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ABSTRACT
Numerous studies have reported the existence of tumor-promoting cells (TPC) 

with self-renewal potential and a relevant role in drug resistance. However, pathways 
and modifications involved in the maintenance of such tumor subpopulations are still 
only partially understood. Sequencing-based approaches offer the opportunity for a 
detailed study of TPC including their transcriptome modulation. Using microarrays 
and RNA sequencing approaches, we compared the transcriptional profiles of parental 
MCF7 breast cancer cells with MCF7-derived TPC (i.e. MCFS). Data were explored using 
different bioinformatic approaches, and major findings were experimentally validated. 
The different analytical pipelines (Lifescope and Cufflinks based) yielded similar 
although not identical results. RNA sequencing data partially overlapped microarray 
results and displayed a higher dynamic range, although overall the two approaches 
concordantly predicted pathway modifications. Several biological functions were 
altered in TPC, ranging from production of inflammatory cytokines (i.e., IL-8 and 
MCP-1) to proliferation and response to steroid hormones. More than 300 non-coding 
RNAs were defined as differentially expressed, and 2,471 potential splicing events 
were identified. A consensus signature of genes up-regulated in TPC was derived 
and was found to be significantly associated with insensitivity to fulvestrant in a 
public breast cancer patient dataset. Overall, we obtained a detailed portrait of the 
transcriptome of a breast cancer TPC line, highlighted the role of non-coding RNAs 
and differential splicing, and identified a gene signature with a potential as a context-
specific biomarker in patients receiving endocrine treatment.

INTRODUCTION

There is substantial evidence to support the presence 
of a subpopulation of tumor-promoting cells (TPC) in 
both hematologic and solid tumors with self-renewal and 
asymmetric division capabilities. The proposed model 
looks at TPC as responsible for treatment failure due to 
their resistance to anticancer drugs and due to the inability 
of the presently employed drugs to specifically target the 
TPC subpopulation [1–4].

Identification and enumeration of such cells is 
difficult, their phenotypes are poorly defined and no specific 
biomarker allows a clear distinction of TPC, although 
several markers have been proposed [5]. The assay largely 
recognized as the gold standard to define a population of cells 
with tumor-initiating ability consists of xenotransplantation 
of serially diluted number of cells in immunocompromised 
mice (i.e., NOD/SCID or NOD-scid IL2Rgnull mice) [6], and 
an optimal tool for isolating breast TPC from clinical tumors 
is an in vitro functional approach (i.e., sphere formation) [7].
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In breast and other tumor types, much effort 
has been made to identify the pathways involved in 
maintenance of the TPC phenotype and to tackle possible 
TPC-specific targets with therapeutic potential. Among 
others, Notch [8, 9] and Hedgehog pathways [10] have 
been suggested as central pathways for TPC maintenance. 
More recently, a role for NF-κB NF-kappaB-related 
genes [11, 12] and for inflammatory cytokines [13, 14] 
has been proposed, also linking stemness with epithelial-
mesenchymal transition [15, 16].

Accumulating evidence in other malignancies 
suggests that also poorly characterized non-coding 
RNAs (ncRNAs) could have a role in cancer [17] and 
in the maintenance of a stem-like phenotype [18]. In 
addition, the isoform composition of the coding transcript 
population has been demonstrated to be important in 
stem cell biology [19, 20] and cancer [21]. Massive RNA 
sequencing (RNA-seq) allows an in-depth transcriptome 
analysis, which includes the annotation and evaluation 
of differential expression for both the coding and non-
coding transcripts and the identification and quantitative 
evaluation of alternative splicing events. This type of 
analysis proved to extend biological knowledge and to 
identify additional biomarkers [22].

We previously reported the isolation and in vitro 
propagation of highly tumorigenic mammospheres 
isolated from the MCF7 breast cancer cell line (commonly 
defined as MCFS) [23]. In the present study, we obtained 
gene expression profiles of MCFS and parental MCF7 
cell lines using Illumina microarrays and SOLiD RNA-
seq. Different analytical approaches for RNA-seq were 
used and the results compared. Differentially expressed 
coding and non-coding RNAs, deregulated pathways and 
alternative splicing events were identified by specific 
bioinformatic approaches and validated in vitro. Finally, 
the significance of the TPC gene signature derived from 
our model was confirmed in a cohort of endocrine therapy-
treated breast cancer patients.

RESULTS AND DISCUSSION

Comparison of RNA-seq and microarray signals

Transcriptome analysis of tumor-promoting 
mammospheres (MCFS) and of the parental breast cancer 
cell line MCF7 was run in triplicate on microarrays and as 
a single experiment using RNA-seq after linear isothermal 
DNA amplification. In microarray data, 9,283 probes, 
corresponding to the same number of genes, were retained 
after normalization and filtering.

Since using only one method for the analysis of 
RNA-seq datasets can result in a suboptimal analysis, 
especially when working with a cancer transcriptome, we 
decided to apply two different methods for the absolute 
quantification of gene expression after the genome 
mapping step, i.e., Lifetech Lifescope 2.5.1 pipeline and 

the TopHat/Cufflinks method (version 1.0.2), using as a 
common reference gene annotation the UCSC RefSeq 
dataset. Supplementary Table S1 summarizes the number 
of genes with non-zero quantification for expression 
values processed according to the two pipelines. Ninety-
four percent of the genes detected by Cufflinks was also 
identified as expressed by Lifescope, whereas the latter 
globally identified a higher number of genes. For each 
library, gene expression levels, measured as RPKM or 
FPKM (Reads/Fragments Per Kilobase of exon per Million 
fragments mapped) for each of the two experiments, 
were correlated, displaying good correlation coefficients  
(R = 0.97/0.96) (Figure 1A).

We next correlated fold changes (FC) between 
MCFS and MCF7 cells obtained with the two analytical 
pipelines. As for RPKM and FPKM values, a good 
correlation was found, but the correlation coefficient 
(R = 0.89) was affected by large expression differences 
present between the two cell lines (up to 1000-fold 
changes). Usually, fold changes higher than 2 are already 
considered to be biologically relevant, but, as can be seen 
in Figure 1B, such an extent of modulations seems to be 
less reproducible when using two different processing 
procedures, even though starting from the same raw 
sequence data.

Fold changes obtained from RNA-seq were then 
correlated with the results elaborated from microarray data 
for common genes. As expected, lower correlations were 
obtained with RNA-seq data, independently of the pipeline 
used, clearly showing a higher dynamic range, in fold change 
terms, than microarrays (Figure 1C). A similar platform 
comparison, run on CD44+/CD24– cancer stem isolated from 
primary ER-positive breast cancer cells [24] reported a good 
match between next generation transcriptome sequencing 
and microarrays, but no details were given on the analytical 
pipeline used for RNA-seq data.

