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Establishment of patient derived 
xenografts as functional testing of 
lung cancer aggressiveness
Massimo Moro   1, Giulia Bertolini1, Roberto Caserini1, Cristina Borzi1, Mattia Boeri1,  
Alessandra Fabbri2, Giorgia Leone2, Patrizia Gasparini1, Carlotta Galeone4, Giuseppe Pelosi2, 
Luca Roz1, Gabriella Sozzi1 & Ugo Pastorino3

Despite many years of research efforts, lung cancer still remains the leading cause of cancer deaths 
worldwide. Objective of this study was to set up a platform of non-small cell lung cancer patient derived 
xenografts (PDXs) faithfully representing primary tumour characteristics and offering a unique tool for 
studying effectiveness of therapies at a preclinical level. We established 38 PDXs with a successful take 
rate of 39.2%. All models closely mirrored parental tumour characteristics although a selective pressure 
for solid patterns, vimentin expression and EMT was observed in several models. An increased grafting 
rate for tumours derived from patients with worse outcome (p = 0.006), higher stage (p = 0.038) and 
higher CD133+/CXCR4+/EpCAM− stem cell content (p = 0.019) was observed whereas a trend towards 
an association with SUVmax higher than 8 (p = 0.084) was detected. Kaplan Meier analyses showed a 
significantly worse (p = 0.0008) overall survival at 5 years in patients with grafted vs not grafted PDXs 
also after adjusting for tumour stage. Moreover, for 63.2% models, grafting was reached before clinical 
recurrence occurred. Our findings strengthen the relevance of PDXs as useful preclinical models closely 
reflecting parental patients tumours and highlight PDXs establishment as a functional testing of lung 
cancer aggressiveness and personalized therapies.

Preclinical models are a unique component in almost every aspect of translational cancer research. They are suit-
able and deeply exploited for understanding the biological complexity of the disease, but also for developing new 
treatments. Conventional cell lines are widely used as preclinical models, both in vitro and in vivo as xenografts 
(XGs) and, currently, the NCI-60 cancer cell line panel is the most widely used and best characterized collection 
of human cancer cells for preclinical drug screening experiments1. However, cell lines represent an unsatisfac-
tory preclinical model for drug testing due to the lack of predictive value in specific cancer types. This is proba-
bly due to a progressive drift of genetic alterations and cellular subpopulations driven by culturing processes2–4. 
Furthermore, XGs grow subcutaneously in mice as a compact mass of cancer cells, without resemblance of the 
original cellular pattern and stromal structure5. Patient derived xenografts (PDXs) models represent a “never 
in vitro” model that maintains a more faithful tumour-stroma architecture avoiding the bias of culture-driven 
genetic drift. PDXs have been reported for many different types of solid tumours6–12 and have demonstrated their 
utility in predicting efficacy of a range of therapeutic approaches (reviewed in ref.13). Among them, colon cancer 
PDXs led to very interesting preclinical discoveries, such as the identification of HER2 as an effective therapeutic 
target in cetuximab-resistant colorectal cancer14,15. Lung cancer is the leading cause of cancer deaths worldwide 
accounting for 1.6 million new cases annually and, because of its poor prognosis, for 1.38 million deaths each year 
(18,2% of all cancer deaths16). In particular, non-small cell lung cancer (NSCLC) is poorly chemosensitive and the 
use of target therapies is limited to about 15% of patients where a specific target lesion is observed17. Therefore, 
the identification of additional target subpopulations is essential and PDXs represent a unique preclinical model 
for this purpose. Establishment of lung cancer PDXs (LcPDXs) has already been reported by other groups who 
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mainly pointed to the analysis of grafting determinants and maintenance of primary tumour’s features in early 
passages in mice18–24.

Here, we report the establishment of a large panel of LcPDXs derived from NSCLC patients, which closely 
recapitulate and maintain primary tumour features over 10 passages in mouse. Interestingly, we found significant 
correlations between PDX take rate and patient’s prognosis and survival suggesting PDX grafting as a surrogate 
functional testing to anticipate lung cancer aggressiveness. Targeted mutation sequencing showed maintenance of 
genetic profile in LcPDX compared to respective parental tumours. Finally, the analysis of growth characteristics 
allowed us to identify among LcPDXs a group of faster growing models that become stable in mice before disease 
recurrence in patients. These group of LcPDX may be utilized as “avatars” for testing personalized treatment 
strategies.

Results
Establishment of a lung cancer PDX perpetual bank.  Tumour samples from 97 lung cancer patients 
(65 adenocarcinomas - ADC, 16 squamous cell carcinomas - SCC and 16 other lung tumours or metastases - OL) 
have been implanted in both flanks of SCID or nude mice. Overall, 49/97 (50.5%) samples successfully gave rise 
to a P1 generation in mice. However, grafted PDXs showed variable and generally slower growth rate during the 
first three passages in mice (P1–P3) and 11 of them were lost in this time frame. In particular, latency period and 
time to transplantation were generally higher and more heterogeneous in P1–P3 period, whereas beyond P3, PDX 
growth was more homogeneous (Supplementary Figure 1). At P3, 38 PDXs (39.2%) were considered grafted and 
suitable for further analysis. In detail, 23/66 ADC (34.8%); 7/16 SCC (43.8%) and 8/15 OL (53.3%), including 2 
large cell, 1 sarcomatoid, 3 small cell carcinomas, 2 lung metastases from sarcoma and oral cavity carcinoma suc-
cessfully grafted (Tables 1 and 2). Furthermore, we set up a freeze/thawing procedure on tumour samples derived 
from established PDXs that was thoroughly exploited to establish a large and continuously growing collection of 
frozen samples (Supplementary Table 1).

