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In order to accommodate the empirical fact that population structures are rarely
simple, modern studies of evolutionary dynamics allow for complicated and highly
heterogeneous spatial structures. As a result, one of the most difficult obstacles lies in
making analytical deductions, either qualitative or quantitative, about the long-term
outcomes of evolution. The “structure-coefficient” theorem is a well-known approach
to this problem for mutation–selection processes under weak selection, but a general
method of evaluating the terms it comprises is lacking. Here, we provide such a method
for populations of fixed (but arbitrary) size and structure, using easily interpretable
demographic measures. This method encompasses a large family of evolutionary update
mechanisms and extends the theorem to allow for asymmetric contests to provide a bet-
ter understanding of the mutation–selection balance under more realistic circumstances.
We apply the method to study social goods produced and distributed among individuals
in spatially heterogeneous populations, where asymmetric interactions emerge naturally
and the outcome of selection varies dramatically, depending on the nature of the social
good, the spatial topology, and the frequency with which mutations arise.
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Population structure is nearly ubiquitous in nature and occurs on many levels. Microbes
exhibit strong spatial heterogeneity in response to variation in temperature, pH, and
vegetation cover in terrestrial soils (1) and to harsh environmental gradients and patchy
habitats at deep-sea hydrothermal vents (2). On a very different scale, global human social
networks are known to consist of many highly connected clusters, often held together by
dense cores (3), which can, in turn, affect both public opinion (4) and disease transmission
(5, 6). Evolutionary outcomes depend on population structure because it constrains social
interactions and the dispersal of offspring.

Fully a century ago, Hagedoorn and Hagedoorn (7) argued, based on observations of
spatial heterogeneity in land snails, that variation due to chance in small local populations
is an important factor of evolution. Early theoretical work by Wright (8, 9) and Malécot
(10) on the distribution of gene frequencies and genetic identity in regularly subdivided
populations stimulated later research in population and evolutionary genetics, focused
largely on symmetric population structures with discrete, well-mixed subpopulations
connected by migration. These include the island model (8), with symmetric migration
between every pair of subpopulations, and the one-dimensional and two-dimensional
stepping-stone models (11–13), with migration only between neighboring subpopulations
on a lattice. These same models have been used to study social evolution; e.g., see
Nakamaru et al. (14).

Decades of subsequent research clarified the empirical facts of population structure, as
well as its importance in theoretical models of evolution (15, 16). Increased relatedness—
and, thus, greater genetic identity within local populations—is the hallmark of population
structure. The cause is local “genetic drift” (hereafter just drift) due to the vagaries of
reproduction when the number of individuals in a given region is not large and migration
is restricted. Frequencies of traits vary from one location to the next, which, in turn, affects
the outcome of selection because it alters the rate of same-type interactions. Using diffu-
sion models, for example, it has been shown that high local identity between individuals
can change the effective population size and selection coefficient (17). These effects can
dramatically alter the course of evolution [e.g., through increasing the fixation probability
of recessive advantageous mutations (18)]. Ideas of nonuniform interaction have also
been crucial in evolutionary game theory, even in models of otherwise well-mixed,
infinite populations (19–24). That interaction structure and reproductive structure may
work together nonindependently has been further emphasized by laboratory experiments
(25, 26).

Population structure affects who interacts with whom, but it can also fundamentally
change the nature of these interactions. In what follows, we use the example of competition
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between producers of a good (a social trait) and nonproducers.
Producers generate a good of benefit b and pay a cost, c, to do
so. While the production of a good in isolation is straightforward,
its expression within a structured population can take different
forms. One option is for a producer to generate a separate good
for each neighbor, each of benefit b (to the neighbor) and cost
c (to the producer). As a producer’s group size grows, so, too,
does the total good generated by the producer, a quality that has
been observed in social grooming among primates (27). For other
kinds of divisible goods, such as food shared among vampire bats
(28) or the time and effort a researcher allocates across several
collaborations (29), a more natural assumption might be that
the good is produced once, and the benefit, b, is divided among
neighbors (30). How much any one neighbor receives depends
on how many share the benefit, which can vary significantly in
a spatially heterogeneous population. Allotments of social goods
in structured populations lead naturally to asymmetric games,
in which payoffs to individuals depend on not just the trait of
immediate interest (e.g., producer versus nonproducer), but on
other factors as well, including group sizes (31, 32).

In this work, we consider the distribution of social goods in
a general model of a graph-structured population, which can
include the discrete-subpopulation models mentioned above, but,
more importantly, can depict arbitrarily fine-grained heterogene-
ity (33–36). We are interested in whether a social trait is fa-
vored in evolution, with competition determined by a game that
may be asymmetric. With the greater flexibility of an arbitrary
graph comes greater complexity, which prohibits comprehensive
analysis for all but the smallest populations or those with high
degrees of symmetry. This trade-off between model complexity
and tractability has prompted a variety of approaches, rang-
ing from approximation techniques (37, 38) to exact results on
homogeneous population structures (39–43) to the analysis of
simulation algorithms (44). We follow a common fruitful way
forward—namely, to assume that selection is weak and to focus on
the stationary frequency of the social trait, in which case increased
local relatedness and its effect on evolution can be captured with
relative ease (45–50).

When selection is weak and mutations appear sufficiently
infrequently, the problem can be reduced to a consideration of
fixation probabilities (46, 47, 51, 52). Recent techniques allow
one to compute fixation probabilities in populations with ar-
bitrary spatial structure (53, 54). Under the assumption that a
mutation either fixes or is removed from the population prior
to the appearance of another mutant, fixation probabilities allow
faithful approximations of the mean frequency of a trait (51).
This assumption is slightly more restrictive than it first appears,
as the amount of time it takes for the population to return to
a monomorphic state can depend strongly on the nature of the
interactions. For instance, it is known that for some kinds of
frequency-dependent interactions, in which coexistence is possible
for extended periods of time, the maximum allowable mutation
probability decays exponentially in the population size (55, 56).
For these kinds of traits, fixation probabilities are no longer nec-
essarily the most meaningful or relevant measures of evolutionary
dynamics.