Identification of enriched gene sets and 
functional validation of data

Microarray as well as RNA-seq expression data were 
subjected to a Gene Set Enrichment Analysis (GSEA) in 
order to provide a robust way to compare elaborated gene 
expression data sets obtained with different platforms and 
to highlight biologically meaningful pathways modulated 
in MCFS compared to MCF7 cells. For RNA-seq data, 
both data analysis procedures were considered in order to 
investigate their reliability by comparison with array data. 
For all data, genes were ordered according to fold changes 
and array data were ordered according to GSEA statistics. 
Data analyzed with Cufflinks, besides fold changes, were 
ordered according to the ranking suggested by the Cuffdiff 
statistics. Enrichment for functionally related genes was 
tested across a collection of 4,850 curated gene sets (C2 
collection), and a summary of obtained results is reported 
in Supplementary Table S2. Similar results were obtained 
for array data ranked using either fold change or GSEA 
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statistics. Gene quantification using Cufflinks and ranking 
using Cuffdiff statistics slightly outperformed the other 
methods in terms of number of significantly enriched gene 
sets and concordance with array data. Consequently, we 
focused on GSEA statistics ranked array data and Cuffdiff 
ranked RNA-seq data to elaborate a biological interpretation 
of the coding genes modulated in MCFS TPC.

To obtain a meaningful interpretation of the 
findings, our approach was to distribute the gene sets in 
different categories, linking them to a possible biological 
function. Such biofunctions, which were differentially 
modulated in MCFS compared with MCF7 cells are listed 
in Table 1, together with information of the single gene 
sets supporting them. The main biofunctions are reported 
below, together with results of validation experiments.
Proliferation

As expected, based on the growth kinetics of the two 
cell types, genes associated to cell cycle progression, DNA 

replication and proliferation were expressed at lower levels 
in MCFS cells. Whereas the low proliferative potential of 
TPC is well known, no enrichments in proliferation related 
–genes has been reported in other studies comparing gene 
expression profiles of CD44+/CD24– breast cancer stem 
cells with the remaining bulk tumor cells [24] suggesting 
that the experimental conditions chosen for MCFS 
enrichment may play a role.
Endocrine therapy sensitivity

Gene sets up- and down-regulated after treatment 
of MCF7 cells with 17ß-estradiol [25, 26] were found 
significantly enriched in the MCF7 and MCFS phenotype, 
respectively (Table 1). It is noteworthy that despite a distinct 
regulation of genes associated with estrogenic stimulation 
in the parental MCF7 cell line and in the derived TPC 
cells (Figure 2C), the estrogen receptor (ER) itself was 
expressed at comparable levels (Figure 2A). Such a 
gene expression pattern suggested the acquirement of an 

Figure 1: Comparison of different transcriptomic data. A. Correlation of RNA-seq gene quantification from MCFS (left) or MCF7 
(right) cells obtained with the two pipelines used (Lifescope or Cufflinks). B. Correlation of log fold-changes between MCFS and MCF7 
cells obtained with the two pipelines used (Lifescope or Cufflinks). C. Correlation of log fold-changes obtained using Arrays or RNA-seq 
transcriptomic data, processed with the Lifescope pipeline (left) or Cufflinks pipeline (right).
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estrogen-insensitive phenotype in the MCFS, a hypothesis 
that was experimentally verified. Estrogen insensitivity has 
already been reported in the literature for CD44+/CD24– 
cells purified from human tumors, which were described as 
ER-negative also when deriving from ER-positive tumors 
[27]. Treatment with 10−8 M 17ß-estradiol for 6 days caused 
almost a doubling in the MCF7 cell growth rate compared 
to untreated cells (P = 0.033), whereas as expected based 
on gene expression data, estradiol had no significant effect 
on MCFS cell growth (Figure 2B). Consistent with the loss 
of estrogen sensitivity in the MCFS cells, also treatment 

with the pure antiestrogen fulvestrant displayed a higher 
cytostatic effect in MCF7 cells than in MCFS (80% vs 
30% growth inhibition, respectively). Such results suggest 
an insensitivity of MCFS cells to estrogenic stimulations 
and a limited response to treatment with antiestrogen, in 
agreement with impairment on estrogenic response in 
MCFS cells.

In order to provide a further confirmation of the 
impairment in ER-mediated response to estrogens in 
MCFS cells, we evaluated the expression levels of 
typically ER-related genes after exposure of the cells to 

Table 1: Enriched biological functions
Biofunction Description n° Gene sets 

associated
Gene Sets Enriched 

in:
FDR 

Array
FDR 

Cufflinks

Cell Cycle, 
Proliferation

Gene sets 
involved in 
cells cycle and 
proliferation

7

KONG_E2F3_TARGETS MCF7 < 1e-4 < 1e-4

ISHIDA_E2F_TARGETS MCF7 < 1e-4 < 1e-3

ZHOU_CELL_CYCLE_GENES_IN_
IR_RESPONSE_6HR MCF7 < 1e-4 < 1e-2

ROSTY_CERVICAL_CANCER_
PROLIFERATION_CLUSTER MCF7 < 1e-4 < 1e-2

MOLENAAR_TARGETS_OF_
CCND1_AND_CDK4_DN MCF7 < 1e-4 < 1e-2

ZHOU_CELL_CYCLE_GENES_IN_
IR_RESPONSE_24HR MCF7 < 1e-4 < 1e-3

ZHANG_TLX_TARGETS_ 
60HR_DN MCF7 < 1e-3 < 1e-4

Endocrine 
Therapy 
Sensitivity

Gene sets 
involved 
in response 
to various 
endocrine 
therapy 
regimens in 
which many 
tumor cells 
manifest 
resistance, 
either de novo 
or acquired 
during the 
treatment

8

CREIGHTON_ENDOCRINE_
THERAPY_ 
RESISTANCE_5

MCFS not 
tested < 1e-2

DOANE_BREAST_CANCER_
CLASSES_UP MCFS > 0.01 < 1e-2

FARMER_BREAST_ 
CANCER_APOCRINE_VS_
LUMINAL

MCFS > 0.01 < 1e-2

FARMER_BREAST_ 
CANCER_APOCRINE_ 
VS_BASAL

MCFS > 0.01 < 1e-2

BECKER_TAMOXIFEN_
RESISTANCE_UP MCFS > 0.01 < 1e-4

FRASOR_RESPONSE_ 
TO_ESTRADIOL_UP MCF7 < 1e-2 < 1e-2

DUTERTRE_ESTRADIOL_
RESPONSE_6HR_DN MCFS < 1e-2 > 0.01

DOANE_BREAST_CANCER_ 
ESR1_DN MCFS < 1e-4 not tested

(Continued )
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Biofunction Description n° Gene sets 
associated