LcPDX models recapitulate primary tumour features.  Histopathology.  Pathology examination and 
molecular analyses of the established PDX models and their parental tumours were carried out to confirm the 
accuracy of these in vivo models. Immunohistochemistry analysis of 27 PDXs confirmed the parental tumour 
diagnosis corresponding to 20 ADC, 4 SCLC and 3 SCC. Interestingly, the same profile was maintained for more 
than ten passages in mice (Fig. 1A, Table 3). In the 20 ADC, comparative analysis of histologic patterns, stroma, 
necrosis percentage and immunohistochemistry markers (TTF-1, p40, vimentin, Ki-67 antigen and synapto-
physin) showed a general maintenance of the relevant profiles over several passages in mice. In particular, heter-
ogeneity of histologic patterns in parental tumour was maintained in the corresponding LcPDXs, although there 
was in late passages (P > 10) a slight tendency for solid pattern to prevail and for acinar and cribriform patterns 
to be under-represented. Indeed, solid pattern was appreciable in 6 primary tumours, in 7 PDXs at P ≤ 10 and 
in 8 PDXs at P > 10; acinar pattern in 4, 3 and 2 and cribriform pattern in 6, 5 and 4, respectively (Table 3 and 
Supplementary Figure 3). Stromal component was generally lower in LcPDXs compared to parental tumours, but 
a higher level of stromal cells percentage was present in both early (P ≤ 10) and late stage (P > 10) PDXs than in 
cell line-derived XG (Fig. 1C, Table 3 and Supplementary Figure 3).

Analysis of marker expression highlighted that, apart from a general similarity (Fig. 1B), there was a slight 
decrease of TTF-1 and an increase in vimentin in PDX derived from ADC. Indeed, TTF-1 was expressed in 6 pri-
mary tumours, 4 LcPDX at P ≤ 10 and 4 LcPDX at P > 10;and vimentin in 4 primary tumours, 6 LcPDX at P ≤ 10 
and 8 LcPDX at P > 10. Moreover, for LT63, LT220 and LT268 complete loss of TTF1 and marked acquisition of 
vimentin and Ki67 labelling index was observed in mice (Fig. 1D, Table 3 and Supplementary Figure 3). In addi-
tion, an analysis of specific tumour cellular subpopulations showed that CD133+ cancer initiating cells (CICs) 
were maintained in LcPDXs with a content similar to that observed in primary tumours (Fig. 1E).

Genetic profile.  To further prove the identity of LcPDXs with primary tumours, we performed targeted muta-
tion sequencing using a panel of 50 genes frequently mutated in human cancers and FISH analysis for MET gene 
amplification. NGS analysis was carried out on 30 different models (19 ADC, 6 SCC, 2 SCLC, 1 sarcomatoid and 
1 large cell carcinoma). Overall, TP53 mutations were identified in 20 PDXs (67%); KRAS in 12 PDXs (40%); 
STK11 and CDKN2A in 7 PDXs (23%); CTNNB1 and PTEN in 4 PDXs (13%); APC, RB1 and MET amplification 
in 2 PDXs (7%); EGFR, ERBB4, FBXW7, FLT3, NRAS, PIK3CA and HRAS in 1 PDX (3%). Interestingly, KRAS, 
STK11, CTNNB1, EGFR, ERBB4, FBXW7, FLT3, NRAS and PIK3CA mutations were exclusively found in ADC, 
whereas HRAS, PTEN and RB1 were exclusively found in the other histotypes (Fig. 2). No mutations were found 
in two ADC PDXs (LT220 and LT268) (Supplementary Figure 4). Moreover, DNA of 4 LcPDXs was compared to 
the correspondent human tumours. All mutations identified in PDXs were confirmed in parental tumours, with 
the exception of LT267 (human tumour mutated in TP53, KRAS, PIK3CA and SMARCB1, whereas PDX was 
mutated in KRAS and PIK3CA only, Fig. 2A), with a general increase in the frequency of mutated alleles being 
observed in LcPDXs. Interestingly, also synonymous polymorphisms were maintained in PDX models with an 
allelic frequency similar to that observed in human tumours (Fig. 2B).

Response to treatment.  Eighteen PDX models were characterized for their responsiveness to cisplatin. Five of 
them (responders) reached at least a partial response (PR, median of four tumors) upon treatment, whereas in the 
other 13 a progression of the disease (PD) was always appreciable (non responders). Interestingly, overall survival 
(OS) of patients from whom responder PDXs were derived was higher than that of patients which gave rise to 
non-responders PDXs. (Fig. 1F and Supplementary Tables 4, 5 and 6).