Aside from the question of whether mutations are rare enough
for fixation probabilities to be appropriate measures, we note that
the mutation probability need not be small at all. In cultural
contexts, mutations can reasonably occur with high frequency
(57–62). Assuming weak selection, but not weak mutation,
Tarnita et al. (58) elegantly boiled down the question of whether a
trait is favored to a single quantity called the structure coefficient.
To state their theorem, we use the notation of Débarre et al. (41)

and assume that there are two types in the population: S (“social”)
and NS (“nonsocial”). Payoffs for interactions between types are
given by the matrix

( S NS

S a11 a12

NS a21 a22

)
. [1]

The social trait, S, is said to be favored by selection (via the game)
if its equilibrium frequency is greater than what it would be under
neutrality—i.e., if the first-order effect of selection on the mean
frequency of the type is positive (46, 47). As this single matrix
applies to all pairs of individuals, this is necessarily a symmetric
game. Following Tarnita et al. (58), we assume that mutations
occur with fixed probability u > 0 per reproduction event and
that the resulting trait is sampled uniformly at random from the
space of possible types. In particular, when there are two traits, S
is favored by selection if its equilibrium frequency is above 1/2.
Under some mild conditions on the population structure and the
evolutionary update rule, Tarnita et al. (58) show that there exists
a “structure coefficient,” σ, such that weak selection favors S over
NS in the mutation–selection equilibrium whenever

σa11 + a12 > a21 + σa22. [2]

The structure coefficient depends on the mutation probability,
population structure, and update rule, but not on the payoffs of
the game. Thus, under weak selection and considering only the
mean frequency of S at equilibrium, σ captures all relevant aspects
of population structure. It may be noted that σ appears in Eq. 2 as
a weight on the payoffs of same-type interactions. If one models
the effects of selection on fecundity and survival separately, using
different payoff matrices for each, then the structure-coefficient
theorem involves two weights, one for each step of the life cycle
(41). These weights still retain the property of applying to same-
type interactions, and when the two payoff matrices coincide (or
one is zero), a condition involving only one structure coefficient
is recovered. Our extension of the structure-coefficient theorem
includes two coefficients, though we do not distinguish between
different steps of a life cycle using different payoff matrices.

Tarnita et al. (58) proved the existence of σ, but did not give
a general method for computing it. One of our goals here is to
provide a recipe for calculating σ in terms of simple demographic
quantities. However, knowing how to calculate σ still does not
allow us to study the production of divisible social goods. To see
why, we can return to the two kinds of social goods considered
previously. Following the terminology of McAvoy et al. (63), we
refer to goods in which each neighbor gets b at a cost of c as
“pp-goods” since both the total benefit and the total cost are
proportional (“p”) to the number of interaction partners. The
other kind of good, in which a single benefit, b, is divided among
all neighbors, is termed an “ff-good” to indicate that the total
benefits and costs are both fixed (“f”), independent of the number
of neighbors. In both cases the interaction between any pair of
neighboring individuals is a kind of “donation game” (64), but
the combined outcome of all such pairwise games across the
population differs for pp-goods versus ff-goods.

The case of pp-goods falls within the scope of the model of
Tarnita et al. (58) since the benefits and costs are the same for
every pair of neighbors in the population. In terms of Eq. 1,
pp-goods satisfy a11 = b − c, a12 =−c, a21 = b, and a22 = 0.
Here, games are symmetric, and population structure only affects
σ. In contrast, with ff-goods, population structure usually results
in asymmetric games and cannot be summarized by a single
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coefficient. The payoff to an individual of type x at location i in the
game against an individual of type y at location j depends on their
numbers of neighbors. We write aij

xy to denote the dependence
on their locations and suppose that wi and wj are their numbers
of neighbors. For brevity in much of what follows, we refer to
the individuals at locations i and j simply as “i” and “j.” If i is a
producer, then j receives a benefit b/wi , and i pays a cost c/wi

for having j as a neighbor. Similarly, if j is a producer, then j
pays c/wj to provide a benefit of b/wj to i. Thus, for ff-goods,
aij
11 = (b/wj − c/wi), aij

12 =−c/wi , aij
21 = b/wj , and aij

22 = 0.
Games involving ff-goods in structured populations are symmetric
only when every individual has the same number of neighbors,
such that aij

xy is independent of i and j.
Here, we provide a method of analyzing mutation–selection

dynamics in populations with finite size, N, and fixed (but ar-
bitrary) structure. Specifically, we obtain an extension of the
structure-coefficient theorem to games written in terms of aij

xy .
We prove a result analogous to Eq. 2, but that involves more
than a single structure coefficient. This allows us to quantify how
much a strategy is favored or disfavored, not just whether its mean
frequency is above or below the value expected under neutral
drift. We provide a general method of computing these structure
coefficients in terms of simple demographic quantities and give a
complexity bound on the calculations in terms of the population
size. We also consider games with any finite number of strategies,
providing a method for calculating the coefficients appearing in
the generalization of the structure-coefficient theorem due to
Tarnita et al. (59).

We use this method to investigate pp-goods versus ff-goods
in graph-structured populations, in order to understand how
the differences between these goods may be amplified by spatial
heterogeneity, as well as how the rate of mutation affects the
extent to which they are each favored (or disfavored) by selection.
The results show strong effects of both population structure and
mutation probability, in terms of which traits are favored and
by how much. Trivially, as the mutation probability approaches
one, selection becomes ineffective, independent of the type of
good. But the approach to this can be nonmonotonic. The extent
to which a trait is favored, and even whether it is favored or
disfavored, depends on the mutation probability. Further, the
relative advantage or disadvantage of pp-goods versus ff-goods
depends on mutation. Finally, we use simulations to assess the
sensitivity of these results beyond the limits of weak selection, and
we find them to be qualitatively robust.

Theory and Results

We begin with an overview of the theory developed in detail in
SI Appendix. We discuss the key parameters involved in assessing
the effects selection on the mean frequencies of strategies or traits,
and we describe how these quantities are used to compute struc-
ture coefficients. Table 1 provides a glossary of all the notation we
use.