Gene Sets Enriched 
in:

FDR 
Array

FDR 
Cufflinks

Immune 
Response

Gene sets 
involved 
in several 
mechanism 
of immune 
response

22

KEGG_CYTOKINE_CYTOKINE_
RECEPTOR_INTERACTION MCFS < 1e-4 < 1e-2

SANA_TNF_SIGNALING_UP MCFS < 1e-2 < 1e-3

ZHENG_IL22_SIGNALING_UP MCFS < 1e-3 not tested

WINZEN_DEGRADED_ 
VIA_KHSRP MCFS < 1e-2 not tested

KEGG_COMPLEMENT_AND_
COAGULATION_CASCADES MCFS < 1e-2 not tested

BENNETT_SYSTEMIC_LUPUS_
ERYTHEMATOSUS MCFS < 1e-2 not tested

KIM_GLIS2_TARGETS_UP MCFS < 1e-2 not tested

ZHANG_RESPONSE_TO_IKK_
INHIBITOR_AND_TNF_UP MCFS < 1e-4 > 0.01

HINATA_NFKB_TARGETS_
KERATINOCYTE_UP MCFS < 1e-2 > 0.01

ICHIBA_GRAFT_VERSUS_HOST_
DISEASE_35D_UP MCFS < 1e-2 > 0.01

LINDSTEDT_DENDRITIC_CELL_
MATURATION_A MCFS < 1e-2 > 0.01

HINATA_NFKB_TARGETS_
FIBROBLAST_UP MCFS < 1e-2 > 0.01

LI_INDUCED_T_TO_NATURAL_
KILLER_UP MCFS < 1e-2 > 0.01

EINAV_INTERFERON_ 
SIGNATURE_IN_CANCER MCFS > 0.01 < 1e-4

SANA_RESPONSE_TO_ 
IFNG_UP MCFS > 0.01 < 1e-4

BROWNE_INTERFERON_
RESPONSIVE_GENES MCFS > 0.01 < 1e-4

DER_IFN_ALPHA_ 
RESPONSE_UP MCFS > 0.01 < 1e-2

GAVIN_FOXP3_TARGETS_
CLUSTER_P4 MCFS > 0.01 < 1e-2

BOSCO_INTERFERON_ 
INDUCED_ANTIVIRAL_ 
MODULE

MCFS > 0.01 < 1e-2

DAUER_STAT3_TARGETS_DN MCFS > 0.01 < 1e-4

CROONQUIST_IL6_ 
DEPRIVATION_DN MCF7 < 1e-4 < 1e-3

CROONQUIST_NRAS_ 
SIGNALING_DN MCF7 < 1e-4 < 1e-2

(Continued )
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Biofunction Description n° Gene sets 
associated

Gene Sets Enriched 
in:

FDR 
Array

FDR 
Cufflinks

Epigenetic 
Control

Gene sets 
involved 
in altered 
methylation, 
acetylation 
status as 
a possible 
epigenetic 
mechanism of 
selection during 
tumorigenesis

9

MARTENS_TRETINOIN_
RESPONSE_UP MCFS < 1e-2 < 1e-4

MISSIAGLIA_REGULATED_BY_
METHYLATION_UP MCFS < 1e-4 < 1e-4

LIANG_SILENCED_BY_
METHYLATION_2 MCFS < 1e-4 not tested

KIM_LRRC3B_TARGETS MCFS > 0.01 < 1e-4

SATO_SILENCED_BY_
METHYLATION_IN_PANCREATIC_
CANCER_1

MCFS > 0.01 < 1e-2

HELLER_HDAC_TARGETS_
SILENCED_BY_METHYLATION_DN MCFS > 0.01 < 1e-2

MIKKELSEN_NPC_HCP_WITH_
H3K4ME3_AND_H3K27ME3 MCFS > 0.01 < 1e-2

MISSIAGLIA_REGULATED_BY_
METHYLATION_DN MCF7 < 1e-4 < 1e-2

ZHONG_RESPONSE_TO_
AZACITIDINE_AND_TSA_DN MCF7 < 1e-2 > 0.01

Cholesterol 
Metabolism

Gene sets 
involved in 
cholesterol 
metabolism  
pathways

6

REACTOME_CHOLESTEROL_
BIOSYNTHESIS MCFS < 1e-3 not tested

UZONYI_RESPONSE_TO_
LEUKOTRIENE_AND_THROMBIN MCFS < 1e-3 not tested

LIAN_LIPA_TARGETS_3M MCFS < 1e-3 not tested

GARGALOVIC_RESPONSE_TO_
OXIDIZED_PHOSPHOLIPIDS_
GREEN_UP

MCFS < 1e-2 not tested

SCHMIDT_POR_TARGETS_IN_
LIMB_BUD_UP MCFS < 1e-4 > 0.01

GARGALOVIC_RESPONSE_TO_
OXIDIZED_PHOSPHOLIPIDS_
BLACK_UP

MCFS < 1e-2 > 0.01

Undifferentiation

Gene sets 
associated 
with cells 
undifferentiation 
status

7

WIERENGA_STAT5A_TARGETS_
GROUP2 MCFS < 1e-2 not tested

LIM_MAMMARY_LUMINAL_
PROGENITOR_UP MCFS < 1e-2 > 0.01

BURTON_ADIPOGENESIS_PEAK_
AT_0HR MCFS > 0.01 < 1e-2

PLASARI_TGFB1_TARGETS_10HR_UP MCFS < 1e-2 > 0.01

BURTON_ADIPOGENESIS_10 MCFS < 1e-2 > 0.01

LENAOUR_DENDRITIC_CELL_
MATURATION_DN MCFS < 1e-2 > 0.01

MAHADEVAN_RESPONSE_TO_
MP470_DN MCF7 < 1e-2 not tested

(Continued )
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estradiol. In agreement with the proliferative behavior of 
these cells in response to estrogens, also induction of the 
estrogen-regulated genes GREB1, PGR, CSD and TFF1 
was stronger in MCF7 cells than in MCFS, with a more 
than two-fold difference depending on the considered gene 
(Figure 2C).