All these observations strengthened the relevance of PDXs as models closely recapitulating original parental 
tumours.
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All subjects (n = 97)
Graft
Yes (n = 38) No (n = 59) p-value*

Patients characteristics
Sex
 Female 35 (36.1) 16 (45.7) 19 (54.3)

0.3221

 Male 62 (63.9) 22 (35.5) 40 (64.5)
Age
Mean (sd) – Median (IQR) 65.3 (9.1)–67.0 (60.0–72.0) 63.3 (9.9)–65.0 (58.0–71.0) 66.6 (8.3)–69.0 (61.0–73.0) 0.1372

Smoking habits
 Never 9 (9.3) 4 (44.4) 5 (55.6)

0.3491 Ex 46 (47.4) 21 (45.7) 25 (54.3)
 Current 42 (43.3) 13 (30.9) 29 (69.1)
Pack years
 ≤

46 (47.4) 22 (47.8) 24 (52.2) 0.0981

40 pack-years
 >40 pack-years 51 (52.6) 16 (31.4) 35 (68.6)
Mean (sd) – Median (IQR) 46.8 (31.4)–44.0 (30.0–60.0) 44.4 (36.6)–40.0 (23.3–55.0) 48.4 (27.7)–50.0 (30.0–70.0) 0.1482

FEV1**
Mean (sd) – Median (IQR) 89.5 (20.4)–90 (78.5–102.5) 91.8 (18.2)–92.5 (84.0–104.0) 88.0 (21.6)–89.0 (77.0–101.5) 0.3232

FEV1/FVC**
Mean (sd) – Median (IQR) 71.7 (10.1)–71.0 (65.0–78.5) 72.6 (10.3)–74.0 (66.0–80.0) 70.2 (10.0)–71.0 (64.0–77.0) 0.2783

COPD
 No 39 (42.9) 16 (41.0) 23 (59.9)

0.8051

 Yes 52 (57.1) 20 (38.5) 32 (61.5)
 Missing 6
Outcome
Mortality
 Alive 55 (56.7) 15 (27.3) 40 (72.7)

0.0061

 Dead 42 (43.4) 23 (54.8) 19 (45.2)
Disease
 No 45 (46.9) 11 (24.4) 34 (75.6)

0.0081

 Yes 51 (53.1) 26 (51.0) 25 (49.0)
 Missing 1
Tumour characteristics
SUV
 ≤5 21 (23.9) 7 (33.3) 14 (66.7)

0.4181

 >5 67 (76.1) 29 (43.3) 38 (56.7)
 ≤8 39 (44.3) 12 (30.8) 27 (69.2)

0.0841

 >8 49 (55.7) 24 (49.0) 25 (51.0)
 Missing 9
Mean (sd) – Median (IQR) 10.2 (7.0)–8.7 (5.4–13.8) 11.0 (6.2)–11.9 (6.5–15.1) 9.6 (7.4)–7.6 (4.9–12.9) 0.1092

Stage
 I 35 (36.1) 9 (25.7) 26 (74.3)
 II 21 (21.6) 8 (38.1) 13 (61.9) 0.0761

 III/IV 41 (42.3) 21 (51.2) 20 (48.8)
TNM Staging**
 N = 0 46 (50.0) 14 (41.2) 32 (55.2)
 N > 0 46 (50.0) 20 (58.8) 26 (44.8) 0.2791

Subtype
 Adenocarcinoma 66 (68.0) 23 (34.9) 43 (65.2)

0.3831 Squamous cell carcinoma 16 (16.5) 7 (43.8) 9 (56.2)
 Other 15 (14.5) 8 (53.3) 7 (46.7)
CD133+ cells4

 >=1% 31 (54.4) 18 (56.3) 13 (52.0)
0.74921

 <1% 26 (45.6) 14 (43.7) 12 (48.0)
 Missing 40
CD133+/CXCR4+/EpCAM− cells4

 Yes 28 (58.3) 21 (77.8) 7 (33.3)
0.00191

 No 20 (41.7) 6 (22.2) 14 (66.7)
 Missing 49

Table 1.  Patients and tumours characteristics, overall and according to graft. *P for group comparison: 1Chi-
square test; 2Wilcoxon’s rank-sum test; 3Student’s t-test; 4PDXs values; **5 missing values. SUV: Standard 
Upatake Value; COPD: Chronic Obstructive Pulmonary Disease.
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PDX grafting is associated with patients survival.  Clinical characteristics of patients were analyzed 
to investigate PDXs take determinants. Association of sex, age, smoking habits, lung functionality parameters 
(FEV1, FEV1/FVC and COPD) and clinical outcome with tumour grafting capability were examined. As shown 
in Table 1 and Table 2, a worse outcome was significantly associated with an increased likelihood of grafting 
(p = 0.006). An increased grafting probability was observed also for higher stage tumours (p = 0.041 for Stage 
II, III, IV vs. Stage I and p = 0.038 for Stage III,IV vs. Stage I,II) and tumours with higher CD133+/CXCR4+/
EpCAM− subpopulation (p = 0.019) whereas a trend towards increased grafting for tumours with SUVmax higher 
than 8 (p = 0.084) was observed (Table 1). The correlation between clinical outcome and PDX grafting was fur-
ther analyzed using Kaplan Meier and Cox analyses. At the time of the present analysis, 42 patients died and the 
OS rate at 5 years was 51% (95% CI, 39–62%). Interestingly, OS at 5 years was significantly worse (p = 0.0008) in 
patients with grafted PDXs (36%; 95% CI, 20–52%) than those with not grafted PDXs (61%; 95% CI, 43–74%) 
(Fig. 3A), also considering tumour stage (73%; 95% CI, 56–85% in stages I/II vs 20%; 95% CI, 10–36% in stages 
III/IV, p < 0.0001) (Fig. 3B). In multivariable Cox analysis, grafting PDXs and tumour stage significantly influ-
enced OS (Table 2), with HR for death being 2.59 (95% CI, 1.36–4.94) for grafted versus not grafted LcPDXs, 
and 5.59 (95% CI, 2.74–11.40) for stages III/IV vs. stages I/II. Age, sex and SUV did not affect OS. Similar results 
emerged when considering disease-free survival (Table 2).