Following refs. 46 and 47, we consider the first-order effect of
selection on the mean frequency of a trait when the population is
at stationarity. We use the general model of population structure
of Allen and McAvoy (65), in which a scalar parameter δ captures
the intensity or strength of selection. By stationarity, we mean
statistical equilibrium, with respect to the processes of mutation,
selection via a game in which traits are strategies, and reproduction
in a finite population. If 〈xS〉 is the mean frequency of the
social trait S in this stationary distribution, then S is said to be
favored when 〈xS〉 is greater than the corresponding prediction
under neutrality. This is the framework of the structure-coefficient

Table 1. Glossary of notation
Symbol Description
b Benefit of a social good
c Cost of a social good
S The mutant (social) trait
NS The resident (nonsocial) trait
axy Payoff to x against y in a symmetric game
u Probability of a mutation on reproduction
σ Structure coefficient of Tarnita et al. (58)
wi Number of neighbors (degree) of i
aij

xy Payoff to x at i against y at j in an asymmetric game
N Population size
δ Selection intensity
〈xS〉 Equilibrium mean frequency of S
Kk�

1 , Kk�
2 Structure coefficients for asymmetric games

R Set of individuals to be replaced
α Offspring-to-parent map
n Number of traits
x (xi) State of the population of (i)
p(R,α) (x) Probability of replacement event (R,α) in state x
eij (x) Probability that i replaces j in state x
di (x) Death probability of i in state x
Aij Probability of moving from i to j in the ancestral

walk
zi Equilibrium probability that an ancestral line is at i
πi Reproductive value of i
zmut

i Mean probability that first ancestral mutation is at i
πmut

i Mutation-weighted reproductive value of i
φij Probability that i and j are identical by state
Ui (x) Payoff to i in state x
F (x) (Fi (x)) Fecundity of the population (i) in state x
mij

k Marginal effect of k’s fecundity on i replacing j
pij
(xi ,xj)

Neutral probability that i is xi and j is xj

pijk
(xi ,xj ,xk)

Neutral probability that i is xi, j is xj, and k is xk

Ωij Interaction structure of the population
wij Adjacency matrix of the population
◦ Indicates neutral drift (δ = 0)

theorem, which follows from considering d
dδ 〈xS〉 evaluated at

δ = 0.
We take the approach in McAvoy et al. (63) and consider

the effects of a deviation from neutrality on the fecundities of
individuals (F), as well as the effects of the resulting deviations
in fecundities on the frequency of the trait. Fecundities depend
on the game payoffs and the structure of the population. Thus, we
compute the first-order effects of selection using the relationship

d 〈xS〉
dδ

=
d 〈xS〉
dF

dF

dδ
. [3]

Our solution involves three types of measures of population het-
erogeneity, which, in turn, depend on fundamental demographic
parameters. The first measure, πmut, is a type of reproductive
value that summarizes patterns of identity by descent across the
population. The second, φ, is a measure of identity by state, for all
pairs of individuals in the population, which determines expected
payoffs to individuals. The third, mji

k , is the effect of a deviation
from neutral fecundity in individual k on the probability that
j replaces i in one time step. While the first two measures are
evaluated under neutrality (δ = 0), the third measure links these
quantities to the effects of selection. Note again that, for brevity,
by “j replaces i,” we mean the event that the individual at location
j replaces the individual at location i and, similarly, that i, j, and
k are technically locations within the population, not individuals.
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Our main result, which is derived in SI Appendix, says that

〈xS〉=
1

2
+ δ

1

2

N∑
k ,�=1

(
Kk�

1 (ak�
11−ak�

22)
+Kk�

2 (ak�
12−ak�

21)

)
+O

(
δ2

)
, [4]

where

K k�
1 =

1

2u

N∑
i,j=1

πmut
i m ji

k

(
−(φik+φi�)

+(1−u)(φjk+φj�)+u

)
; [5a]

K k�
2 =

1

2u

N∑
i,j=1

πmut
i m ji

k

(
−(φik−φi�)

+(1−u)(φjk−φj�)

)
. [5b]

Again, we assume that u > 0, but we note that Eq. 5 does not di-
verge as u → 0. Both − (φik + φi�) + (1− u) (φjk + φj�) + u
and − (φik − φi�) + (1− u) (φjk − φj�) in Eq. 5 vanish in the
limit u → 0 because all individuals must eventually be identical by
state in the absence of mutation. These terms divided by u then
each have finite limits as u → 0. We refer the reader to refs. 54
and 65 for discussions of the rare-mutation limit in this class of
models.

Modeling Population Dynamics. We consider a discrete-time
population model with arbitrary spatial structure. The population
evolves through a sequence of replacement events, which consist
of pairs, (R,α), where R ⊆ {1, . . . ,N } is the set of individuals
to be replaced and α : R →{1, . . . ,N } is the parentage map (65,
66). In such an event, the individual at location i ∈ R is replaced
by the offspring of the individual at location α (i). If i /∈ R, then
i simply lives through the time step. We assume that there are no
“empty” sites.

Each individual has one of n traits. We use x to denote the cur-
rent state of the population, which is a list of the trait values of all
N individuals. For example, with just n = 2 possible trait values, S
and NS, we would have xi ∈ {S,NS} for i ∈ {1, . . . ,N }. Here,
we consider n = 2, but our results in SI Appendix allow for n > 2.
We use p(R,α) (x) to denote the probability that replacement
event (R,α) occurs. This “replacement rule” (65, 66) depends
on the state of the population because individual fecundities are
affected by game payoffs.

We allow symmetric, parent-independent mutation with
probability u per individual offspring in a replacement event;
that is, with probability 1− u , the offspring of α (i) that replaces
i has the same strategy as its parent. With probability u, the
offspring mutates and acquires a strategy uniformly-at-random—
for example, from {S,NS} when n = 2. Thus, offspring and
parent might still be identical by state after a mutation occurs,
but they will not be identical by descent. We assume that
the mutation probability is positive and is the same for all
individuals.

If u > 0 and a mild assumption on the replacement rule
p(R,α) (x) holds–namely, that at least one individual can
propagate its offspring throughout the entire population
(SI Appendix, section 1.1)–then this process has a unique
stationary distribution with 0< 〈xS〉< 1. We study this
distribution under the assumption of weak selection inherent to
the structure-coefficient theorem, with selection intensity δ � 0
determining the importance of the game to fecundity. Note that
p(R,α) (x) does not depend on x when δ = 0 because trait values
do not affect fecundity under neutrality. We use p◦

(R,α) to denote
the corresponding neutral replacement rule.

The fundamental demographic parameters of individuals are
marginal properties of p(R,α) (x). The first and most important
is the probability that i replaces j in one time step,

eij (x) :=
∑
(R,α)

j∈R, α(j )=i

p(R,α) (x) . [6]

Note that this replacement involves the death of the previous
individual, j. Other demographic quantities are functions of the
eij (x). The second demographic parameter of which we make
extensive use here is the probability that i dies in one time step,
di (x) :=

∑N
j=1 eji (x). Weak selection causes deviations from

the neutral values of these two quantities. We call these neutral
values e◦ij and d◦

i and note that they are independent of the
population state, x. Deviations in eij (and all other demographic
quantities) due to selection via the game do depend on x, but only
through changes in the fecundities (F), as in Eq. 3. We use F◦ to
denote fecundities under neutral drift.

