential 12 κξ

2 (with ξ a spatial coordinate relative to the
potential minimum) whose stiffness κ is fixed by the laser
intensity (Fig. 1a, b). The trap position, which is adjusted by a
computer-controlled mirror, performs a one-dimensional motion
with constant velocity v. The particle motion ξ(t) relative to the
trap centre is measured with a rate of 145 fps (for further details,
see Methods). From the mean position 〈ξ〉 and by applying
Stokes’ law, we obtain the fluid’s (micro-)viscosity η≡ κ|〈ξ〉|/
6πvR. Figure 1c demonstrates that—similar to a Newtonian liquid
—η is independent of v for the parameters used in this study, and
that our experiments are performed within the linear response
regime. In that range, the dimensionless Weissenberg number
Wi= vτs/2R, is well below one. v/2R estimates the shear rate near
the driven particle, and for the given values between 0.02 and 0.1 s
−1, bulk rheological measurements9 indeed find the zero-shear
viscosity. The Reynolds number is of order 10−9, so that inertial
effects in the fluid are negligible.

Figure 1d and e compare the particle motion in equilibrium
(Wi= 0) and for non-equilibrium conditions (Wi= 0.34). In the
following, particle fluctuations around its mean position are
quantified by x(t)= ξ(t)− 〈ξ(t)〉. As expected, in equilibrium the
particle performs random fluctuations within the trap and the
distribution of x(t) is in excellent agreement with Boltzmann
statistics. In contrast, considerable deviations from the equili-
brium probability distribution are observed at finite (but very
small) Wi. Such unexpected behaviour is supported by the
corresponding MSD, 〈(x(t)− x(0))2〉, which are shown in Fig. 2
for four different Wi. In equilibrium, the MSD grows mono-
tonically and saturates at 2kBT/κ, in accordance with the
equipartition theorem. For finite Wi, however, the MSDs grow
considerably above this value. The particle explores a larger
configurational space within a moving (compared with a static)
trap.

The trajectories in Fig. 1d, e reveal another, even more striking
difference between equilibrium and non-equilibrium: in contrast
to the random particle fluctuations in equilibrium, the data in
Fig. 1e are qualitatively different and appear to exhibit oscillatory
particle motion. To analyse such unexpected behaviour in more
detail, we study the conditional probability P(x, t|x0, 0) to find a
particle at position x at time t, given that it was at x0 at t= 0.
Accordingly, such mean conditional displacements (MCDs) are
given by hxix0ðtÞ �

R
dxPðx; tjx0; 0Þx. Experimentally, MCDs

with different initial positions x0 are obtained from (long)
trajectories by using any (random) occurrence x(t)= x0 as an
initial point. We have verified, that such curves scale linearly in x0
(Methods).

In equilibrium, the MCD decays monotonically on a time scale
roughly given by the ratio of the particle’s friction and the trap
stiffness κ (Fig. 3, Wi= 0)24. Such monotonic behaviour is
expected for any complex fluid, because the Fokker–Planck
operator, including colloid and the surrounding micelles, has real
negative eigenvalues. Therefore, the MCD is a sum of positive
exponentially decaying functions2,24 (Methods). A qualitatively
different behaviour, however, is observed in the non-equilibrium
steady state: here, the MCDs do not decay monotonically, but
show oscillations whose amplitudes increase with Wi (Fig. 3). The
oscillation time decreases with increasing Wi and is for Wi= 0.04
—the slowest drive accessible in our experiments—about 100 s, so
that this curve relaxes much slower than the equilibrium curve
(compare the time axes).

Figure 4 shows the dependence of amplitude and frequency of
oscillations on Weissenberg number, where for both quantities, a
gradual decrease towards equilibrium (Wi= 0) is observed.
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Theory. To understand the origin of particle oscillations in an
overdamped system, we recall that on time scales beyond
microseconds, the particle’s motion results from the balance of a
frictional force, stochastic ‘noise’ and the optical force2. For the
micellar bath, the mean frictional force at time t is a nonlinear
functional Gf _xðt′Þ þ vgt′�t of the past trajectory, and so is the
noise (see, e.g., Ref. 25 and see Refs. 26–29 for other approaches).