These data highlight that the capability of tumour samples to establish LcPDXs is an inherent characteris-
tic of primary tumours linked to the biological aggressiveness potential, thus acting as an adverse prognostic 
marker.

Grafted PDX may act as “Avatars” for personalized treatment.  We further analyzed LcPDX 
growth characteristics, categorizing our platform based on average time to transplantation (TT- time from 
implant to explant) in the first 10 passages (Fig. 3C). Average TT for all LcPDX was 44.95 days; average TT for 
SCC-derived LcPDXs felt almost all around this value, SCLC-derived LcPDXs displayed a slower TT, whereas 
ADC-derived LcPDXs were split into two distinct groups (faster growing, fgADC and slower growing, sgADC, 
Fig. 3D). Although no tumour or patient characteristics clearly discriminated fgADC from sgADC, sgADCs 
were enriched in Stage I tumours (37.5% vs. 4.4% in sgADC and fgADC respectively) and in tumours bearing 
CTNNB1 mutations (33.3% vs. 14.3% in sgADC and fgADC respectively) and were mainly derived from heavy 
smokers (Supplementary Tables 2 and 3).

In order to clarify if a co-clinical approach could have been feasible for LcPDXs, we analyzed their growth 
characteristics according to patient survival, and found no correlation between the time required to reach P3 
(Time to Reach Grafting - TRG) and the patient DFS (Fig. 3E), indicating that faster LcPDXs were not necessarily 
derived from patients with lower OS or DFS. Indeed, for 24/38 (63.2%) LcPDXs (9 Stage I, 6 Stage II and 9 Stage 
III/IV), TRG was less than DFS of the relevant patients (Fig. 3E). Thus, these LcPDX may have been exploited 
for meaningful drug testing, before tumour recurrence occurred in patients. Interestingly, this “Avatar” approach 
could have been put to use to give insights for the treatment of 25.5% (13/51) patients with progression of disease: 
16.7% (1/6) Stage I, 33.3% (4/12) Stage II and 24.2% (8/33) Stage III/IV (Table 4).

Discussion
We reported here the establishment (with 39.2% grafting rate) of a large platform of lung cancer PDXs. 
Although the study population represents less than 10% of all patients who underwent mediastinal biopsy 
or pulmonary resection with curative intent for primary lung cancer during the same period, there was no 
selection by major prognostic factors, and median survival of the 97 patients providing PDXs samples was very 
similar to the one of the other 953 patients (47 vs 57 months). These models recapitulated all the features of 
original tumours. In particular, tumour architecture was maintained in our PDXs, with stromal content and 
main histological patterns being similar to parental tumours at least in early passages (P ≤ 10). Interestingly, 
cellular patterns linked to non aggressive lung cancer subtypes (i.e lepidic)25 were lost in our models, whereas 
a slight tendency toward a selection for more solid, vimentin-expressing tumours was observed in late mouse 

Overall survival Disease free survival

crude HR (95% CI) adjusted** HR (95% CI) crude HR (95% CI) adjusted** HR (95% CI)

Engrafting PDXs (yes vs no) 2.73 (1.48–5.04) 2.61 (1.37–4.98) 2.41 (1.38–4.22) 1.90 (1.04–3.48)

Sex (men vs women) 1.13 (0.60–2.15) 1.07 (0.52–2.23) 1.05 (0.59–0.88) 0.95 (0.49–1.85)

Age (1 year increment) 1.02 (0.99–1.06) 1.03 (0.99–1.07) 1.02 (0.99–1.05) 1.01 (0.98–1.05)

Stage

 II vs I 2.79 (0.89–8.80) 2.65 (0.79–8.89) 4.24 (1.59–11.30) 5.13 (1.83–14.41)

 III/IV vs I 8.93 (3.43–23.27) 8.59 (3.13–23.60) 9.09 (3.74–22.07) 8.84 (3.48–22.50)

Subtype

 Squamous cell vs adenocarcinoma 0.78 (0.30–2.04) 0.85 (0.29–2.49) 1.31 (0.62–2.75) 1.67 (0.69–4.02)

 Other vs adenocarcinoma 1.75 (0.82–3.71) 1.41 (0.62–3.19) 1.70 (0.83–3.46) 1.49 (0.70–3.21)

SUV (>8 vs <=8) 1.81 (0.96–3.40) 1.25 (0.62–2.52) 2.28 (1.25–4.14) 1.51 (0.78–2.91)