In accord with literature data demonstrating 
that TPCs are intrinsically resistant to conventional 
chemotherapeutic agents and to radiotherapy [4, 28, 29], 
we provided evidence that such cells are also less sensitive 
to competitive ER antagonists, such as selective estrogen 
receptor down regulators, suggesting that the outgrowth of 
a subpopulation of cells with tumor-promoting properties 
might be responsible for hormone therapy resistance in 
breast cancer. The presence of ERα, the main ligand-
mediated transcriptional factor responsible for estrogenic 
effects in breast cancer, still guides the choice of endocrine 
treatments, although it is known to represent a better 
predictor for endocrine insensitivity (if negative) than 
an optimal sensitivity biomarker [30]. In fact, acquired, 
but also de novo resistance to endocrine therapy is often 
observed in tumors defined as ER+. Here we show new 
data suggesting that treatment with fulvestrant might 
fail due to the presence of cells with tumor-promoting 
characteristics such as our MCFS cells.

It is also worth to mention that paradoxically the 
TPC population (defined as enriched for expression 
of ESA+CD44+CD24low cells), increases in response to 
estradiol treatment due to paracrine stimulation by non-
TPC ER-positive cells mainly through EGFR [31].

Immune response

Genes associated with immune response were 
expressed at higher levels by MCFS cells. In keeping with 
previous reports even in different TPC models [11, 12], 
our result suggests a central role for NF-κB signaling in 
MCFS cells, as many pathways and genes regulated by 
this transcription factor were found up-regulated. Of 
particular note, CXCL8, whose expression is regulated 
by NF-κB and which is involved in self-renewal of 
mammospheres [32], showed higher expression in MCFS 
than in MCF7 cells. Therefore, using an ELISA assay we 
explored at the protein level release of the interleukin in 
the culture medium. We also validated in vitro, by the 
ELISA assay, the production of other cytokines (TNF and 
MCP-1), confirming the gene expression data (Figure 2D).

Other biological functions

Differentially enriched gene sets also suggested a 
role of epigenetic mechanisms, cholesterol metabolism 
and growth factor (mainly epidermal growth factor) 
response in the maintenance of “stemness”. Finally, 
several gene sets supported the undifferentiated state of 
MCFS cells (Table 1).

Identification and validation of differentially 
expressed ncRNAs

To identify differentially expressed IncRNAs, 
we compared transcripts derived from Cufflinks 
analysis with ncRNAs represented in the RefSeq 

Biofunction Description n° Gene sets 
associated

Gene Sets Enriched 
in:

FDR 
Array

FDR 
Cufflinks

Growth factor 
response

Gene sets 
involved in 
respose to 
different growth 
factors

9

SMID_BREAST_CANCER_ 
ERBB2_UP MCFS < 1e-4 < 1e-4

NAGASHIMA_NRG1_ 
SIGNALING_UP MCFS < 1e-3 not tested

NAGASHIMA_EGF_SIGNALING_UP MCFS < 1e-2 not tested

PEDERSEN_METASTASIS_BY_
ERBB2_ISOFORM_1 MCFS < 1e-4 > 0.01

PACHER_TARGETS_OF_IGF1_
AND_IGF2_UP MCFS < 1e-4 < 1e-4

AMIT_EGF_RESPONSE_60_MCF10A MCFS < 1e-2 not tested

ZWANG_CLASS_3_TRANSIENTLY_
INDUCED_BY_EGF MCFS < 1e-2 not tested

XU_GH1_AUTOCRINE_ 
TARGETS_DN MCF7 < 1e-2 < 1e-2

KOBAYASHI_EGFR_
SIGNALING_24HR_DN MCF7 < 1e-2 > 0.01
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database (June 2013 release) and with those annotated 
in the ENCODE/GENCODE v.7 lncRNA catalog 
(June 2013) dataset. This way a total of 331 and 398 
noncoding transcripts were respectively identified and 
were manually annotated in subclasses (Table 2 and 
Supplementary Table S3).

Five ncRNAs were selected for experimental 
validation: four of them were down-regulated in MCFS 
compared to MCF7 cells (SNHG3, PVT1, RMST, and 
LINC00673), whereas the remaining one (LINC01278) 
was up-regulated. In addition, we chose to validate the 
differential expression of the long ncRNA MALAT1, 

Figure 2: MCFS cell are less sensitive to E2 and fulvestrant stimulation and secrete higher quantities of IL-8 and 
MCP-1 compared to than MCF7 cells. A. Western blotting analysis for ERα expression. ERα protein levels were normalized to a 
loading control. Numbers reported below gel images were obtained by densitometric analysis and represent the relative expression level of 
ERα normalized to β-actin expression level. B. Effect of 17β-estradiol (top) and fulvestrant (bottom) on cell growth. Cells were exposed 
to 10−8 M 17β-estradiol or fulvestrant for 6 days, and their growth was evaluated by direct cell counting. Cell growth of treated cells was 
expressed as percentage of that of untreated cells. Bar charts represent a mean ± CV% of 3 experimental replicates (*P < 0.05 by two-
tailed Student’s t test). C. Relative expression of ER-related genes in response to 17β-estradiol exposure. The relative expression levels of 
ER-related genes were measured after 48 h of exposure to 10−8 M 17β-estradiol by quantitative real-time PCR analysis and normalized to 
RPL13A expression level. Relative fold changes calculated by the ΔΔCt method refer to control cells. Bars represent mean ± SD relative 
fold changes, derived from 3 technical replicates. D. Quantification of secreted IL-8 (top) and MCP-1 (bottom) in conditioned media. The 
absolute quantity of cytokines secreted in culture media was measured by ELISA kit assays and normalized to the number of viable cells. 
Bars represent mean ± SD of cytokine levels (picograms per 105 cells) derived from 3 technical replicates.
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previously reported to be highly expressed also in breast 
cancer tissue [33], as it showed a two-fold increased 
expression in MCFS compared to MCF7 cells by RNA-seq, 
but without reaching statistical significance (Figure 3A). 
Real-time RT-PCR assays substantially confirmed the RNA-
seq results in all cases except SNHG3 (Figure 3B), which 
did not show a statistically significant differential expression 
between the two cell lines. This might be due, at least in part, 
to the design of the corresponding RT-PCR assay, which 
specifically amplified only one transcriptional isoform of 
SNHG3 (i.e., NR_036473). On the contrary, the differential 
expression of MALAT1 was more marked in the real-time 
assay (about a 2.7-fold increase in MCFS compared to 
MCF7 cells) than in RNA-seq data.