In the following subsections, we discuss the three types of
measures of population heterogeneity introduced briefly in Eq.
5, which derive from the analysis in SI Appendix.
Reproductive value and identity by descent.. The coefficient πmut

i
in Eq. 5 is a mutation-weighted reproductive value, which sum-
marizes patterns of identity by descent between individuals and
their direct ancestors at location i. To illustrate what πmut

i repre-
sents here, we first recall the classical notion of reproductive value.

Under neutral drift, probabilities of birth, death, and replace-
ment still vary among individuals due to their locations in the
population structure. Reproductive values measure the contri-
butions of individuals to distant future generations or, equiva-
lently, the contributions of long-ago ancestral individuals to the
present generation (67–73). If πi is the reproductive value of i,
then with probability 1− d◦

i , individual i survives and brings
its value πi forth into the next time step; with probability e◦ij ,
individual i replaces j and, in doing so, acquires the value πj . At
stationarity, the reproductive values satisfy the balance equation
πi = (1− d◦

i )πi +
∑N

j=1 e
◦
ijπj .

The solution to this recurrence is unique up to the value of∑N
i=1 πi . A standard normalization is

∑N
i=1 πi = 1. However,

this is not the only relevant normalization, and here it will be
useful to work with something different. Reproductive values are
closely related to the stationary distribution of a random walk
on the population. Let Aij := e◦ji/d

◦
i be the probability that the

parent of i was located at j, conditioned on the death of i. Thus,
j replacing i forward in time equates to i moving to j backward
in time. This ancestral random walk tracks only parentage and
ignores lifespans (65). It has a unique stationary distribution, z,
which satisfies zi =

∑N
j=1 zjAji and represents the equilibrium

probability of an ancestral line being at i after many lifetimes.
Weighting this probability by the expected lifespan at i gives the
reproductive value, πi = zi/d

◦
i , of i.

The distinction between πi and zi aids in the interpretation
of πmut

i and its relationship to patterns of identity by descent.
Consider the ancestral random walk defined by the matrix A.
Starting with an individual at location j, each step backward in
time is associated to a mutation with probability u and to a
faithful transmission of genetic material with probability 1− u .
We consider the endpoint, i, to be the location of the most
ancient individual that is identical by descent with j. Thus, the
first mutation in the ancestral line from j occurs between i and its
parent, α (i). Since a mutation must eventually arise in this walk,
the endpoint defines a distribution over {1, . . . ,N }.

For the first mutation to occur at i after t steps in the past,
the first t reproduction events in this lineage must be mutation-
free, which happens with probability (1− u)

t . The probability
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that the lineage is at i is then (At)ji . Finally, the parent of i must
produce a mutated offspring, which happens with probability u.
Summing these probabilities over all t gives a total probability of

∞∑
t=0

u (1− u)
t (

At
)
ji
= u

(
(I − (1− u)A)

−1
)
ji
, [7]

that the first mutation happens at i, given a starting position of j.
Because 〈xS〉 is the mean frequency of the trait taken uniformly
over the population, our calculations depend on the average

zmut
i :=

1

N

N∑
j=1

u
(
(I − (1− u)A)

−1
)
ji
. [8]

zmut
i is the analog of zi , but weighted by identity by descent (i.e.,

with a time scale dependent on the mutation probability). In the
limit u → 0, zmut

i converges to zi . At the other extreme, as u → 1,
zmut
i becomes uniform on {1, . . . ,N }, owing to the fact that the

mutation will then occur when t = 0, so Eq. 7 will tend to one
for i = j and zero for i �= j . As a distribution,

∑N
i=1 z

mut
i = 1 for

any u.
The mutation-weighted reproductive value πmut

i in Eq. 5 is
defined by πmut

i := zmut
i /d◦

i . Analogous to the expression πi =
zi/d

◦
i , the mutation-weighted reproductive value captures both

the contribution of i to the total population, through the factor
zmut
i , and the time scale of reproduction, through the factor
1/d◦

i . In the limits u → 0 and u → 1, πmut
i converges to πi and

1/ (Nd◦
i ), respectively. Further details about how πmut arises may

be found in SI Appendix, section SI.1.2.
Identity by state.. When selection is weak, neutral probabilities
of identity by state play a key role in the outcome of frequency-
dependent selection (46, 74). Let φij denote the stationary prob-
ability that two individuals at locations i and j are identical by
state (have the same type or strategy) under neutral drift. Of
course, φii = 1 for i = 1, . . . ,N . The other φij for i �= j can be
computed by using standard techniques, recursively over a single
time step. We present the details in SI Appendix, section SI.2,
where we account for the possible replacement of both i and j
and for the possible occurrence of zero, one, or two mutations
in SI Appendix, Eq. SI.23. Solving for these N (N − 1) /2 prob-
abilities, φij for i �= j , is the main computational burden of our
method. In our application to producers of social goods below, we
discuss a simple intuitive example of this approach to identities by
state.
Marginal effects of selection on replacement.. Up to this point,
our focus has been on neutrality (δ = 0). Since we are interested in
the perturbative effects of selection on the neutral process, we also
need to understand how changes in individual fecundity affect the
transmission of traits. In evolutionary games, the influence of the
state of the population on replacement can be modeled by using a
fecundity function, which assigns to each state a positive quantity
representing an individual’s competitive abilities (including, but
not limited to, the propensity to reproduce). If Ui (x) is the
payoff of individual i in state x, then a typical conversion of
payoff to fecundity is of the form Fi (x) = eδUi (x) or Fi (x) =
1 + δUi (x), where δ � 0 represents the selection intensity. These
two forms of Fi are equivalent under weak selection, so we do not
need to explicitly choose one (75). In either case, weak selection is
modeled as a small deviation, proportional to δ, from a neutral
baseline fecundity F ◦

i for all i = 1, . . . ,N . We note that Fi

represents a general measure of the competitive abilities of i, which
can pertain to reproduction, survival, or a combination of the two;

we use the term “fecundity” instead of “fitness” to avoid con-
fusion because the latter term is defined in many ways in the
literature.

Our analysis of weak selection uses the fact that the replacement
rule p(R,α) (x) depends on x because x determines game payoffs,
which then determine fecundities. The demographic parameters
of individuals, which are marginal properties of p(R,α) (x), also
depend implicitly on fecundities. The population’s fecundities are
given, in general, by F ∈ (0,∞)

N , with F= F◦ when δ = 0.
We employ F as a set of intermediate variables between δ and
the main object of our analysis, the mean trait frequency 〈xS〉.
In our model, selection is directly mediated by one demographic
parameter in particular, the replacement probability eij (x). As
in ref. 63, we define mij

k :=
∂eij
∂Fk

∣∣∣
F=F◦

as a measure of how
individual payoffs affect competition in an evolutionary game.
These terms are independent of the game itself, and they allow
us to express the marginal effects of selection on the probability
that i replaces j conveniently in terms of the payoffs of the game,

eij (x) = e◦ij + δ

N∑
k=1

m ij
k Uk (x) +O

(
δ2

)
. [9]

Note that we implicitly assume that p(R,α) (x) is a smooth
function of δ (SI Appendix, section SI.1.1).

