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ABSTRACT

Chromatin ‘blobs’ were recently identified by live super-resolution imaging of labeled nucleo-
somes as pervasive but fleeting structural entities. However, the mechanisms leading to the
formation of these blobs and their functional implications are unknown. We explore here whether
causal relationships exist between parameters that characterize the chromatin blob dynamics and
structure, by adapting a framework for spatio-temporal Granger-causality inference. Our analysis
reveals that chromatin dynamics is a key determinant for both blob area and local density. Such
causality, however, could be demonstrated only in 10-20% of the nucleus, suggesting that
chromatin dynamics and structure at the nanometer scale are dominated by stochasticity. We
show that the theory of active semiflexible polymers can be invoked to provide potential
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mechanisms leading to the organization of chromatin into blobs. Our results represent a first
step toward elucidating the mechanisms that govern the dynamic and stochastic organization of

chromatin in the cell nucleus.

Introduction

The eukaryotic genome is hierarchically structured
from the level of nucleosomes over chromatin
loops, topologically associated domains (TADs)
and phase-separated A/B compartments up to
chromosome territories [1]. These structural ele-
ments are not static but dynamic entities [2], such
that an appreciable heterogeneity between cells
[3,4] and in dynamics over time [2,5] exists. Such
dynamics is borne out from a host of players
interacting with the chromatin fiber, including
enzymes that typically use ATP for their function
associated with a motion component (polymerases
[6], chromatin remodelers, topoisomerases, heli-
cases, cohesins and condensins [7-9] and so on)
as well as mere binders, such as HMGB proteins
[10] and transcription factors which dynamically
induce kinks in the DNA [11]. We will refer to
these proteins as ‘Active Effectors’ in this article.
Accordingly, dynamics of the chromatin fiber is
altered locally [12-14]., but also globally [15-21],
in response to nuclear processes such as

transcription or DNA damage repair. Both
dynamics and conformational flexibility are key
to allow for long-range communication within
a fiber, as involved in innumerable genomics pro-
cesses and in gene activation by transcriptional
enhancers.

Given the observed relationships between struc-
tural reorganization of the genome [22,23], nuclear
functions and chromatin dynamics, a lasting ques-
tion in genome biology remains if, and if yes how,
chromatin dynamics has an effect on genome orga-
nization in nuclear space. To tackle this question, we
recently introduced Deep-PALM, a live-cell super-
resolution approach able to achieve sub-diffraction
spatial resolution and 360 ms temporal resolution to
image chromatin in vivo [24]. Using Deep-PALM,
individual nucleosomes go unseen, and only clus-
tered nucleosomes are eventually detected over the
background of super-resolution images, in the form
of nanometer-sized ‘blobs’ (see Figure 1(a)). These
clusters manifest indeed as area where the fluores-
cence is continuous and display forms between
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ovoid to oblong with rapidly changing shape, hence
the term ‘blob’. Each blob likely contains a limited
number of nucleosomes (<30, ref. [24,25]) associat-
ing transiently within the timescale of about
1 second. The functional implications of blobs
remain to be explored.

The ability to obtain time-resolved super-
resolution images of chromatin allowed to inte-
grate an Optical Flow approach [20,21], thereby
quantifying simultaneously the dynamics, size
and distance between chromatin blobs in space
and time. These results indicated a strong rela-
tionship between the flow magnitude of blobs
(i.e. their dynamics) and their local density.
Notably, the blob dynamics appear enhanced in
regions of high blob density, and conversely
isolated blobs in chromatin-void regions appear
less mobile.
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This and other studies resulted in complex
high-dimensional datasets, which reflect stochastic
and heterogeneous quantities characterizing chro-
matin in space and time. In order to allow infer-
ences of relationships in such data, correlations
between variables are commonly investigated
(Figure 1(b)). While this is a valid approach, one
has to be aware of its limitations [26]. In particu-
lar, a correlation between variables does not
directly imply a causal relationship and in the
case that a direct causal relationship indeed exists,
it is not clear in which direction. Furthermore, the
causality might be indirect, transferred via one or
multiple unobserved constituents of a biological
pathway (Figure 1(b)). While both correlation
and causation can identify which variable preceded
the other (Figure 1(b)), a causal relationship is
demarcated from a correlation by the fact that