Identification and validation of splicing events

Alternatively spliced genes were identified using 
a reciprocal junction analysis as implemented in the 
AltAnalyze software [34], starting from the exon 
level expression quantification and exon junction files 
generated by the Lifescope pipeline. A total of 2,471 
reciprocal junctions showed a significant splicing 
score (ASPIRE > 0.2 or < 0.2). A filtering step was 
subsequently applied in order to identify the most 
robust and biologically meaningful splicing events 
(Supplementary Figure S1). A complete list of such 
filtered events is reported in Supplementary Table S4. 

Among the genes that were consistently detected as 
displaying significant differential alternative splicing 
events, we selected 3 for experimental validation: the 
myoferlin (MYOF) exon 18 alternative splicing, the 
inclusion/skipping of SRFS10 exon 3, and a fusion 
between the VMP1 and RPS6KB1 genes. In particular, 
AltAnalyze predictions evidenced a significant decrease 
of both MYOF exon 18 and SRSF10 exon 3 inclusion 
events in MCFS compared to MCF7 cells, as well as an 
increase in fusion events between multiple RPS6KB1 
exons and VMP1 exon 12 (Supplementary Table S4).

To verify the predictions, a specific measurement 
of the relative abundance of transcripts including or 
excluding the MYOF/SRSF10 candidate exon was obtained 
by fluorescent competitive RT-PCR (see Supplementary 
Methods for details).

We confirmed that inclusion of the in-frame 39-base 
pair (bp) exon 18 was reduced in MCFS compared to MCF7 
cells (from 42% to 21%), thus generating an imbalance 
in the levels of the two alternatively spliced isoforms 
(NM_013451 - myoferlin isoform a, including exon 18; 
NM_133337 - myoferlin isoform b, excluding exon 18) 
(Figure 4A). Structurally, myoferlin contains 6 tandem C2 
domains, designated as (C2A-C2F), a central DysF domain, 
and a single C-terminal transmembrane region. Each C2 
domain folds into an 8-stranded beta-sandwich and usually 
contains a calcium-binding region. The two myoferlin 
isoforms, a and b, differ for 13 amino acids located within 

Table 2: Differentially expressed (DE) ncRNAs identified by RNA-Seq
RefSeq ncRNAs1 GENCODE/ENCODE ncRNAs2

ncRNAs DE UP in MCFS3 DOWN in 
MCFS4

DE UP in MCFS3 DOWN 
in MCFS4

Total DE 
transcripts 331 86 245 398 197 201

Processed 
transcripts 198 43 155 6 3 3

Expressed 
pseudogenes 26 12 14 7 5 2

lincRNAs 50 16 34 215 102 113

Antisense 43 14 19 159 84 75

Sense Intronic 7 1 6 7 1 6

Sense overlapping 3 1 2 3 1 2

Small RNAs 9 0 9 1 1 0

lincRNAs: long intergenic noncoding RNAs
1noncoding RNAs annotated in RefSeq, release June 2013
2noncoding RNAs annotated in GENCODE/ENCODE v.17 June 2013
3log2 fold change > 1.5, p < 0.01
4log2 fold change < –1.5, p < 0.01
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a loop region of the C2C domain. Interestingly, the C2C 
domain is the most divergent domain between the different 
members of the ferlin family of proteins, and it was 
suggested that the presence of the domain has influenced 
the functional adaptation of its neighboring domains [35].

We also validated a significant reduction of 
SRSF10 expression in MCFS and a concomitant 

imbalance in the inclusion of the in-frame 363-bp 
exon 3, which decreased from 41% to 16% (Figure 4B). 
Splicing factor SRSF10 is an atypical member of the 
serine/arginine-rich family of proteins that can function 
as a sequence-dependent splicing activator [36]. These 
regulatory proteins can modulate both exon activation 
and repression in vivo, which is likely dependent on 

Figure 3: Selection and validation of differentially expressed non-coding RNAs. A. Table listing the 6 ncRNAs selected for 
experimental validation. B. Differential expression of candidate ncRNAs by semi-quantitative real-time RT-PCR. Bars represent mean ± 
SD of 3 technical replicates. Fold change between MCFS and MCF7 cells were calculated with the ΔΔCt method, setting the MCF7 sample 
as 1. The glucuronidase (GUSB) housekeeping gene was used as internal control for normalization. The results were analyzed by unpaired 
t-test: ***P < 0.0001; ns, not significant.
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Figure 4: Validation of differentially expressed alternative splicing at the MYOF (A) and SRSF10 (B) loci by fluorescent 
RT-PCR. A. Schematic representation of the MYOF gene in the region comprised between exons 17 and 19 (top left) and of the two products 
obtained by fluorescent competitive RT-PCR (top right). Exons are shown by gray boxes, whereas introns are represented by lines (not to 
scale). Alternative splicing events are shown by broken lines. Primers used for RT-PCRs are indicated by arrows. The length of the fragments 
is also indicated. GeneMapper windows displaying fluorescence peaks (shaded in gray) corresponding to the different transcripts amplified by 
fluorescent RT-PCR on RNA from MCF7 cells and MCFS (bottom). The X-axis represents data points and the Y-axis represents fluorescence 
units. On the right, histograms representing the relative amount of transcripts including or skipping exon 18, as assessed by calculating the ratio 
of the corresponding fluorescence peak areas (setting the sum of all peaks as 100%). Bars represent mean ± SD of 3 independent experiments. 
B. Schematic representation of the SRSF10 gene in the region comprised between exons 3 and 4 (top left) and of the two products obtained 
by fluorescent competitive RT-PCR (top right). GeneMapper windows displaying fluorescence peaks (shaded in gray) corresponding to the 
different transcripts amplified on RNA from MCF7 cells and MCFS cells (bottom). On the right, histograms representing the relative amount 
of transcripts including or skipping exon 3, calculated as described above. Bars represent mean ± SD of 3 independent experiments.
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their binding location within the pre-mRNA. Using this 
strategy, the RNA-binding protein regulates splicing in 
the cell [37, 38].

In parallel, to better characterize the predicted 
RPS6KB1-VMP1 fusion events, we performed RT-PCR 
using a reverse primer in VMP1 exon 12 and a forward 
primer located either in RPS6KB1 exon 1 or in exon 4. 
Using the forward primer in RPS6KB1 exon 4, we obtained 
a unique amplification product of about 150 bp, whereas 
using the forward primer in exon 1 we amplified two 
different products of about 430 and 340 bp, respectively. 
The direct sequencing of individual RT-PCR products 
allowed us to identify two different fusion transcripts, 
one including RPS6KB1 exons 1 to 4 and VMP1 exon 
12 (fusion A), and the other connecting RPS6KB1 exons 
1 and 2 to VMP1 exon 11 (fusion B)(Figure 5A–5B). The 
molecular model structure predictions derived from the 
two open reading frames reconstructed from the fusions, 
performed with the I-TASSER software [39], suggest that 
the first fusion could maintain an activity of interaction 
with ATP and an A-kinase activity, whereas the second 
fusion could result in a more homogenous multiple alpha-
helix structure which maintains only a generic protein 
amino acid binding function, as identified from GO term 
association (Figure 5C–5D).