Encouraged by the observation that the experimental MCDs are
linear in x0 (Methods), we proceed by considering a linear
equation for x,Z t

�1
ds _xðsÞ ΓðvÞðt � sÞ ¼ �κxðtÞ þ f ðvÞðtÞ: ð1Þ

Formally, Γ(v) is the functional derivative of G around the non-
equilibrium steady state,

ΓðvÞðt � sÞ ¼ δGf _x þ vgðtÞ
δ _xðsÞ

����
_x¼0

; ð2Þ

and similarly for the noise f(v), which is then independent of _x,
and 〈f(t)〉= 0. The nonlinearity of G makes the transformation to
the co-moving frame as well as the linearisation non-trivial, so
that Γ(v) depends on v (and also on κ30). Γ(v)(τ)= 0 for τ < 0
(causality).

From Eq. (1), the MCDs are readily obtained by taking the
mean with initial condition x(t= 0) ≡ x0 (it is noteworthy that
velocities average to zero for t < 0),

x̂h ix0ðsÞ ¼
x0Γ̂ðvÞðsÞ

sΓ̂ðvÞðsÞ þ κ
; ð3Þ

with Laplace transforms ĥðsÞ ¼ R10 dt e�sthðtÞ. Notably, Eq. (3) is
independent of noise f(v) and the MCDs are uniquely related to
the memory kernel Γ(v).

The equilibrium curve in Fig. 3 can already be understood
qualitatively from a simple model by Maxwell31 or by
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Jeffreys32,33, which considers a memory time τ,

Γð0ÞðtÞ ¼ 2γ1δðtÞ þ γ0 � γ1
τ

e�
t
τ: ð4Þ

Here, γ∞ and γ0 are friction coefficients at infinite and zero
frequencies, respectively. We adjust the friction coefficients and
relaxation time of this model in such manner to obtain best
agreement with the experimental data. The result is shown as
lines in Fig. 3, for parameters we refer to the Methods section. As
expected, the MCD decays monotonically to zero in accordance
with the experimental curve.

Aiming at a simple model for the non-equilibrium oscillations,
we amend Eq. (4) by another generic exponential term to account
for finite driving,

ΓðvÞðtÞ ¼ 2γ1δðtÞ þ γ0 � γ1 � γ1
τ

e�
t
τ þ γ1

τ1
e�

t
τ1 ; ð5Þ

and we use τ1 > τ throughout. The parameters in Eq. (5) may
depend on Weissenberg number. Importantly, the new coefficient
γ1 is negative, so that Γ(v)(t) is negative for long times in contrast
to the equilibrium kernel (Methods). Negative memory is a
concept, which has been used in other fields of rheology of
complex systems, e.g., when applying macroscopic shear. If such

shear is started abruptly, one sometimes observes so called stress
overshoots, where the stress goes through a maximum as a
function of time, once the yield stress is overcome20,34–37.
Theoretically, these overshoots have been described by negative
memory, as found from microscopic derivations in Refs.20,37.
Again, we emphasise that, in equilibrium, Γ is related to the force
autocorrelation function (Methods), which is strictly positive on
overdamped time scales.

When fitting the form of Eq. (5) for best agreement
with experiments, there is one value which we preset: γ0 may
be identified with the viscosity shown in Fig. 1c, so that it is
not varied in the fitting. (As detailed in the Methods section,
for the larger driving, above Wi= 0.11, we used one
exponential term additional to Eq. (5) to obtain quantitative
agreement).