Table 2.  Hazard ratios (HR) and 95% confidence intervals of overall survival and disease free survival 
according to tumour graft, age, sex, stage and SUV. **Estimated from Cox proportional hazard regression 
model adjusted for engrafting PDXs, sex, age, tumour stage, tumour subtype, and SUV.
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Figure 1.  Analysis of PDXs characteristics. (A) Parental tumour diagnosis was maintained in all established PDX. 
Pictures show a representative example of 1 ACC- and 1 SCC-derived PDXs. (B) Immunohistochemistry markers 
analysis confirmed that our PDXs platform generally maintained the same expression pattern of parental tumours, 
picture shows a representative example of a TTF1 expressing ADC-derived PDX. (C) PDXs stromal content was 
generally lower compared to parental tumours, especially at P > 10. However, stromal components were always more 
represented in PDXs than in cell line derived xenografts (average stromal component: 22 ± 12% in parental tumours, 
15 ± 7% in P ≤ 10 and 10 ± 7% in P > 10, n = 10; 4.2 ± 1.012% in lung cancer cell line xenografts, n = 5). (D) In PDX 
LT220 complete loss of TTF1 and marked acquisition of vimentin and Ki67 labelling index was observed along with 
the appearance of spindle cells. ADC = Adenocarcinoma, SCC = Squamous Cell; (E) CD133+ cell percentage was 
also maintained in PDX models (n = 17, p = 0.0005, r2 = 0.568); (F) PDXs were differently responsive to cisplatin 
treatment (5 mg/Kg once a week for three weeks), models were considered responsive when at least a partial response 
(PR, median of four tumors) was reached. Mean Overall Survival of patients treated after surgery and from whom 
a responsive PDX was derived (R-treated) were higher than that of patients from whom a non responsive PDX was 
derived (NR-treated; 27.667 ± 7.753 months n = 3 and 8.5 ± 3.019 months n = 6, respectively). MCR: maintained 
complete response; CR: complete response; PR: partial response; SD: stable disease; PD: progression of disease.
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passages. This suggests at the one side that grafted models could be preferentially derived from more aggres-
sive tumours and at the other side that a tumour evolution towards a higher aggressiveness was appreciable 
also during PDX passages in mouse. A tumour evolution was strongly suggested by LT63, LT220 and LT268 
behaviour in mouse, indeed in these models an epithelial to mesenchimal transition (EMT) was appreciable, 
with loss of TTF-1, acquisition of vimentin and Ki67 expression. Interestingly, LT220 and LT268 were the only 
two analyzed tumours for which no mutations were detected, suggesting either that they could carry other 
rare mutations or that they are not cell-autonomous and their tumour growth and progression are mainly 
dependent on tumour adaptation to microenvironment (ME). These data suggest a progressive adaptation 
of PDXs to murine ME. Since PDXs fully recapitulated primary tumour characteristics, it can be argued that 
these models could also recapitulate the natural history of tumours. Indeed, in our models, the cross-talk 
between tumour (human) and microenvironmental (murine) cells seemed to produce a selective pressure that 
advantaged solid patterns, vimentin expression and eventually complete EMT. Thus, although PDXs did not 
retain original tumour ME and therefore are not suitable for investigating non-cell autonomous (stromal and 
immune) drivers of tumour evolution26, our observations suggest that murine ME may be partly able to vicar-
iate human tumour ME also in driving malignant progression. Thus, LcPDXs may be an operational model to 
investigate stromal mechanisms underlying cancer evolution towards dissemination (EMT) and aggressiveness 
and can therefore be also suitable for preclinical studies involving ME (stroma and innate immunity)-directed 
treatments.

The analysis of clinico-pathological characteristics indicated a good correlation between PDX establishment 
and survival (OS and DFS). A multivariable Cox analysis confirmed an higher HR for grafted PDXs also when 
adjusting for Stage, SUVmax, Sex and Age. These data confirmed that aggressive tumours have an advantage 
in terms of grafting capability, as suggested by pathology analysis and as already reported for early stage lung 

All PDX PDX p > 10*

Human 
n = 27

Mouse 
(p < 10) 
n = 27

Human 
n = 10

Mouse 
(p < 10) 
n = 10

Mouse 
(p > 10) 
n = 10

Diagnosis(1)

   ADC 20 20 9 9 9

   SCLC 4 4 1 1 1

   SCC 3 3 0 0 0

All ADC PDX > 10 (ADC)

Human 
n = 20

Mouse 
(p < 10) 
n = 20

Human 
n = 9

Mouse 
(p < 10) 
n = 9

Mouse 
(p > 10) 
n = 9

Pattern (1)

   SOLID 12 11 6 7 8

   TRABECOLAR 1 0 NA NA NA

   LEPIDIC 3 0 3 0 0

   SPINDLE CELLS 2 4 1 1** 1**

   ACINAR 10 7 4 3 2

   CRIBRIFORM 11 7 6 5 4

   MUCINOUS 1 2 1 2 2

   PAPILLAR 8 2 4 1 1

   MICROPAPILLAR 5 4 3 2 2

   COLLOID (GELATINOUS) 1 1 NA NA NA

   SIGNET CELLS 0 1 0 1 1

Vessels (1)

   GLOMERULOID 3 4 0 1 1

   THIN 4 3 3 1 1

   NO 20 20 7 8 8

Average stromal percentage 24 ± 12.39 14 ± 8.95 22 ± 12 15 ± 7 10 ± 7

Average necrosis percentage 21 ± 20 15 ± 13 21 ± 20 11 ± 9 23 ± 16

Markers (1)