RPS6KB1 is a serine/threonine-protein kinase, an 
important regulator of cell size control, protein translation, 
and cell proliferation [40] and it is one of the best 
characterized downstream targets of mTOR.

Vacuole membrane protein 1 (VMP1) is a plasma 
membrane protein and an essential component of 
initial cell–cell contacts and tight junction formation. 
It has been described as a cancer-relevant cell cycle 
modulator, but the function of the protein and its mode 
of action in tumor progression are still unknown. Its 
high expression is correlated with noninvasive breast 
cancer cell lines [41].

Our RT-PCR data suggest that the fusion transcript 
(RPS6KB1-VMP1) is expressed more in MCF7 cells than 
in MCFS, as suggested by the AltAnalyze analysis.

Interestingly, Inaki et al. [42] found the expression 
of transcript fusion between RPS6KB1 and VMP1 in 70 
breast primary tumors from Singaporean patients and 
they found that such fusion was expressed in 30% of 
breast cancers [42]. They found additional fusions points, 
including the same fusions points we found between 
RPS6KB1 exon 2 and VMP1 exon 11 and RPS6KB1 exon 
4 and VMP1 exon 12. Such gene fusion is caused by 
tandem duplication of 17q23. In fact, in breast cancer this 
chromosomal region is frequently amplified.

Genes overexpressed in MCFS are associated 
with resistance to endocrine therapy in patients

One of the hypotheses suggested by the interpre-
tation of differentially modulated coding genes was a 

reduced sensitivity to endocrine treatment of MCFS. To 
evaluate whether the gene expression modulation observed 
in this model could also be traced in clinical samples of 
breast cancer, a consensus list of 77 genes (Supplementary 
Table S5) overexpressed in MCFS in both array and RNA-
seq data was derived. The 77-gene list was evaluated in 
a public dataset (GSE48905) of gene expression profiles 
of breast cancers from patients enrolled in the NEWEST 
(Neoadjuvant Endocrine Therapy for Women with 
Estrogen-Sensitive Tumours) trial comparing the clinical 
and biological activity of fulvestrant, 500 mg vs 250 mg, 
in the neoadjuvant setting [43]. Interestingly, our signature 
of genes overexpressed in MCFS was enriched in resistant 
tumors (stable or progressive disease) compared to 
responders (Figure 6). Such data, combined with our in 
vitro findings, are clinically relevant since fulvestrant 
has been approved as a second-line therapy for patients 
experiencing recurrence after a tamoxifen regimen, as it 
lacks cross-resistance with other antiestrogens, has no 
agonistic activity and accelerates degradation of ERα. 
Our results question the utility of fulvestrant as second-
line endocrine therapy and suggest that treatment with this 
pure antiestrogen might fail due to the outgrowth of TPC 
cell subpopulations.

Distinguishing between cell-line dependent and 
culture-condition dependent differences

Finally we asked whether the particular condition for 
MCFS isolation could have influenced the gene expression 
pattern. In fact, most studies trying to tackle transcriptome 
variations in TPCs compared to parental cells have 
employed enrichments based on the expression of selected 
markers [24, 27, 31], whereas we chose another largely 
used approach that is to enrich for TPC by modifying the 
growth conditions. As a consequence MCFS cells might be 
regarded as 3D cultures since they form mammospheres 
whereas MCF7 cells as 2D cultures growing in adhesion 
conditions. To evaluate the extent of this possible bias, 
we took advantage from Kenny and colleagues study 
correlating morphologies and gene expression profiles 
of 24 breast cancer cell lines grown in 2D versus 3D 
conditions [44]. We extrapolated from the study 3D 
versus 2D gene expression profiles for MCF7 cells only 
and 545 unique genes which showed a fold change 
larger than 2 (271 up-regulated and 274 down-regulated, 
Supplementary Table S7). Of our 77-gene signature 
(all up-regulated genes), 15 genes were up-regulated 
also in Kenny’s study (19% overlap) and 3 were down-
regulated, suggesting that 3D culture might have affected 
gene expression, but that it was not the main driver for 
the differences identified in our study. Moreover, none of 
the key genes investigated in this study was differentially 
expressed in Kenny’s study. When considering all the 25 
cell lines included in their study, Kenny and colleagues 
identified 41 genes differentially expressed in 2D versus 
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Figure 5: Identification of RPS6KB1-VMP1 gene fusion. A. Schematic representation of the VMP1 and RPS6KB1 genes in the 
region comprised between exons 1 and 4 (RPS6KB1) or exons 11 and 12 (VMP1). Coding exons are shown by gray boxes, whereas introns 
are represented by lines (not to scale). Splicing events are shown by broken lines, whereas fusions are indicated by dashed lines. Primers 
used for RT-PCRs are indicated by arrows. B. Electropherograms showing the nucleotide sequences around the identified fusion junctions. 
C. Molecular model of fusion A (RPS6KB1 exons 1 to 4 fused to VMP1 exon 12). D. Molecular model of fusion B (RPS6KB1 exons 1 and 2 
fused to VMP1 exon 11)
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3D cells, and a statistically significant overexpression of 
1 out of 8 identified Gene Ontology classes, i.e ‘signal 
transducer activity’. These results suggest that in 3D 
cultures the main differences relate to regulation of signal 
transduction, whereas we identified many more biological 
functions enriched in MCFS compared to MCF7 cells. 
In our analysis ‘Signal transduction’ is not even among 
the main enriched biological functions and only appears 
to be limited to ‘growth factor response’ (Table 1). This 
is again an indirect evidence for the fact that the distinct 
MCFS gene expression pattern is cell line- rather than 
culture condition-dependent. Unfortunately, no external 
data are available for a similar evaluation of lncRNAs and 
alternative splicing findings, although a similar pattern is 
expected.