The MCDs so obtained are shown in Fig. 3 as solid lines, which
reproduce well the experimental observations. After an initial
decay, the curves oscillate as a function of time. Notable, the final
relaxation can be on time scales that are much larger than both τ
and τ1, so that the long relaxation times observed experimentally
(e.g., for Wi= 0.04) are also found from Eq. (5). Conceptually
different to the above mentioned studies on macroscopic shear, it
is the additional presence of the optical trap, which, in

0
–1

–0.5

0

0.5

1

–1

–0.5

0

0.5

1

Wi=0 Wi=0.04 Wi=0.11

Wi=0.34Wi=0.24Wi=0.17

<
x

(t
)>

x 0/x
0

<
x

(t
)>

x 0/x
0

20 40 60 0 50 100 150 0

00 10 20200 10 30 5 10 15 20

t (s)t (s)t (s)

25 50

Fig. 3 Oscillating modes. In equilibrium, the MCD relaxes exponentially, as expected for any complex fluid. For finite driving, MCDs show pronounced
oscillations, which, especially for small Wi, drastically increase the system’s correlation time (e.g., more than 150 s for Wi= 0.04). This behaviour is
captured in a simple theoretical model (lines)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Wi

0
0

0.05

0.1

0.15

�
 (

s–1
) Ω

π

0.2

0.25

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Wi

A
m

pl
itu

de
 (

re
sc

. u
ni

ts
)

a b

Fig. 4 Oscillation amplitude and frequency. Oscillation amplitude (a) and frequency (b) of the MCD curves (shown in Fig. 3) vs. Wi. Insets illustrate how
these quantities are derived from the experimental data. Both curves decrease with decreasing Weissenberg number, i.e., towards equilibrium. Regarding
frequency, this implies that oscillations are particularly slow at small Wi. As the second root is not visible for Wi= 0.04 in Fig. 3, the corresponding value
of Ω has been obtained from the time difference between the extremum and the first root

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03345-2

4 NATURE COMMUNICATIONS |  (2018) 9:999 | DOI: 10.1038/s41467-018-03345-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


combination with the negative memory, yields oscillatory
solutions in our experiments.

It is noteworthy that the MCDs from Eq. (5) show two distinct
types of solution: depending on the parameter values, there are
either purely exponential solutions, � e�jνjt or damped oscillating
modes, � e�ðjνjþijΩjÞt , the latter characterised by a finite Ω value.

Figure 5 shows the phase diagram as a function of κ and γ1.
Notably, oscillations appear only for a finite range of κ (with all
other parameters fixed). Exceeding this range yields a purely
exponential decay. In other words, for a given viscoelastic fluid
with a well-defined relaxation time, oscillations occur only within
a narrow range of stiffness of the optical trap, where conditions
are resonant. This might explain why such oscillations have not
been observed in previous experiments where a colloidal particle
was dragged with an optical tweezer through a viscoelastic
colloidal suspension12. In order to maximise the oscillatory
behaviour in our experiments, the value of κ was chosen to be in
the centre of the oscillating phase. Indeed, a variation of the trap
stiffness to smaller and larger values yields a much less
pronounced oscillatory behaviour (Methods). The phase bound-
ary shown in Fig. 5 can be analytically determined to

κc ¼ γ0 � 2γ1
τ1 � τ

±
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1ðγ1 � γ0Þ

p
τ1 � τ

; ð6Þ

showing a critical point at |γ1|= 0, from which κc grows as a
square root in |γ1|.

From Eq. (1), we also obtain the corresponding MSDs

hðxðtÞ � xð0ÞÞ2i ¼ 1
π

Z1
�1

dω 1� eiωt
� � hj~f ðvÞðωÞj2i

ω~ΓðvÞðωÞ � iκ
�� ��2 ; ð7Þ

with Fourier transforms ~hðωÞ ¼ R1�1dt e�iωthðtÞ. In contrast to
the mean conditional curves, the MSDs involve the noise
correlation, which in equilibrium is determined by the
fluctuation-dissipation theorem (FDT)38

~f ð0ÞðωÞ�� ��2D E
¼ 2kBT< ~Γð0ÞðωÞ

h i
: ð8Þ

We evaluated the MSDs from Eq. (7), using for each Wi the
same parameters as in Fig. 3. This leads to the solid lines in Fig. 2,
with remarkable agreement. This agreement is even more notable,
as we have assumed Eq. (8) to be valid also for finite Wi, so that
no more free parameter appears compared to Fig. 3 (the value of
κ was found to be slightly different for the different Wi, see

Methods section, which we attribute to a small anharmonicity of
the potential shown in Fig. 1). Eq. (8) appears well obeyed, so that
any notion of effective temperatures is not crucial for under-
standing the observed results, again in contrast to Ref. 12.