   SYNAPTOPHYSIN 4 1 1 1 0

   TTF-1 16 9 6 4 4

   P40 2 2 2 2 2

   VIMENTIN 7 12 4 6 8

   KI67 20 20 9 9 9

Table 3.  Patients and tumours histopathological analysis. (1) Number of positive models; *Analysis of 10 PDXs 
that reached P > 10 in mouse; **Resulting from a pattern loss in one PDX and a pattern acquisition in another 
PDX.
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cancer PDXs19. A trend for metabolically more active tumours (SUVmax > 8) to graft in mice was also observed. 
A low primary tumour SUVmax was reported as a predictor of long-term survival and as a tool to identify NSCLC 
patients without lymph node involvement27,28. Lung tumour mortality is mainly due to metastasis development, 
and it has been reported that PDXs derived from lung cancer brain metastasis showed a higher take rate com-
pared to PDXs derived from primary tumours23. However, we found no correlations between PDX establishment 
and TNM staging of primary tumour. On the contrary, we found a tendency towards a higher grafting capability 
for tumours according to the presence of CD133+/CXCR4+/EpCAM− cells. We previously reported the heteroge-
neity of CD133+ cancer initiating cells29 and in particular the capability of the CD133+/CXCR4+/EpCAM− sub-
population to sustain tumour dissemination30. All these data suggest that aggressiveness of grafted tumours may 
mirror an inherent biological trait of tumours and that grafting capability may depend on the presence of cells 
that are able to seed in a non orthotopic soil. Interestingly, LcPDXs showed enrichment in mutation rate of TP53 
in all tumour types and of KRAS in ADC where the frequency of mutations was almost double than that expected 

Figure 2.  PDX genetic profile. (A) Comparison of human tumour DNA and PDXs DNA showed that non 
synonymous alterations found in parental tumours were generally found also in PDXs but with a higher allelic 
frequency, whereas synonymous alterations were maintained without increase in allelic frequency (B). (C,D) 
Table and pie graph show frequency of mutations identified in PDXs platform. (E) FISH analysis of two MET 
amplified PDXs. ADC = Adenocarcinoma, SCC = Squamous Cell Carcinoma.
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Figure 3.  PDX grafting as prognosis determinant and PDXs growth characteristics. (A) 5-years OS of all 
patients involved in PDX platform establishment. 5-years OS of patients from whom PDX was successfully 
established (grafted) was significantly lower than OS of patients whose tumour sample did not give rise to a 
PDX (not grafted) (Log-rank test p = 0.0008). (B) 5-years OS was lower for stage III/IV patients than stage I/
II patients (20%; 95% CI, 10–36% and 73%; 95% CI, 56–85%, respectively). Interestingly, stage III/IV patients 
with grafted PDX still maintained a significantly lower OS than not grafted (Log-rank test p = 0.0027) whereas 
stage I/II patients with grafted PDXs showed only a slight tendency towards a lower than not grafted 5-years 
OS. (C) Average time to transplantation (from P3 to P10, TTP3–P7) for each PDX. ADC = Adenocarcinoma, 
SCC = Squamous Cell Carcinoma. (D) ADC could be divided in two distinct groups based on their growth 
characteristics, fgADC = fast growing ADC with TT < 44.95 days and sgADC = slow growing adenocarcinomas 
with TT > 44.95 days (44.95 days corresponded to the average GT of all PDXs). (E) Patient’s DFS and PDXs 
grafting time (GT, time a model needs to stabilize in mouse and reach P3) were not linearly correlated (n = 38, 
p = 0.678, r2 = 0.005), and for 23 PDXs DFS was higher than GT.
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from literature data (57.9% KRAS mutated PDX vs 25–35% KRAS mutated ADC31) whereas EGFR mutations 
were rarely present. The assumption of KRAS mutations as prognostic markers in lung ADC is controversial32–36, 
but the high rate of KRAS mutations in grafted PDXs seem to support this hypothesis.

Grafted PDXs were categorized based on growth rate and ADC-derived PDX were divided in two groups 
(fgADC and sgADC). No patient or tumour characteristics could discriminate these two groups, probably 
because of the low number of models (14 fast and 8 slow) under evaluation. Additional work will clarify if these 
two groups were derived from tumours or patients with distinct biological traits, in particular to confirm a 
prevalence of stage I tumours from heavy smokers or CTNNB1-mutated tumours to give rise to sgADC or a 
slightly higher tendency of KRAS-mutated tumours to give rise to fgADC. As a role of aberrant WNT signalling 
in response to cigarette smoke has already been reported37,38, sgADCs could represent tumours of heavy smok-
ers with impaired WNT/beta catenin pathway. Accordingly, sgADCs might represent a tumour subgroup with 
decreased tumour-microenvironment cross-talk capability, either because of the lack of smoke-induced lung 
inflammation in mouse or due to a particular mutational status.