We also would like to emphasize that the lack of 
growth of MCFS cells upon stimulation with 10–8 M E2 
is not a simple result of culture conditions since in the 
presence of a serum –free medium supplement (2% 
XerumFreeTM XF205, TNC Bio BV, Eindhoven, NL), 
estradiol was still stimulatory for MCF7 (Supplementary 
Figure S2). This is a further direct evidence for the 
fact that it is not the culture condition that dictates the 
biological function, but that our TPC enrichments method 
does in fact select a different cell subpopulation.

In an interesting paper on primary glioblastoma 
[45], single-cell RNA-seq was used to collect clues on 
intratumoral heterogeneity in clinical tumors. In parallel, 
subpopulations of stem like cells (GSCs) were modeled  
in vitro as spherogenic cultures that initiate tumors in 

Figure 6: TPC signature in the NEWEST cohort. Gene set enrichment analysis of 77 genes concordantly overexpressed in both 
microarray and RNA-seq data, in MCFS with respect to MCF7 cells. The gene set was evaluated in the NEWEST dataset (GSE48905), 
contrasting resistant versus responder cases after treatment with fulvestrant.
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mice and their transcriptomes were compared to more 
differentiated cells expanded as adherent monolayers in 
serum (i.e. exactly our approach). The derived stemness 
consensus signature when applied to the single cell 
transcriptional profiles, revealed a gradient of stemness 
among the single cells, suggesting that in vitro models 
do in fact give important clues, although limiting to the 
phenotypic extremes of cellular states. We have not yet 
proven such a concept in breast, but results on bulk tumors 
go in this direction.

MATERIALS AND METHODS

Cell cultures

The MCF7 breast cancer cell line was purchased 
from the American Type Culture Collection (ATCC; 
Manassas, VA, USA) and cultured in DMEM/F-12 
(Lonza, Slough, UK) medium supplemented with 10% 
fetal bovine serum (Lonza). MCFS were derived from 
the MCF7 cell line [21] and propagated as floating 
mammospheres in mammary epithelial cell growth 
medium, an appropriate growth medium composed 
of MEBM (Lonza) supplemented with B27 without 
vitamin A (Life Technologies, Foster City, CA, USA), 
heparin 0.6 U/ml (Eparina Vister 5,000 U/ml), human 
recombinant epidermal growth factor, 20 ng/ml 
(Peprotech, NJ, USA) and human recombinant basic 
fibroblast growth factor, 10 ng/ml (Peprotech). Both 
cell lines were cultured at 37°C in humidified 5% CO2 
atmosphere. Cell vitality was assessed by the trypan 
blue exclusion assay (at least 95%) before starting any 
experiment. Authentication of cell lines by short tandem 
repeat DNA profiling analysis was performed at the 
Niguarda Ca’ Granda Hospital in Milan.

Total RNA extraction

Cell pellets (~106 cells) were immediately put on 
ice and homogenized in 1 ml of TRIzol® Reagent (Life 
Technologies); lysates were stored at −80°C for not more 
than 2 weeks. Total RNA was extracted following the 
manufacturer’s instructions. Contaminating DNA was 
digested using recombinant DNase I (Life Technologies), 
and RNA samples were purified using the RNeasy MinElute 
Cleanup Kit (Qiagen, Germantown, Maryland, USA). Total 
RNA was quantified by a NanoDrop spectrophotometer 
and assessed for quality by the Agilent RNA 6000 Nano kit 
(Agilent Technologies, Santa Clara, CA, USA) using the 
Agilent 2100 Bioanalyzer (Agilent Technologies).

For RNA-seq experiments, total RNA from 
5000 MCF7 cells and MCFS were extracted following 
Agencourt® RNAdvance® Cell v2 (Beckman Coulter, 
Danvers, MA, USA) protocol using Agencourt’s patented 
SPRI® paramagnetic bead available in the kit. After 

Proteinase K cell lysis and protein digestions, total RNA 
was separated from contaminants exploiting its binding 
to the magnetic particles. Manufacturer instructions were 
followed with the exception of the DNase treatment 
step, which was carried on with the Ambion® TURBO 
DNA-free™ (Life Technologies). Fifty μl of a solution 
containing 1 μl of TURBO DNase (2 Units/μl), 5 μl of 
10X TURBO DNase Buffer, and 44 μl of nuclease-free 
water was prepared, added directly to the bead-linked 
RNA and incubated at 37°C for 30 min. The addition of 
aqueous DNase released DNA and RNA from the beads; 
while DNA was digested, RNA was re-bound to the beads 
by adding 250 μl of Agencourt Wash Buffer. Thereafter, 
as in the original Agencourt protocol, RNA was eluted in 
40 μl of nuclease-free water and quantified using Qubit™ 
RNA Assay Kits (Life Technologies); its quality was 
checked using the Agilent® RNA 6000 Pico kit (Agilent 
Technologies, Santa Clara, CA, USA).

Microarray hybridization and analysis

Array experiments with the Illumina platform 
were run by the Functional Genomics Core Facility at 
the Fondazione IRCCS Istituto Nazionale Tumori, as 
previously described [46]. Briefly, RNA derived from 
frozen samples was processed for microarray hybridization 
using the Illumina BeadChips HumanRef-8 V3 kit. Total 
RNA (800 ng) was reverse transcribed, labeled with biotin 
and amplified overnight using the Illumina RNA TotalPrep 
Amplification kit (Life Technologies) according to the 
manufacturer’s protocol. The biotinylated cRNA sample 
(1 μg) was mixed with the Hyb E1 hybridization buffer 
containing 37.5% (w/w) formamide and then hybridized 
at 58°C overnight to the Illumina BeadChips HumanRef-8 
V3 (Illumina, San Diego, CA, USA). Array chips were 
washed with the manufacturer’s E1BC solution, stained 
with 1 μg/ml Cy3-streptavidine (Amersham Biosciences, 
Buckinghamshire, UK), and eventually scanned with the 
Illumina BeadArray Reader.

Three replicates were profiled for both cell 
types. Microarray raw data where generated using the 
Illumina BeadStudio 3.8 software and processed using 
the lumi package [47] of Bioconductor. After quality 
control, the Robust Spline Normalization was applied, 
and probes with a detection P < 0.01 in at least 2 of 6 
samples were selected (11406 probes). When multiple 
probes per gene were present, only the probe with the 
highest detection rate or highest interquartile range 
was retained (9,283 probes). Raw and processed data 
were deposited at the Gene Expression Omnibus data 
repository (GSE58383).