6

Observed
variable values

00 '/

c
Kl
Flow (_*3 ”
Blob magnitude Gt) 0.5 \ ®q.—®
Q
)
: g @"®
< O©.05

Multiple task
learning

+ Time lag —

Figure 1. From super-resolution images of fluorescently labeled chromatin to Granger-causal inference between its structure and
dynamics. (a) Human osteosarcoma U20S expressing H2B-PATagRFP cells were imaged. Deep-PALM combines the predictions of
a deep learning algorithm from a subset of 12 images to reconstruct a super-resolved image of chromatin with a temporal resolution
of 360 ms at 63 nm spatial resolution [24]. Segmentation of chromatin blobs and Optical Flow analysis allows ascribing a nearest
neighbor distance (NND), blob area and flow magnitude to each blob in each frame individually. Finally, to infer a Granger-causal
relationship between these characterizing parameters, multi-task learning is employed. (b) Whether two observed stochastic
variables (a) and (b) are operationally related may be tested by computing a cross-correlation between those variables. The time

lag between the variables can be inferred from the absolute

maximum value of the cross-correlation curve. However, such

a correlation analysis cannot reveal whether the relationship involves causation and in which direction causality is present. Some
of the simplest scenarios in a biological context are depicted (from top to bottom): (a) causes (b); (b) causes (a); (a) and (b) are in
a feedback loop; (a) causes (b) indirectly via (c); (c) is the common cause of both (a) and (b).



the past of the cause influences the future of the
effect in a way that no other measured variable
does, including the effect itself. Noteworthy, while
correlation analysis can only be carried out pair-
wise, causal relationships can be inferred among
several variables.

The inference of a causal relationship (the infer-
ence of a directed information flow) is thus more
powerful than the observation of a correlation
alone, especially in complex systems such as the
genome. A methodology to infer causal paths
between the chromatin structure, dynamics and
ultimately function is therefore highly desired,
but difficult to obtain. The exploration of true
causal relationships would indeed require the
complete knowledge of the system, in the sense
that every possible influence on genome structure
and dynamics (proteins, nuclear morphology, etc.)
should be mapped at sufficiently high resolution in
three-dimensional space and time. Although
approached using simple organisms, absolute
complete knowledge of a living system is still vir-
tually impossible [27] as one can hope to simulta-
neously capture only a few out of the vast
spectrum of parameters at best. The concept of
Granger-causality [28] circumvents this issue by
inferring  Granger-causal relationships  only
among a subset of experimentally observable vari-
ables. In particular, the analysis of Granger-
causality is based on the identification of essential
variables (the cause) to predict a target variable
(the effect). While both correlation as well as caus-
ality analyses suffer from the presence of unob-
served  variables, identification of
relationships even among the limited subset of
observable variables in a system can, however,
indicate which variable is a cause and which one
is an effect (possibly via a yet to be discovered
pathway). Here, we adapt the abstract concept of
Granger-causality to the analysis of Granger-causal
relationships between chromatin dynamics and
structure at the nanometer scale using the unique
data set of our recent chromatin live-cell super-
resolution imaging based on deep learning (Deep-
PALM) [24]. We use the chromatin blob flow
magnitude as a measure of local chromatin
dynamics and the blob nearest neighbor distance
(NND) as well as the blob area as structural para-
meters. Our analysis revealed a unidirectional

causal
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Granger-causality from flow magnitude to both
blob NND and blob area, in pixels representing
about 10% to 20% of the nuclear volume. We
discuss these findings in the light of the theory of
active polymers and we further reason that the
pervasive activity of Active Effectors on the chro-
matin fiber may qualitatively and quantitatively
explain (i) why chromatin blobs exist and (ii)
how chromatin dynamics may influence their
structure with respect to inter-blob contacts.