Oscillatory behaviour in physical systems is typically a
signature of inertial effects. Indeed, a partial integration in Eq.
(1) yields formally an inertial term (see Methods), with an
effective mass 1010 times the actual mass of the particle. More
importantly, this mass is negative in equilibrium, whereas it is
positive for the parameters used in Fig. 3, e.g., for Wi= 0.04. The
observed oscillations may thus formally be attributed to a
(positive) particle’s mass.

We test this analogy quantitatively, demonstrating that
oscillations in an overdamped viscoelastic fluid can be formally
described by an underdamped oscillator in an equilibrium bath.
This is shown in the inset of Fig. 6 where we plot the
experimental MCD for Wi= 0.34, together with the solution of
an underdamped oscillator (Methods). Apart from the short-time
behaviour, which is fundamentally different for the massive
particle, in particular the oscillatory behaviour is very well
reproduced (we shifted the theoretical curves in Fig. 6 by an offset
time t0= 3.0 s into negative t-direction to map the short-time
behaviour correspondingly). The main graph shows the corre-
sponding MSD, which is also in excellent agreement with our
experiments. As a result of its inertia, indeed the particle explores
a larger phase space at intermediate times. For very large times,
the MSD of the massive equilibrium particle approaches 2kBT/κ.
Thus, the behaviour of a very complex non-equilibrium system
appears to be well described by a single—easily experimentally
accessible—number, the effective mass. This resembles very much
the concept of an effective mass as used for description of
conduction electrons39.

Discussion
How one can rationalise the presence of particle oscillations
within the regime of small Weissenberg number? In contrast to
macroscopic rheometric experiments, where a constant rate of
shear or stress is imposed, the situation is different when strain or
stress is created by a colloidal particle driven by a moving trap. As
pointed out by Squires and Brady7, due to the strong coupling
between the colloid and the fluid, the particle’s motion is strongly
affected by local stress and strain fluctuations. As a result, the
rates of both strain and stress become time-dependent, which
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results in an unsteady (oscillatory) particle motion. Such an
interpretation is consistent with Fig. 5, where we have shown that
oscillations only occur for a certain range of trap stiffnesses.
When the trap is too stiff, this corresponds to constant strain rate
conditions. When the trap becomes too soft, the particle
dynamics is essentially diffusive. In both cases, oscillating modes
are excluded.

Our results suggest that underdamped oscillating modes with
long correlation times are generally expected for trapped colloidal
particles, which are subjected to a non-equilibrium environment
with a negative response at long times. Apart from viscoelastic
solutions, such conditions should apply to other non-equilibrium
baths, e.g., suspensions of active living and synthetic particles,
which currently receive considerable attention. In addition, the
presence of an underdamped particle dynamics will be of rele-
vance for the use of micrometre-sized colloids as mechanical
probes when investigating the dynamics of, e.g., molecular motors
or protein complexes within their viscoelastic intracellular
environment. The demonstrated continuous variation between
underdamped and overdamped modes thereby allows for a large
range of tunability.

Methods
Preparation of the viscoelastic fluid and the sample. Our experiments are
performed in an equimolar solution of surfactant CPyCl (Sigma-Aldrich, crystal-
line, 99.0–102.0%) and salt NaSal (Sigma-Aldrich, Reagentplus TM, ≥99.5%) in
deionised water at a concentration of 7 mM. After overnight mixing at 318 K,
worm-like micelles form and deform dynamically in the solvent21 with structural
relaxation time τs= 2.5 ± 0.2 s, as determined from microrheological measure-
ments at T= 298 K7,19. The length of such worm-like micelles is between 100 and
1000 nm22, and the typical mesh size is on the order of 30 nm23. Silica micro-
spheres of diameter 2R= 2.73 μm are highly diluted in this viscoelastic solution.
The solution is then inserted into a custom-made chamber with a height of 90 μm.
During the measurements, the sample sample cell is thermally coupled to a ther-
mostat at T= 298 ± 0.2 K.