One of the main advantages of establishing LcPDXs is that parental tumour traits can be conserved over time, 
making biological studies available even after patient death (Supplementary Figure 4). This represents a unique 
opportunity to investigate specific therapies in tumours with different pathological and molecular features as 
already demonstrated, utilizing our NSCLC PDX platform, for bevacizumab-treated LKB1 mutated tumours39. 
However, to exploit these models as being “avatars” for personalized patient therapy, the time required to sta-
bilize them in mouse has necessarily to be less than DFS and, due to clinical aggressiveness of lung cancer, the 
use of PDXs for developing personalized therapy strategies is generally unfeasible. This issue coupled with the 
generally low grafting rate, allows mainly to exploit the broadest spectrum of different mutations of LcPDXs 
to investigate the efficacy of targeted therapies rather than to implement co-clinical approaches. Nonetheless, 
we here first show that 63.2% of grafted models was stabilized in mice before occurring of tumour recurrences, 
thereby offering a chance to personalized treatment in approximately one fourth of all lung cancer patients 
involved in this study and, interestingly, in one third of Stage II (and one fourth of Stage III) patients with pro-
gression of disease.

In conclusion, we reported the establishment of a wide panel of LcPDX, which accurately mirrored primary 
tumours in terms of subtype, growth pattern, genotype, metabolic activity and cancer stem cell composition. 
Moreover, PDX take rate correlated with patient OS and DFS, tumour stage, SUV, and presence of CD133+/
CXCR4+/EpCAM− cells, consistent with more aggressive tumours prone to disseminate. Our LcPDX platform, 
beside recapitulating a broad spectrum of lung cancer-related mutations useful to test targeted therapies, could 
also be suitable for developing personalized co-clinical studies and investigating tumour-microenvironment 
cross-talk. All these observations strengthen the relevance of LcPDXs as an operational and robust pre and 
co-clinical model closely mirroring parental tumours, which could play a strong clinical role in biological and 
pharmacologic studies.

Material and Methods
Patients Selection.  Tumour samples were collected from May 2006 to July 2013, with a sterile procedure 
in the operating room, after mediastinal biopsy (9 patients) or anatomical pulmonary resection, such as pneu-
monectomy, lobectomy or segmentectomy (88 patients). These patients represent 7% (9/135) of all mediastinal 
biopsies, and 10% (88/915) of all anatomical resections for primary lung cancer, performed at the “Fondazione 
IRCCS Istituto Nazionale dei Tumori” during the same period. Samples of primary NSCLC were obtained from 
patients undergoing surgical resection, who gave their informed consent after approval from the Internal Review 
and the Ethics Boards of the Fondazione IRCCS Istituto Nazionale Tumori and all methods were performed in 
accordance with istitutional guidelines and regulation.

PDXs establishment.  PDXs were established as described in ref.5. PDXs models were propagated for 
three rounds in mice (P1–P3) before to be considered stabilized and then frozen in a solution of 90% FBS and 
10% DMSO and stored in liquid nitrogen. The experimental protocol was approved by the C.E.S.A. (Ethical 
Committee for Animal Experimentation, of the National Cancer Institure Foundation), and animal experimen-
tation was performed following guidelines drawn-up by C.E.S.A. according to ref.40.

Stage PD/D DFS > TRG NED DFS > TRG Total DFS > TRG

Overall

  I 6 1 (16,7) 30 8 (26,7) 36 9 (25)

  II 12 4 (33,3) 9 2 (22,2) 21 6 (28,5)

  III 33 8 (24.2) 7 1 (14,3) 40 9 (22,5)

Grafted PDXs

  I 1 1 (100) 8 8 (100) 9 9 (100)

  II 6 4 (66.7) 2 2 (100) 8 6 (75)

  III 19 8 (42.1) 1 1 (100) 20 9 (45)

Table 4.  PDXs as “Avatars” (DFS > TRG) in relation to patients follow-up. PD: Progression of Disease; D: 
Death; NED: No Evidence of Disease; DFS: Disease Free Survival; TRG: Time to reach grafting.



www.nature.com/scientificreports/

1 0SCIENTIFIC REPOrTS | 7: 6689 | DOI:10.1038/s41598-017-06912-7

In vivo treatments.  Experiments were carried out in groups of 4 mice, bearing a PDX in each flank. Mice 
were treated once a week for three weeks with 5 mg/Kg Cisplatin (Teva) or vehicle. Tumour growth was fol-
lowed by calliper once a week and results were analyzed using GraphPad Prism software. Response Rate was 
calculated as follows (adapted from PPPTP testing and analysis methods: https://ctep.cancer.gov/content/docs/
PPPTP_TESTING_AND_ANALYSIS_METHODS.pdf): maintained complete response (MCR, score: 10): max-
imal growth inhibition vs controls >50% and tumor volume (Tv) < 100 mm3 at the end of treatments; com-
plete response (CR, score: 8): MGI > 50% and Tv < 100 mm3 at least in 1 time point; partial response (PR, score: 
6): MGI > 50% and Tv always > 100 mm3; stable disease (SD, score:4): MGI < 50% and increase in initial vol-
ume (iiV) <25%; progression of disease 2 (PD2, score:2): MGI < 50% and iiv >25% and tumor growth delay 
(TGD) > 1.5; PD1 (score: 0): MGI < 50% and iiv > 25% and TGD < 1.5. TGD was calculated as (time to event)/
(average time to event of controls), assuming an event as the time a tumor needs to triple its starting volume.