Materials and methods
Cell culture

U20S expressing H2B-PATagRFP cells were cul-
tured in DMEM (with 4.5 g/l glucose) augmented
with 10% fetal bovine serum (FBS), 100 ug/ml
penicillin, 2 mM glutamine, and 100 U/ml strep-
tomycin were incubated at 37°C and in 5% CO..
Cells were plated 24 hours before imaging on
35 mm Petri dishes with a #1.5 coverslip like
bottom (ibidi, Biovalley) with a density of
2 x 10° cells/dish. Shortly before imaging, the
growth medium was replaced by Leibovitz’s L-15
medium (Life Technologies) supplemented with
10% FBS, 100 pg/ml penicillin, 2 mM glutamine
and 100 U/ml streptomycin.

PALM imaging

The Deep-PALM imaging conditions are described
in our recent publication [24]. Briefly, a fully auto-
mated Nikon TI-E/B PALM (Nikon Instruments)
microscope equipped with incubator was used for
live cell imaging. NIS-Elements software was used
for acquiring the images at 30 ms per frame.
PATagRFP was illuminated using a laser line of
561 nm (~50-60 W/cm? at the sample) along with
the 405 nm laser line for photo-activation
(~2-2.5 W/cm? at the sample). Excitation wave-
lengths were merged into a TIRF oil immersion
objective (1.49 NA, 100x; Nikon). The same objec-
tive was used for collecting the fluorescence emis-
sion signal and spectrally filtered by a Quad-Band
beam splitter (ZT405/488/561/647rpc-UF2,
Chroma Technology) with Quad-Band emission
filter (ZET405/488/561/647 m-TRF, Chroma).
Then, the signal was recorded on an EMCCD
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camera (Andor iXon X3 DU-897,
Technologies) with a pixel size of 108 nm.

Andor

Deep-PALM analysis and image processing

Super-resolution images were obtained using
a custom-trained convolutional neural network
(CNN, ref. [29]) with an effective pixel size of
13.5 nm. Individual chromatin blobs were segmen-
ted using an adapted marker-assisted watershed
algorithm and the blob centroid position and
area were computed. Using additionally Optical
Flow to reconstruct flow fields of chromatin
[20,21], each blob was ascribed three parameters:
its area, its nearest neighbor distance (NND) and
its (instantaneous) flow magnitude. In order to
retrieve a gridded representation of all variables,
the variables were subsequently interpolated onto
a fivefold down sampled pixel grid, resulting in an
effective pixel size of 67.5 nm. Details on the
super-resolution reconstruction as well as on the
segmentation and dynamic analyses can be found
in [24].

A framework for the inference of
Granger-causality in spatio-temporal data

Granger-causality is assessed between a target variable
Y and an input variable X, potentially conditioned on
one or several common variables X,, X3, etc. of the
system. We observe each variable at each grid point /
(i.e. pixel) across the entire nucleus and at each time
point . The target variable at location / is denoted
YW = {Yl(l), Yz(l), s Y¥)} € RY, where T is the
number of time points. Here, T = 166, covering
a total of 60s with a time resolution of At = 360ms.

Similarly, X = {X%l),Xgl), . .X(Tl)} € R™, where
XEI) is a tupel of the cause variable X; El) and the d —
1 conditional variables ngl), . ,ngl), etc. at location

I and time t. d thus denotes the number of input
variables, including the potential cause. As stated in
the main text (Figure 2(a)), testing for Granger-
causality involves modeling of the target Y using the
lagged variables X (ref. [28]). The base model excludes
the variable X; for which Granger-causality is tested:

Y[ = ?f + €t
P d
= W + Z (WOthp + Z Wann,tp> + €&, (1)
p=1 n=2

where Y, is the model prediction of the true target
Yi, € is a residual noise term, the matrix wj
denotes the coefficients of the base model and P
is the maximum time lag considered. The full
model contains all explicit and conditional cause

variables X1, ..., X :

Y, = 1?t + e
P d
= Woo + Z wop Yr—p + wipXip—p + Z WipXont—p
p=1 n=2
+ e (2)

Note that the second sum runs from 2 to d in the base
and the full model and the contribution of the cause-
variable X; is written explicitly in the latter. Granger-
causality from X; to Y is present if the predictions ¥
of the full model (including the past value of X;) are
significantly better than those of the base model.
Quantitatively, we assess the significance in two com-
plementary ways. First, we use the Diebold-Mariano
test [30] to evaluate if the predictions of the two
models are significantly different. Then, we compute
the adjusted R*> value to account for the varying
number of coefficients in the base and full model [31]:

N-1
—_ 3
N—-k-1 3)
where N is the total number of samples, k is the
number of parameters in the model and R? is the

Ryu=1-(1-R)

coefficient of determination:

T 2
) Zt:PJrl (Yt - Yt)
RP=1- T — 2 (4)
>iepsr (Vi — Vi)
with Y denoting the time average. Pixels at which
the adjusted R? of the full model is negative or the
Diebold-Mariano test does not indicate a significant
difference between the prediction errors of full and

base models are marked as non-causal.

Multi-task learning

We aim to solve regression problems of the form
of Equations (1) or (2) in order to find the matrix



NUCLEUS (&) 87

a Does X, Granger-cause Y?

?
TN
Target ) [

Full model

?
TN
raget ) (R

=7 =7
Predictor (X,) [ t —p t—1] ¢ Predictor (X,) | t=p| = [e=-1] ¢ |
Predictor (X,) | t =P @ =il t —
— time t
time t
p: maximum time lag
b c
= Target Prediction by base model o S 0.4
= Prediction by full model et o
3 ) ; [ 4 ’ s . - b Nn:'cg 0.2
g { 2N r | '
1 AL ‘ A '( |~ =
"4 b )
R o RN o
— i » X \ ' »
> < .; g
L N3 > 4 [} -0.2
£
L] ¢ ! - -
© "
S o b el e bt L o Bk A AL — 04
= U T VL R AR S I I R
» VLSV A O LA .
[0}
x

10 20 30 e
Time [s] Rpun =021

= X, Granger-causes Y

Figure 2. Inference of Granger-causality. (a) The value of a target variable Y at time t may be determined by its own past and the
past values of other variables in the system X; and X,. The full model (left panel) consists of a linear relationship between the values
of Y, Xy and X, from the time point t — p, where p indicates the maximum time lag considered, to time point t — 1. In contrast, the
base model takes only variables Y and X, into account (right panel). (b) Both models are independently optimized to model the
target Y and their prediction accuracy is assessed by computing the adjusted R? via their residuals. If and only if the adjusted R?
value of the full model is positive, higher than of the base model and the Diebold-Mariano statistic is significant (Materials and
Methods), X is said to Granger-cause Y. In the depicted example, Y is the blob NND at a chosen pixel within the nuclear interior. All
time traces have been scaled to mean zero and unit variance. (C) An exemplary map across a nucleus showing the difference
between the adjusted R? values of the full and the base model. The target variable is the blob NND. Positive values (red) indicate
that the variable under consideration (here X;) considerably improves the modeling of Y and therefore Granger-causes Y, while
negative values (blue) indicate that no Granger-causality can be detected during the time of the observation.

w. This can be done for each pixel individually by =~ We, therefore, use multi-task learning, following an
earlier approach to fit linear regression models to
spatially correlated time-series in the geoscience
domain [32]. In this work, the authors use an alter-
native structure optimization (ASO, ref. [33])

method in order to simultaneously learn a shared

minimizing a loss function ¥:

L T

min E
{w(l)r,,?w(L)}

I=1 t=

v(wix? "), )
1

where L is the number of locations. However, it was
shown previously that chromatin dynamics [20,21]
as well as the chromatin structure [24] is spatially
correlated. It is, therefore, reasonable to exploit the

fact that different locations share a similar behavior.

low-dimensional representation among the tasks. In
particular, the weight matrix w is split into two parts:
w = u+ vO, where u is a weight matrix in the
original d-dimensional space, v is a weight matrix
in the shared low-dimensional space and © is
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a parameter matrix with orthonormal row vectors
(@O@" = 1). The ASO multi-task learning optimiza-
tion can be thus expressed as

L T
min Y (ZW(MDX@, v") Hu(l)lli), (6)
=1 \ t=1

{w),... Wil },00'=1“=

With the regularization term u(l)j and
a regularization parameter A. This term penalizes
weight differences between the high-dimensional
and low-dimensional space, parametrized by ©.
A memory-limited Broyden-Fletcher—Goldfarb-
Shanno (L-BFGS) algorithm [34] is used to opti-
mize Equation (6). Here, we use a maximum time
lag of 3.6 s (10 data points) for the regression,
which allows for the incorporation of reasonably
long time scale in the inference, while the number
of optimizable parameters remains feasible (given
time series consisting of 166 data points). The
number of parameters equals the number of vari-
ables in the system times the number of time
points (three variables times 10-time lags in this
case). Further details on the regression can be
found in [32].

The multi-target learning algorithm uses the
information of spatially related processes and
therefore enhances its prediction accuracy [32].
The resulting weight matrix w is used to construct

the model predictions Y, = th(l), which are
used to evaluate the prediction performance of

the base and full model in terms of RZ d

Results

A framework to infer Granger-causality between
chromatin dynamics and structure

The probability that a true causal relationship with
all of the engaging components can be established
in a biological experiment is very small - usually,
only a subset of all potential direct, indirect or
hidden variables can be observed (see the indirect
causal relationships via an unobserved component
‘C in Figure 1(b)). We decided therefore to
employ the concept of Granger-causality to deduce
the causal relationship between chromatin struc-
ture and dynamics [28]. Briefly, a time series X is
said to Granger-cause Y, given another observable
time series X, inherent in the system, if the past
values of X;, X; and Y can predict Y at the current

time t better than X, and Y alone. This definition
can be extended to include additional observable
time series in the system apart from X if such data
become available. However, since our data set
comprises three variables of interest, we stick to
one target, one predictor and one conditional vari-
able for simplicity. The concept is illustrated in
Figure 2(a). A basic principle of causality is that
there is no instantaneous influence of the cause to
the effect. Instead, the value of Y at time ¢ can be
modeled as a linear superposition of past values of
X1, X3 and Y up to a maximum time lag consid-
ered (for details on the model regression strategy,
see Materials and Methods). This constitutes the
‘full’ model, in which all observed system variables
are taken into account (Figure 2(a); left). In con-
trast, the ‘base model’ uses only past values of the
common variables X, and Y (Figure 2(a); right).
The prediction accuracy of both models is then
evaluated using the residuals between the pre-
dicted and true values of Y at time t (Figure 2
(b)) and quantified using the adjusted R* value.
Additionally, a Diebold-Mariano test is used to
consider only significant differences in the predic-
tion accuracy of the two models (Materials and
Methods). The full and base models are evaluated
at all pixels within the nucleus. Pixels at which the
adjusted R* value of the full model is higher than
of the base model indicate pixels at which
a Granger-causal relationship can be detected
(Figure 2(c)).