Particle trapping and tracking. Optical trapping of a colloidal particle is achieved
by a Gaussian laser beam (λ= 1070 nm), which is tightly focused by a microscope
objective (× 100, numerical aperture= 1.4) onto the sample. To avoid hydro-
dynamic interactions with the walls, the focal plane is adjusted into the middle
plane of the sample cell, thus the trap position is more than 40 μm apart from any
wall. As confirmed by the particle’s displacement distribution, the optical trap
corresponds to a harmonic potential 12 κξ

2, where κ is the trap stiffness and ξ is the
particle position relative to the potential minimum. With a galvanostatically driven
mirror, the laser beam and thus the trap position are moved along ξ-direction
forward and backward over a distance of about 20 μm at constant velocity v. The
values of v are chosen in a range where the viscosity remains constant, i.e., far away

from shear thinning effects. The smallest velocity that can be achieved with our
setup is about 40 nm s−1, which yields for our system Wi= 0.04. The centre of
mass of the particle is tracked by means of video microscopy at 145 frames
per second and a spatial accuracy of 4 nm40.

Algorithm of MCD computation from experimental data. The MCD of a (col-
loidal) particle is formally defined by hxix0 ðtÞ �

R
dxPðx; tjx0; 0Þx. P(x, t|x0, 0) is

the conditional probability to find the particle at position x at time t, given that it
was at x0 at time t= 0. In the case of discrete experimental data, the MCD at time
instant tn is given by the following weighted sum

hxix0 ðtnÞ ¼
1

nðx0Þ
X
i

nðxi; x0; tnÞxi ð9Þ

It is noteworthy that the conditional probability P(x, t|x0, 0) turned into the
corresponding statistical frequency n(xi, x0, tn), i.e., the number of (random)
occurrences xi at time step tn if the initial position x0 was fixed at t0= 0. It is
normalised by n(x0), which gives the number of (random) occurrences of equal
initial displacements x(tn)= x0 in a given experimental trajectory. The weighted
sum in Eq. (9) runs over all possible outcomes xi of the experiment.

It is verified that the MCDs are linear in x0 (cf. Figure 7, where we assembled
the curves in intervals of Δx0= 10 nm) and therefore we can average over the
normalised curves with positive and negative initial condition x0 to improve the
overall statistics (see Fig. 3).

Oscillations in polymer solutions. The onset of oscillations in the non-
equilibrium MCDs is also observed in the case of a semi-dilute polymer solution
(polyacrylamide, Mw= 18 × 106 at 0.03% wt. in water). In Fig. 8, we show the
MCDs for the equilibrium case and Wi= 0.34. The occurrence of oscillations also
in such a polymer solution (with a structural relaxation time τs similar to the one of
the micellar solution) suggests the effect to be generic for viscoelastic systems with
large structural relaxation times.

Creation of theoretical MCD/MSD curves. In this subsection, we provide
detailed information on the creation of the theoretical MSD and MCD curves in
Figs 2 and 3, respectively. As discussed in the main text, the non-equilibrium
oscillations in the MCDs are evoked by adding another generic exponential term to
the memory kernel with negative amplitude. This approach can be generalised by a
sum of exponential functions, i.e.,

ΓðvÞðtÞ ¼ 2γ1δðtÞ þ
γ0 � γ1 �P

i
γi

τ
e�

t
τ þ
X
i

γi
τi
e�

t
τi : ð10Þ

It is noteworthy that the time integral of Γ(v)(t) equals the zero-frequency
coefficient γ0≡ 6πηR for the viscosity η at small Weissenberg numbers as
determined by the experimental flow curve in Fig. 1c. With this simple model, we
adjust the parameters in such a way to obtain best agreement with the experimental
MCD and MSD curves. The values of parameters are given in Table 1. It is
noteworthy that we allow a slight variation in the trap stiffness κ. This variation
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incorporates the experimental error in κ (e.g., due to a small anharmonicity of the
potential, as well as polydispersity between different measurements)