SOLiD library construction and sequencing

Total RNA (90 ng) was amplified, prior to 
transcriptome sequencing, using Ribo-SPIA® technology 
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developed by NuGEN following Ovation RNA-seq (2009, 
NuGEN® Technologies, San Carlos, CA, USA). Briefly, 
first-strand cDNA was prepared from total RNA using 
unique primers that hybridize either to the 5′ portion of 
the poly(A) sequence or randomly across the transcript. 
The resulting mRNA within the cDNA/mRNA complex 
was fragmented, and DNA was amplified using a linear 
isothermal DNA process developed by NuGEN named 
SPIA®. The post-SPIA modification process completed 
the amplification step, producing targets appropriate 
for SOLiD library preparation. The amplified cDNA 
was purified prior to subsequent processing for library 
construction using RNA clean purification magnetic beads 
(Beckman Coulter Genomics), as suggested in the protocol. 
Double-stranded DNA was quantified with Qubit™ DNA 
BR Assay Kits (Life Technologies), and its size distribution 
was checked using the Agilent® RNA Nano kit (Agilent) 
following the manufacturer’s instructions.

DNA libraries, one for each sample, were constructed 
following the SOLiD™ 3 Plus System Library Preparation 
Guide (Life Technologies) manufacturer’s instructions. 
One μg of cDNA was diluted in 100 μl in 1X low TE 
buffer and transferred in a Covaris™ microTUBE. DNA 
was sheared using the following Covaris S2 System 
conditions (Covaris, Woburn, MA, USA): 10 cycles 60 
s each, 10% duty cycle, 5 intensity and 100 cycles/burst. 
Sheared samples were first end-repaired, columns purified 
and ligated to specific Solid adaptors containing P1 and 
P2 sequences. DNA was size-selected using a SOLiD™ 
Library Size Selection gel run in the E-Gel® iBase™ 
system: the 150–200 bp region was collected.

The nick-translated adaptor-ligated DNA was 
amplified using Library PCR Primer P1 and P2 with 6 
cycles, and after SOLiD™ Library Column purification, 
the yield and size distribution of the libraries were checked 
using the Agilent® DNA 1000 Kit (Agilent Technologies). 
Four PCR emulsions, two for each library, were manually 
performed following the Applied Biosystems SOLiD™ 3 
Plus System Templated Bead Preparation Guide, according 
to the manufacturer’s instructions (Life Technologies).

The library and emulsion qualities were checked in 
a workflow analysis run following the SOLiD™ 3 Plus 
System Instrument Operation Guide (Life Technologies).

Sequencing was done using standard fragment 
settings on the SOLiD™ Systems V3 plus according to 
SOLiD™ 3 Plus System Instrument Operation Guide 
protocol (Life Technologies). At least 150 M of tags for 
each library, 50 bp long, distributed in 2 quad each, were 
sequenced.

RNA-seq data processing

Sequence reads in SOLiD Color Space format 
were mapped to the UCSC repeat-masked hg19 reference 
genome and analyzed for transcript representation in 

RPKM and splice site-fusion representation with the 
Whole Transcriptome Analysis module of the Lifetech 
Lifescope 2.5.1 analysis software and ad hoc created perl 
scripts. The resulting genome alignment files in .bam 
format were used to originate the fastq files corresponding 
to the aligned sequence reads and for further analysis with 
the TopHat/Cufflink/Cuffdiff whole transcriptome analysis 
pipeline.

Gene set enrichment analysis

Enrichment analysis in mRNA expression data was 
performed using GSEA (v. 2.0) [48]. The C2 collection 
(v. 3.1) containing 4,850 gene sets collected from various 
sources such as online pathway databases, publications in 
PubMed, and knowledge of domain experts, was tested 
for enrichment on both microarray and RNA-seq data. 
Microarray data were ranked according to default signal 
to noise GSEA metrics or according to fold change. RNA-
seq data were ranked according to fold change or, for 
the Seqsolve processed data, according with the Cuffdiff 
statistics. Only gene sets for which a number of genes > 
15 and < 300 was found in the data were tested. Gene 
sets with a false discovery rate of < 1% were considered 
significantly enriched.

Alternative splicing analysis

To identify splicing events in MCFS compared 
with the parental MCF7 cells, AltAnalyze software [34] 
was used, starting from the exon-level quantification and 
exon junction tables generated by the Lifescope pipeline. 
A reciprocal junction analysis, which identifies pairs of 
exon-exon junctions differentially expressed in opposite 
directions in the two cell lines, was performed. Such a 
method is reported to be very accurate at detecting true 
alternative splicing events. Statistical significance was 
assessed using the ASPIRE score, and events with ASPIRE 
> 0.2 or < 0.2 were considered significant. A combination 
of filtering criteria was applied to the more than 2000 
significant events in order to select a more limited number 
of biologically relevant elements. The filtering procedure 
is summarized in Supplementary Figure S1.

First of all, we selected events occurring in 
genes expressed at relatively high levels, i.e., RPKM 
> 5 in MCFS and MCF7 cells. Then, we distinguished 
between events with positive or negative ASPIRE 
values. In exon junctions, positive ASPIRE values 
correspond to a down-regulation of junction 1 and up-
regulation of junction 2, and vice versa for ASPIRE 
negative values. The subsequent criterion was to have 
a value higher than 15 in the sample were the junction 
was up-regulated. For events in unchanging genes, 
we also selected events where fold change value was 
higher than 3.
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See Supplementary Methods and Supplementary 
Table S6 for description of experimental validations.

CONCLUSIONS

We performed a detailed study of TPC transcriptome 
using microarrays and RNA-seq. Informative RNA-
seq data were derived starting from small input RNA, 
making the approach applicable to various scenarios 
where a limited amount of material is available. Some 
of our findings were already reported as being crucial in 
TPC, although using different approaches to isolate such 
a tumor subpopulation, therefore supporting the validity 
of our model. Of note was the up-regulation of the NF-
κB pathway, IL-8 and other inflammatory cytokines. 
Our TPC also showed less responsiveness to endocrine 
treatment, and, interestingly, genes over-expressed in 
MCFS cells were found to be up-regulated also in clinical 
tumors resistant to fulvestrant treatment, suggesting that 
they might represent a new putative predictive marker 
of hormone-treatment resistance. Finally, RNA-seq 
analysis suggested an involvement of several ncRNAs 
and differential splicing events in maintenance of the TPC 
phenotype.

We are aware that it is not yet clear if the putative 
stem cell components derived from established cell lines 
is a valid model for TPC and that experimental conditions 
might be very critical, however, i) the confirmation 
of some earlier literature data [27, 31], ii) the in vitro 
validation of the hypothesis generated by the data and 
iii) the successful identification of a gene signature 
predicting response to fulvestrant obtained in this study, 
give additional strength to other still to validate findings 
and to the model itself.
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