Mean Trait Frequencies. To see how our main result may be
written succinctly in terms of probabilities of identity in state
(φij ), as well as the quantities πmut

i and m ji
k , it is helpful to begin

with the trait values of individuals. Fundamentally, the first-order
effect of selection on the mean frequency of the social trait S
depends on expected payoffs, which, in turn, depend on traits.
In SI Appendix, we show that

〈xS〉=
1

2
+ δ

1

u

N∑
i,j ,k=1

πmut
i m ji

k

(
(1−u) 1

2 〈Uk |j∼S〉◦
+u 1

2 〈Uk 〉◦
− 1

2 〈Uk |i∼S〉◦

)
+O

(
δ2

)
,

[10]
where 〈·〉◦ is the expectation taken over the stationary distribu-
tion of trait values across the population under neutrality. Thus,
selective events involving i are scaled by the mutation-weighted
reproductive value, πmut

i . Then, for each j whose offspring can
replace i, m ji

k quantifies how the performance of each individual
k influences the probability that j replaces i. Finally, accounting
for the possibility of mutation, the influx of S to i (via the
reproduction of j) and the outflux of S from i (via the death
of i) depend on three kinds of expected payoffs to individual k:
〈Uk | j ∼ S〉◦ and 〈Uk | i ∼ S〉◦ are the expected payoffs to k
conditioned on j and i having type S, respectively, while 〈Uk 〉◦
is the unconditional expected payoff to k.

Two kinds of marginal probabilities are required to describe the
expected payoffs in Eq. 10. Let pij

(xi ,xj )
be the probability that i

and j have types xi , xj ∈ {S,NS}. Similarly, define pijk
(xi ,xj ,xk )

for
the triplet i, j, k. Using this notation, the expected payoff to k
when j has type S satisfies

1

2
〈Uk | j ∼ S〉◦ =

N∑
�=1

(
pjk�
(S,S,S)a

k�
11+pjk�

(S,S,NS)a
k�
12

+pjk�
(S,NS,S)a

k�
21+pjk�

(S,NS,NS)a
k�
22

)
. [11]

The prefactor of 1/2 is the probability that j has type S under
neutral drift. The left-hand side of Eq. 11 is multiplied by 1− u
in Eq. 10 because if there is no mutation, then the offspring of j
that replaces i has type S. Since we care only about the influx of S
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to i from j, we do not consider expected payoffs conditioned on
xj = NS. Similarly, regardless of the type of j, the offspring of j
will mutate and end up type S with probability u/2. In this case,
the expected payoff to k is

〈Uk 〉◦ =
N∑
�=1

(
pk�
(S,S)a

k�
11+pk�

(S,NS)a
k�
12

+pk�
(NS,S)a

k�
21+pk�

(NS,NS)a
k�
22

)
, [12]

which does not depend on the trait of j. Both Eqs. 11 and 12
correspond to the influx of S to i, so they have positive weights in
Eq. 10. In contrast, the expected payoff to k when xi = S satisfies

1

2
〈Uk | i ∼ S〉◦ =

N∑
�=1

(
pik�
(S,S,S)a

k�
11+pik�

(S,S,NS)a
k�
12

+pik�
(S,NS,S)a

k�
21+pik�

(S,NS,NS)a
k�
22

)
, [13]

which is subtracted because the replacement of i by j results in
the loss of this S at i. The prefactor of 1/2 is the probability that
i has type S under neutral drift. The left-hand side of Eq. 13
corresponds to the outflux of S from i through death. As such,
we do not need to consider terms of the form 〈Uk | i ∼ NS〉◦
because these correspond to zero outflux of S at i through
death.

To present our main result in the form suggested by Eqs. 4 and
5, we express pij

(xi ,xj )
and pijk

(xi ,xj ,xk )
in terms of probabilities of

identity by state. Simplifications are available when there are just
two possible trait values. We have pij

(S,S) = pij
(NS,NS) = φij/2 and

pij
(S,NS) = pij

(NS,S) = (1− φij ) /2. When there are two possible
trait values (and only in this case; SI Appendix), pijk

(xi ,xj ,xk )
can be

calculated by using just pairwise identity probabilities, as outlined
in Table 2. These expressions, together with Eqs. 11–13, reduce
Eq. 10 to our main result, given by Eqs. 4 and 5. An overview of
the steps involved in evaluating this result in practice is given in
Box 1.

Eq. 4 has a form similar to the structure-coefficient theorem
of Tarnita et al. (58). In fact, our result includes this structure-
coefficient theorem as a special case. Note that aij

xy implicitly
encodes which individuals interact and how payoffs are aggregated
through the dependence on i and j. For example, we would define
the payoffs to be zero for noninteracting pairs of individuals.
In the case of a symmetric game described by Eq. 1, an inter-
action structure for the population needs to be specified. Let
(Ωij )

N
i,j=1 be a matrix representing this interaction structure.

Then, if the individuals at locations i and j have types S and NS,

Table 2. Calculating the probability that i, j, and k have
types xi, xj, and xk , respectively, under neutral drift when
there are just two possible trait values, S and NS

Triplet,
(
xi, xj, xk

)
Probability, pijk

(xi ,xj ,xk)

(S, S, S) 1
4

(
φij + φik + φjk − 1

)
(S, S, NS) 1

4

(
φij − φik − φjk + 1

)
(S, NS, S) 1

4

(
−φij + φik − φjk + 1

)
(S, NS, NS) 1

4

(
−φij − φik + φjk + 1

)
(NS, S, S) 1

4

(
−φij − φik + φjk + 1

)
(NS, S, NS) 1

4

(
−φij + φik − φjk + 1

)
(NS, NS, S) 1

4

(
φij − φik − φjk + 1

)
(NS, NS, NS) 1

4

(
φij + φik + φjk − 1

)
For each triplet of traits,

(
xi , xj , xk

)
, the probability pijk(

xi ,xj ,xk
) is a function of the identity-

by-state probabilities φij , φik , and φjk

Box 1. Instructions for calculating the effects
of weak selection on the mean frequency of S