Table 1 reveals that the zero-frequency coefficient γ0 experienced by the trapped
particle in equilibrium is roughly three times as large as in non-equilibrium. We
emphasise that in equilibrium γ0 strongly depends on the trap stiffness κ and,
ultimately, in the limit κ → 0, tends to a value comparable to those in non-
equilibrium for small Weissenberg numbers (see the value at Wi= 0 in Fig. 1c)),
which is obtained from the MSD in the absence of the trap).

It is worth noting that for increasing Weissenberg numbers more exponential
terms in Eq. (10) are needed to mimic well the experimental curves.

Underdamped harmonic oscillator. The model system of a (stochastic) under-
damped harmonic oscillator with mass m quantitatively reproduces the experi-
mental results of the overdamped system as shown in Fig. 6 by adjusting the mass
of the particle accordingly (supporting the notion of an effective mass). Here, we
give the parameter values, which are used to create Fig. 6. The underdamped
equation of motion in the Markovian case reads as

m€xðtÞ þ γ _xðtÞ ¼ �κxðtÞ þ f ðtÞ: ð11Þ

f(t) is delta-correlated Gaussian white noise, i.e., its statistical properties are fully
specified by its first two moments 〈f(t)〉= 0 and 〈f(t)f(t′)〉= 2γkBTδ(t− t′). The
parameters used for the solid lines in Fig. 6 are κ= 2.8 μNm−1, m= 32.0 mg and γ
= 5 μNsm−1. It is noteworthy that the value of the friction coefficient γ is
comparable to the non-equilibrium zero-frequency coefficient γ0 in Table 1.

Absence of oscillations in equilibrium MCDs. In overdamped dynamics, the
Fokker–Planck equation (sometimes also referred to as Smoluchowski equation) is
the equation of motion of the probability distribution function (pdf) P(Γ≡ {ri}) of
interacting constituents in a system (e.g., colloid and surrounding micelles). It is
valid on the Brownian (or diffusive) timescale, where the momentum coordinates
of the Brownian particles are relaxed to thermal equilibrium. In this effective
description (where the phase space coordinates of the solvent molecules are long
relaxed), the time evolution of the pdf is governed by2

∂tPðΓ; tÞ ¼ ΩPðΓ; tÞ
Ω ¼

X
ij

∂i �DijðfrjgÞ � ½∂j � βFj�: ð12Þ

Ω is the so-called Fokker–Planck operator containing the 3 × 3-dimensional
microscopic diffusion matrices Dij and the total force Fj acting on particle j (j= 1
… N) at position rj. It can be shown that the Hermitian conjugate of the
Fokker–Planck operator Ω†= ∑ij(∂i + βFi) ⋅Dij ⋅ ∂j is Hermitian with respect to the
weighted inner product (weighted with the equilibrium pdf Peq)2

g�Ωyh
� �

eq¼ hΩyg�
� �

eq¼ �
X
i;j

∂g�

∂ri
�Dij � ∂h∂rj

* +
eq

: ð13Þ

Consequently, the eigenvalues λn of Ω† are real and the eigenfunctions Ω†ϕn=
λnϕn form a orthogonal basis, i.e., for normalised functions fulfil ϕ�nϕm

� �
eq¼ δnm .

Moreover, as by definition Dij is a positive semi-definite matrix24, we find Ω† to be
negative semi-definite

hg�Ωygieq � 0 ; ð14Þ

i.e. λn ≤ 0 for any n. All modes are thus strictly overdamped, and any equilibrium
correlation function 〈g(t)g(0)〉eq can be written as a sum of positive exponentially

decaying functions

gðtÞgð0Þh ieq¼ g�eΩ
yt g

D E
eq
¼
X
n

cnj j2eλnt : ð15Þ

Specifically, using a linear Langevin equation (cf. Eq. (1)), the MCDs can be
directly related to the correlation function of x via

hxðtÞieqx0 ¼ βκx0hxðtÞxð0Þieq; ð16Þ

where β= (kBT)−1 is the inverse temperature. We conclude that the equilibrium
MCDs are strictly monotonic and hence show no oscillatory behaviour for a
complex suspension. Another fundamental insight concerning the equilibrium
memory kernel Γ(0)(t) is obtained by applying the FDT. The FDT relates the linear
response function of a system to a small external perturbation to its thermal
equilibrium fluctuations. For the trapped Brownian particle we find