NGS analysis.  DNA was quantified with NanoDrop 2000 (Thermo Fisher Scientific) and aliquots of 100 ng 
were shipped to Genewiz laboratories (http://www.genewiz.com) for targeted NGS analysis using the Ion 
AmpliSeq™ Cancer Hotspot Panel v2 (Thermo Fisher Scientific). Raw sequence data were trimmed, classified 
with Xenome software41 to eliminate as many mouse reads as possible, aligned in NextGENe and checked for 
variants using NextGENe v 2.3.4.4 and v2.4.1 software (Softgenetics).

FISH Analysis.  Fluorescence in situ hybridization analysis was performed in 24 μ-thick paraffin sections by 
counting at least 100 tumour cells. Briefly, to assess MET amplification a commercially available probe ZytoLight® 
SPEC MET/CEN 7 Dual Colour Probe (localized at chromosome 7q31 locus) was utilized according to manu-
facturer’s instructions. MET gene amplification was defined as the ratio of MET/Chromosome 7 equal or greater 
than 2.0, or the presence of clusters in at least 10% of analyzed tumour cells.

Immunohistochemistry.  Thyroid transcription factor-1 (TTF1), as a marker for lung adenocarcinoma42; 
synaptophysin for neuroendocrine differentiation43; DNp63/p40 (henceforth simply p40) for squamous cell carci-
noma44; vimentin for epithelial-mesenchymal transition in lung cancer45 and Ki-67 for cell proliferation activity46 
immunohistochemistry was performed on both LcPDXs and paired surgical specimens, which had been formalin 
fixed and paraffin embedded according to standard histopathology methods. Briefly, three-four micron-thick 
sections were made react with the relevant primary antibodies for 30 min (TTF1, clone 8G7G3/1, Dako, Glostrup, 
Denmark, dilution 1:2000 with EDTA buffer unmasking at pH 8 for 30 min; synaptophysin, clone DAK-SYNAP, 
Dako, dilution 1:200 with EDTA buffer unmasking at pH 8 for 15 min; p40, polyclonal, Calbiochem Millipore, 
San Diego, CA, USA, dilution 1:3000 with EDTA buffer unmasking at pH 8 for 40 min; vimentin, clone V9, Dako, 
dilution 1:400 with citrate buffer unmasking at pH6 for 15 min; Ki-67 antigen, clone MIB-1, Dako, dilution 1:400 
with EDTA buffer unmasking at pH 8 for 15 min). Sections were then incubated with a commercially available 
detection kit (EnVision™ FLEX+, Dako) in an automated immunostainer (Dako Autostainer System, Dako). The 
specificity of all reactions was double-checked replacing the primary antibody with a non-related mouse immu-
noglobulin at a comparable dilution or using normal serum alone. Positive and negative controls were adopted 
as required. Results were rendered semi-quantitatively as the percentage of labelled cells showing convincing 
cytoplasm (synaptophysin, vimentin) or nuclear (TTF1, p40, Ki-67) decoration on the basis of the specific gene 
product being investigated.

Flow Cytometry.  Single-cell suspensions (106 cells) were incubated in staining solution containing 
1% BSA, 2 mM EDTA and phycoerythrin (PE)-conjugated anti human CD133/1 (Miltenyi Biotech) and/
or Allophycocyanin (APC)-conjugated anti human CD184 (BD Pharmingen™) and/or fluorescein isothio-
cyanate (FITC)- conjugated anti EPCAM (Miltenyi Biotech). To assess PDXs stromal content, single-cell sus-
pensions (106 cells) were washed and incubated in staining solution containing 1% BSA, 2 mM EDTA and 
AlexaFluor®488-conjugated anti human HLA (BD Pharmingen™) and PreCP-eFluor 710- conjugated anti 
murine MHC(H-2Kd) (eBioscience). Samples were acquired by FACS Calibur and analyzed with FlowJo_V10 
software.

Statistical analysis.  Continuous variables were presented as mean values ± standard deviation (SD) and 
median with inter-quartile range (IQR), and categorical variables as numbers and percentages. Comparisons 
among groups for continuous variables were performed using a two-sided Student’s t-test for normally distrib-
uted variables and a two-sided Wilcoxon’s rank-sum test for variables not conforming to a normal distribution, 
and for categorical variables using contingency table analysis with the Chi-square test. The primary end-points 
of the study were overall survival (OS) and disease free survival (DFS). For each end-point, the time to event 
occurrence was computed from the date of surgery to the date when the event was recorded, or was censored at 
the date of last follow-up assessment in event-free patients. Hazard ratios (HR) of OS and DFS and the corre-
sponding 95% confidence intervals (CIs) according to age, sex, tumour stage, SUV, and grafting of tumour were 
estimated using Cox proportional hazard models. A multivariable analyses was performed including terms 
for all these factors in the same Cox model. Survival curves were estimated using the Kaplan–Meier method 
and were compared by the log-rank test. Graphical evaluation by Schoenfeld residual plots indicated that the 
model assumptions concerning proportional hazards were appropriate. All tests were two-sided and a p-value 
of less than 0.05 was taken as statistically significant. Statistical analyses were performed using SAS 9.2 (SAS 
Institute, Cary, NC) and the figures were obtained using STATA 11.0 (StataCorp LP, College Station, TX) statis-
tical software.

https://ctep.cancer.gov/content/docs/PPPTP_TESTING_AND_ANALYSIS_METHODS.pdf
https://ctep.cancer.gov/content/docs/PPPTP_TESTING_AND_ANALYSIS_METHODS.pdf
http://www.genewiz.com
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