1. Specify p(R,α) (x), the probability of choosing replacement
event (R,α) in state x;

2. Compute the marginal probability that i transmits its off-
spring to j, eij (x);

3. Compute the death probability of i, di (x) =
∑N

j=1 eji (x);
4. Compute the matrix A for the (neutral) ancestral random

walk, with Aij = e◦ji/d
◦
i ;

5. Compute zmut
i = 1

N

∑N
j=1u

(
(I − (1− u)A)

−1
)
ji

, where

N is the population size and u is the mutation probability,
and then compute πmut

i = zmut
i /d◦

i ;
6. Compute the probability that i and j are identical by state,

φij , using SI Appendix, Eq. SI.23;
7. Compute the marginal effect of k on i replacing j at neutral-

ity, m ij
k =

∂eij
∂Fk

∣∣∣
F=F◦

, where Fk is the fecundity of k, and F

is the fecundity vector of the entire population;
8. Compute the structure coefficientsK k�

1 and K k�
2 using steps

5 through 7 and Eq. 5;
9. Use step 8, together with the payoffs, to compute

d
dδ

∣∣∣
δ=0

〈xS〉 by means of Eq. 4.

respectively, i gets payoff Ωija12 and j gets payoff Ωjia21 from
this interaction. If i and j do not interact, then Ωij = 0. For every
individual, these scaled payoffs are summed over all interaction
partners.

A graph-structured population can be described by using an
adjacency matrix (wij )

N
i,j=1, with wij = 1 if i and j are neighbors

and wij = 0 otherwise. In our model, this would then constrain
the replacement rule, with (for example) eij (x) = 0 whenever
wij = 0. A common approach is to set the interaction matrix
Ωij = wij to indicate that individuals interact only with neigh-
bors and accumulate the resulting payoffs, e.g., additively. Another
approach is to let Ωij = wij/wi , where wi is the total number of
neighbors of i, yielding average payoffs. Both kinds of payoffs are
commonly used in evolutionary game theory (75). Whatever the
interaction structure is for a particular population, the structure-
coefficient theorem for symmetric games may be obtained from
the result above by setting aij

11 =Ωija11, aij
12 =Ωija12, aij

21 =

Ωija21, and aij
22 =Ωija22 in Eq. 4.

Our results can be extended to games with n > 2 strategies. For
general matrix games with two strategies, as considered above, or
for additive matrix games with n � 3 strategies, the complexity of
evaluating the structure-coefficient theorem is bounded by solving
a linear system of size O

(
N 2

)
. For nonadditive matrix games

with n � 3 strategies, this linear system is of size O
(
N 3

)
. We

give a complete description of these extensions to n strategies in
SI Appendix.

Applications to Producers of Social Goods. We conclude with
an application of our theoretical results to the evolution of pro-
ducers of social goods. We are interested in how the evolutionary
advantages/disadvantages of making ff-goods versus pp-goods are
affected by mutation—for example, whether the noise introduced
by mutation always favors one kind of good over another. We in-
vestigate how these advantages/disadvantages change as mutation
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goes from weak to strong, and we use simulations to verify the
accuracy of our numerical predictions for the mean frequency of
the social trait at equilibrium.

We assume that, at each point in time, neighbors on a graph
interact and receive a total payoff according to the nature of the
goods generated by producers. Let (wij )

N
i,j=1 be the adjacency

matrix of the population structure, which here is identical to
the interaction structure for the game. A producer at location
i pays Cij in order to provide j with a benefit of Bij . For pp-
goods, Bij = bwij and Cij = cwij ; for ff-goods, Bij = bwij/wi

and Cij = cwij/wi , where wi is the number of neighbors of i. In
other words, we have aij

11 = Bji − Cij , aij
12 =−Cij , aij

21 = Bji ,
and aij

22 = 0.
An individual’s total payoff, Ui (x), obtained by summing

over all interactions, is converted to fecundity, Fi (x) = eδUi (x),
where δ � 0 is the intensity of selection and x is the current
state of the population. The population then updates according
to the death–Birth (dB) rule, in which an individual is first
selected uniformly at random for death, and then the neighbors
compete, based on their relative fecundities, to fill the vacancy.
The neighbors in this reproduction step are also determined by
(wij )

N
i,j=1. In this case, the probability that i replaces j when the

state is x is

eij (x) =
1

N

Fi (x)wij∑N
k=1 Fk (x)wkj

. [14]

Under neutral drift, the probability that i replaces j is e◦ij =
(wji/wj ) /N , and the probability that i dies in one step of the pro-
cess is d◦

i = 1/N . The probability of moving from i to j in one step
of the ancestral random walk is thenAij = wij/wi . The stationary
distribution for this random walk satisfies zi = wi/

∑N
j=1 wj ,

which gives i a reproductive value of πi = Nwi/
∑N

j=1 wj . For
u > 0, the relevant notion of reproductive value, πmut

i , has a more
complicated expression, but can easily be found by calculating
zmut
i from (Aij )

N
i,j=1 (using Eq. 8) and letting πmut

i = zmut
i /d◦

i .
The pairwise identity-by-state probabilities, φ, satisfy φii =

1 for every i = 1, . . . ,N . For i �= j , since exactly one
individual is replaced in each time step under dB updating,
SI Appendix, Eq. SI.23 gives

φij = u
1

2
+ (1− u)

1

2

N∑
k=1

Aikφkj + (1− u)
1

2

N∑
k=1

Ajkφik .

[15]
In other words, to determine the probability that i is identical
by state to j �= i , we wait until either i or j is replaced by the
offspring of some parent k. The first term on the right-hand side
of Eq. 15 represents a mutation from the parent, which happens
with probability u and leads to i and j being identical by state
with probability 1/2. Otherwise, with probability 1− u , there is
no mutation, i is the one replaced with probability 1/2, k is the
parent with probability Aik , and k is identical by state to j with
probability φkj . The same logic applies to the last term, when j is
the one replaced.

Finally, the marginal effects of selection on replacement sat-
isfy mij

i = Aji (1−Aji) /N and mij
k =−AjiAjk/N if k �= i .