Γð0ÞðjtjÞ ¼ hFðtÞFð0Þieq: ð17Þ

It is worth noting that both sides of the equation implicitly depend on the trap
stiffness κ. Using the same arguments as before, the equilibrium memory kernel is a
positive function for all times t.

κ-dependence of experimental MCDs. The trap stiffness κ appears to be an
important parameter for the occurrence of oscillations in the MCDs. In the
experiment, κ can be varied by changing the intensity of the trap laser. In Fig. 9, we
show the normalised MCDs for three different values of the trap stiffness.
Apparently, there is a resonant value of κ (the one used in the main text) leading to
a particularly high oscillation amplitude. For higher and lower κ, the amplitude
decreases, thereby indicating that the resonant behaviour is only present in a
certain regime of trap stiffness κ.

Mass identification in the Langevin equation. Oscillations as observed in the
MCDs are a feature of inertia. We can corroborate this fundamental principle by
reconsidering the generalised Langevin equation in Eq. (1). According to Newton’s
equation of motion, mass is the proportionality constant in the force/acceleration
relation of a massive body. Such a second-order differential equation can be
mathematically obtained from Eq. (1) by partial integration. We then findZ t

�1
dsMðvÞðt � sÞ€xðsÞ ¼ �γ0 _xðtÞ � κxðtÞ þ f ðvÞðtÞ: ð18Þ

γ0 is the friction coefficient at zero frequency, i.e. γ0 �
R1
0 dt ΓðvÞðtÞ, and

MðvÞðt � sÞ � �R s�1dh ΓðvÞðt � hÞ is identified with the memory kernel of inertia.
In this description, the memory of the system is now related to inertial effects while
the friction coefficient is time-independent and reduces to the long-time value γ0.
By mimicking Newton’s equation of motion, we may define the mass of the particle
as the zero-frequency contribution of ~MðωÞ and obtain for the memory kernel in
Eq. (10),

m �
Z 1

0
dtMðvÞðtÞ ¼ � γ0 � γ1 �

X
i

γi

 !
τ �

X
i

γiτi: ð19Þ

In equilibrium, the memory kernel Γ(0) in Eq. (10) is a sum of positive
exponentially decaying functions and therefore m strictly takes a negative value. In

Table 1 Values of parameters as used in Figs 2 and 3,
respectively

Wi κ γ∞ γ0 τ γ1 τ1 γ2 τ2
0 2.8 0.18 20.6 9.1 — — — —
0.04 2.3 0.19 6.8 25.0 −1135.1 27.0 — —
0.11 2.3 0.19 5.3 28.0 −204.5 17.8 109.3 10.0
0.17 2.6 0.18 6.5 28.0 −67.3 15.0 17.3 2.0
0.24 2.7 0.21 7.1 14.8 −126.4 11.0 23.0 2.1
0.34 2.7 0.18 6.0 16.0 −84.1 12.0 6.4 0.4

The trap stiffness κ is given in units of μNm−1, friction coefficients γ are given in units of μNsm−1,
and memory relaxation times τ in s
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Fig. 9 Dependence of MCDs on trap stiffness κ. MCDs plotted for Wi=
0.24 upon varying κ
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non-equilibrium; however, for the simple model of two exponential functions (cf.
Eq. (5)),mmay be positive if the amplitude γ1 is negative and the relaxation time τ1
associated with this negative part of the friction kernel is larger than the relaxation
time of the positive exponential function. For instance, we find m= 2.1 g for the
parameters used for Wi= 0.04 in Table 1.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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