These marginal effects can be calculated directly from Eq. 14.
Putting all of these ingredients together, we see that Eq. 10 (or

Eq. 4) takes the form

Fig. 1. Intuition for the effects of selection on trait frequency. A location,
i, is first chosen with probability proportional to its mutation-weighted re-
productive value, πmut

i . Although all individuals are replaced with the same
probability under dB updating, πmut

i quantifies how important i is as a location
for a social trait to be propagated. If i is replaced, then neighbors compete
to fill the vacancy. Since we are concerned with producers of a social good
(blue), the relevant comparison is between a neighboring producer and other
neighbors. We choose two neighbors, j and k, with probability Aij and Aik ,
respectively, which represent the probabilities of j and k replacing i under
neutral drift (conditioned on i being replaced). If a producer is placed at j, then
the probability that another node, �, is a producer is equal to the probability
that j and � are identical by state, φj�. Using this distribution, we can calculate
the expected payoffs for the two neighbors, j and k, which are depicted next
to each of the corresponding nodes. It is the difference between the payoff
to the producer, j, and the other neighbor, k, that determines the effects of
selection on the mean frequency of producers. The larger this difference is,
the more strongly favored producers are.

〈xS〉=
1

2
+ δ

1− u

2Nu

N∑
i,j ,k=1

πmut
i AijAik

(

N∑
�=1

(−φjjCj� + φj�B�j )︸ ︷︷ ︸
expected payoff to j, given j is S

−
N∑
�=1

(−φjkCk� + φj�B�k )︸ ︷︷ ︸
expected payoff to k, given j is S

)
+O

(
δ2

)
. [16]

This expression has a simple interpretation: As with Eq. 10, the
consequences of selection at location i are scaled by the mutation-
weighted reproductive value, πmut

i . Each pair of other locations j
and k affects what happens at i, according first to the probabilities
Aij and Aik . Next, as depicted in Fig. 1, the selective effect of
a producer at j depends on the expected payoff to j compared to
that of the other neighbor at k. Here, i represents the individual
chosen for death, and producers are favored when a neighboring
producer is more successful than its other competitors, on average.

As Fig. 2A shows, producers of ff-goods can be favored, even
when b < c. This seemingly paradoxical behavior is consistent
with what is observed for ff-goods from an analysis of fixation
probabilities in the weak-mutation limit (63)—namely, that they
benefit from the existence of a small number of highly connected
hubs. When producers are rare and are introduced at a well-
connected location, they are selected against, but drift can lead
to the establishment of a small colony of reciprocating producers
among the neighboring nodes. Even when b < c, this can result
in a successful producer at the hub because they receive multiple
benefits (or partial benefits due to division) and pay only a single
cost. Having a relatively large payoff, selection then favors the
propagation of the hub’s offspring (producers) to the periphery,
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A B

C D

Fig. 2. Effects of selection on the mean frequencies of simple prosocial behaviors. The solid lines indicate calculations performed by using the structure-
coefficient theorem (Eqs. 4 and 5). Dots depict the simulated first-order effects of selection, (〈xS〉 − 1/2) /δ, where 〈xS〉 is calculated for a selection intensity of
δ = 0.05 by observing the mean frequency of S over 108 generations. A and B show a single Barabási–Albert (preferential attachment) graph of size N = 50, with
b < c in A and b > c in B. Even when b < c (here, b = 0.9 and c = 1), we see that producers of ff-goods can be favored in the mutation–selection equilibrium.
C and D show a single Erdös–Rényi graph of size N = 50, with b < c in C and b > c in D. When b > c (here, b = 5 and c = 1), whether selection favors producers
of ff-goods more than those of pp-goods can depend on the mutation probability. In this example, producers of pp-goods are favored more when the mutation
probability is small, but this ranking reverses for slightly larger values of u (even when both are favored relative to neutral drift). The scales of the vertical axes
vary to best illustrate the results.

provided that the mutation probability is not too large, which
serves to strengthen the hub’s selective advantage. Similarly, when
producers are widespread, a nonproducer mutant is more likely
to arise as a neighbor of this highly connected individual than
at the hub itself. Since the hub then has an extremely large
payoff, owing to the existence of many separate donations, each
of benefit b (or close to b), the hub can easily replace the mutant
nonproducer by a producer. Producers therefore thrive by taking
over highly connected hubs and populating the neighborhoods
with copies of themselves. These neighboring locations are likely
to hold producers for long periods of time, which gives them more
opportunities to spread their offspring to other locations in the
population, even when at a reproductive disadvantage relative to
other competitors.

However, this advantage enjoyed by producers of ff-goods
diminishes to zero and even becomes (slightly) negative as the
mutation probability increases. For one thing, a high mutation
probability means that a central producer is more likely to prop-
agate nonproducers to neighboring positions. It also means that
when a highly connected producer dies, it is more likely to be
replaced by a nonproducer via mutation alone, even when all
(or most) neighbors are producers. The detrimental effects of
increased mutation probabilities are seen in all examples for which
producers of ff-goods or pp-goods are favored when mutation

probabilities are small (Fig. 2 A, B, and D), both when b < c and
b > c.

When the degree distribution is more tightly concentrated
around the mean, the population is less likely to have highly
connected hubs surrounded by individuals of small degree. As a
result, neighboring producers must share their benefit among a
larger number of two-step neighbors. Consequently, the argument
we made for why producers can be favored even when b < c
on Barabási–Albert graphs breaks down on Erdös–Rényi graphs
(Fig. 2C ). In addition, Fig. 2D shows that even when b > c and
producers of both kinds of goods are favored (i.e., for mutation
probabilities that are not too high), the ranking of which one is fa-
vored more can be reversed by changing the mutation probability.
Thus, the noise introduced by mutation does not affect pp-goods
and ff-goods uniformly. Fig. 2 A, B, and D also demonstrates that
for a single kind of good, there need not be any monotonicity
in the effects of selection as the mutation probability increases:
Increasing u can be harmful to the abundance of producers when
u is small, but beneficial to the abundance of producers when u is
larger. Finally, and not surprisingly, selection via any kind of game
becomes completely ineffective as u → 1.

The differences between these two kinds of population struc-
tures, in terms of how they affect mutation–selection dynamics,
can be summarized by their associated probabilities of identity by
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descent (Eqs. 15 and 16 and Fig. 1). In Fig. 1, if j, a producer,
has neighbors (blue dashed circles) who are themselves not highly
connected (e.g., for the structure in Fig. 2 A and B), then j is likely
to replace these neighbors when they are selected for death. As a
result, j and its immediate neighbors are more likely to be identical
by state, provided that u is not too large, which means that the
neighbors produce benefits and provide relatively large fractions of
their benefits to j. In contrast, the neighbors (black dashed circles)
of a competitor, k, are generally less likely to be identical by state to
j because paths from j to k (and k’s neighbors) go through much
more highly connected hubs. Thus, even though k itself is less
likely to pay a cost, c, than j, k also receives fewer benefits than j,
on average, resulting in a competitive advantage for j in replacing
i. For structures like that of Fig. 2 C and D, the same basic logic of
Fig. 1 holds, but now the degree distribution is different, and we
see fewer instances of highly connected nodes being surrounded by
much-less-connected individuals. As a result, the ratio b/c must
generally be larger in order to offset lower probabilities of identity
by state, larger net costs paid by j (in the case of pp-goods), and
smaller shares of goods being donated to j by neighbors (in the
case of ff-goods).

In SI Appendix, we include a version of Fig. 2 with even
weaker selection (δ = 0.01 instead of δ = 0.05), which, as
expected, shows even better agreement with the calculations
(SI Appendix, Fig. SI.1). We also illustrate the effects of larger
values of δ (SI Appendix, Figs. SI.2 and SI.3) to assess the
departures from these predictions as the strength of selection
increases.

Discussion

Since its genesis in modeling animal conflict (31, 76), evolution-
ary game theory has proven itself to be a tremendous resource
in the study of social evolution. But any useful modeling frame-
work necessitates the development of methods and tools for its
analysis. Deterministic approaches, such as those based on the
replicator equation (77), render the resulting models amenable to
standard techniques from the theory of dynamical systems (78),
but may neglect important evolutionary phenomena. Stochastic
perspectives on modeling population dynamics can incorporate
the effects of drift and fine-grained spatial structure, but several
practical complications also arise. Outside of the realm of weak
selection, there need not be any efficient algorithm for evaluating
a population’s evolutionary dynamics in general (79), a conclusion
that has prompted other kinds of computational techniques, such
as the development of more efficient algorithms for numerical
simulation (44). Our contribution here is a method to study
frequencies of types at stationarity under weak selection.

Our focus on weak selection involves the assumption that
replacement probabilities are smooth functions of the selection
intensity, δ. One consequence is that the system under small
δ is qualitatively similar to the system under neutral drift (δ =
0). For the latter, we assume that replacement probabilities are
independent of the state, x, in the absence of selection. We also
make a technical assumption that the population evolves as a
coherent whole, which ensures that there exists a unique stationary
distribution to study in the first place. These assumptions on the
model are formally stated in SI Appendix. Of course, although they
are biologically reasonable, these assumptions also limit the scope
of the model and should be taken into consideration when using
our results to go beyond the examples illustrated here.

Another limitation is that, although the population can have
arbitrary size and structure, both are fixed as the evolutionary pro-
cess unfolds. Dynamic population structures are both realistic and

recognized (largely through numerical simulations) as having a
strong impact on the evolution of prosocial traits like cooperation
(30, 80–82). Related to this point, an interesting extension would
account for feedback between individuals and the environment as
a way to capture ecosystem engineering (83–85). From a compu-
tational perspective, it would also be intriguing to explore how
these components affect the complexity of quantitative analysis.
These considerations are among many that would be necessary for
a deeper understanding of social evolution (86).

In our examples, we find that the effects of selection on pro-
ducers of two different kinds of social goods can be quite sensitive
to mutation probabilities. This effect is conceptually similar to
the ways in which the infidelity of Mendelian transmission of
diploid phenotypes can alter evolutionary game-theoretic predic-
tions relative to those based on simple haploid systems (87, 88).
We compare goods that are produced with benefits and costs in
proportion to the number of interaction partners (pp-goods) to
goods that are produced with fixed benefits and costs then get
distributed among interaction partners (ff-goods). We show that
increasing the mutation probability can reverse the direction of
selection and can change the relative ranking of the two types,
even when producers of both kinds of goods are favored by
selection. Qualitatively, one thing that the analysis of social goods
on heterogeneous graphs yields is the fact that mean frequencies
need not be monotonic in the mutation probability. Traulsen et
al. (60) also found nonmonotonicity, but only in games with
more than two traits. Débarre (61) observed only monotonic
effects of mutation probabilities on mean frequencies, but the
structures considered there are homogeneous, which can obscure
the difference between social goods. Nonmonotonicity may be
inferred from the results of Débarre (62) for small to moderate
migration rates (changing who interacts with whom) in an island
model of population structure.

The importance of high mutation rate has long been recognized
in evolutionary theory. If it is high enough, the resulting “qua-
sispecies” crosses an error threshold, beyond which adaptation
is impossible (89). This model has been used to study human
immunodeficiency viruses, which are highly diverse, owing to
rapid mutation (90). The replicator equation has been generalized
to include mutation (91), bridging the gap between replicator
dynamics (77) for frequency-dependent selection (without mu-
tation) and quasispecies evolution under strong mutation and
frequency-independent selection. A notable application is to lan-
guage learning in populations (92). In simple (genetically single-
locus) models, increased mutation may just reduce the efficacy of
selection, eventually resulting in neutral evolution, as we find here.
But it is important to recognize that empirical situations are likely
more complicated because increased mutation rates apply to all
loci across the genome and many mutations are deleterious; for
one example, see Sprouffske et al. (93).

When the population is heterogeneous, the distribution of
social goods naturally gives rise to asymmetric games. Asymmetric
contests have an extensive history in theoretical biology, dating
back nearly half a century. In a pioneering theoretical work on
animal behavior, Maynard Smith and Parker (94) showed that
while evolutionarily stable states are frequently mixed in sym-
metric contests, variability in traits and behaviors is actually the
exception in asymmetric contests. Furthermore, they argued that
asymmetric interactions should be taken as the norm, either as the
result of organismal differences like size or strength or as the result
of “uncorrelated” asymmetries, such as those that arise when one
individual discovers a resource and another is a latecomer.

One takeaway from earlier studies on asymmetric games, as
well as from our own examples of social goods, is that there is
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unequivocally both a loss of generality and a loss of realism in
approximating interactions by symmetric games. The assumption
of homogeneous interactions severely limits the scope of a model.
This aspect of social evolution is still relatively underexplored in
the literature. For example, the spatially mediated heterogeneity
arising in the production of ff-goods underscores, among other
things, the need for an asymmetric version of the structure-
coefficient theorem. Even though no mathematical model can
accurately capture every aspect of a population evolving in the

natural world, striving for refinements that are simultaneously
realistic and amenable to analysis is necessary for a deeper under-
standing of population dynamics.

Data Availability. Custom Python code has been deposited in GitHub
(https://github.com/alexmcavoy/sigma) (95).
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38. G. Szabó, G. Fáth, Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007).
39. P. D. Taylor, T. Day, G. Wild, Evolution of cooperation in a finite homogeneous graph. Nature 447,

469–472 (2007).
40. Y.-T. Chen, Sharp benefit-to-cost rules for the evolution of cooperation on regular graphs. Ann. Appl.

Probab. 23, 637–664 (2013).
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