While this framework is not able to address head-
on the true causality for a system as complex as
a human cell (the current state-of-the-art experi-
mental data do not allow to do so), it is able to
infer relative causalities (Granger-causalities)
among the set of accessible parameters. The detec-
tion of Granger-causality thus indicates that some
path exists from one variable to another such that the
latter appears to arise as a consequence of the former.
Compared to a correlation analysis, inference of
Granger-causality notably adds information about
the direction of influence, and hence makes it possi-
ble to classify two variables as cause and effect.
However, it is not possible to directly analyze
which molecular constituents of the system are
involved and which pathway is responsible for the
observed causality. The framework presented here,



therefore, represents a first step toward a more
extensive inference of causal relationships in the
highly complex context of chromatin in space and
time. Moreover, it opens avenues to truly identify
and decipher the mechanisms responsible for
dynamic and functional chromatin organization in
the future.

Chromatin dynamics act upstream of blob
density

We imaged H2B-PATagRFP in live human bone
osteosarcoma (U20S) cells for up to 60 seconds
using Deep-PALM, a live chromatin super-
resolution technique [24]. H2B is one of the four
core histones found in every nucleosome, and
imaging H2B-PATagRFP thus constitutes a way
to follow the motion of chromatin in a nucleus.

We analyzed a series of 166 super-resolved
frames of dynamic chromatin with a time resolu-
tion of 360 ms, governing ~60 seconds and a spatial
resolution of 63 nm. Segmentation of the spatially
heterogeneous H2B signal identified ~10,000 chro-
matin ‘blobs’ at any time in a U20S nucleus
(Figure 1(a)). The blobs appear to result from the
dynamic and stochastic association of a number
(<30) of nucleosomes in groups [24,25]. While
blobs assemble/dissociate on the time scale of
about 1 s, blobs are likely to be identified with sub-
TADs in the time-average limit [24]. However, the
functional or physical mechanisms that determine
their formation and characteristics are yet
unknown. Chromatin blobs were experimentally
characterized in terms of their area, axial dimen-
sions (45 to 90 nm wide elongated shape) and their
nearest neighbor distance (NND) between each
other [24]. Analysis of the apparent bulk chroma-
tin motion across the image series using Optical
Flow [20,21] allowed moreover to ascribe an
instantaneous flow magnitude (velocity) to each
blob (Figure 1(a)).

We applied the framework introduced above to
these three parameters characterizing chromatin
dynamics (the instantaneous flow magnitude)
and organization (the NND between blobs and
the blob area). The three parameters could poten-
tially exhibit causal relationships in any direction
and also participate in feedback loops (Figure 1
(b)). We, therefore, tested all possible
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combinations for Granger-causal relationships.
Pixels at which Granger-causality was detected
within an exemplary nucleus are marked by the
respective color of the cause (Figure 3(a)). In gen-
eral, when Granger-causality was detected, it was
observed in no more than 20% of the nucleus
suggesting a picture where stochasticity dominates
over order. Remarkably, the flow magnitude
appears to act upstream and determine the NND
and blob area, while the inverse relationship was
hardly ever observed (<1%). This indicates that
chromatin dynamics is a key determinant of chro-
matin organization at the nanoscale. Such
Granger-causal relationships could be demon-
strated in essentially non-overlapping areas of the
nucleus for each parameter. That dynamics is
Granger-causal for the blob density was observed
in large micrometer-spanning, connected regions
and mostly in the nuclear interior (Figure 3(b)). In
contrast, dynamics was found to be a Granger-
cause for the observed blob area in smaller regions
and rather closer to the nuclear periphery (Figure
3(b)). The NND and blob area further appear
connected in a feedback loop in pixels scattered
throughout the nucleus, suggesting they are
Granger-cause and effect of each other. A causal
loop diagram shows the direction of the observed
Granger-causalities and highlights that these
Granger-causal relationships could be demon-
strated in ca. 10% of pixels in every case (Figure
3(c)). A possible scenario could, therefore, be that
the diagram applies to chromatin in general but
can only be demonstrated when and where order
outweighs stochasticity for a given parameter.
Another reason would be that we can currently
only inspect temporal but not spatial Granger-
causality between neighboring pixels due to tech-
nical limitations. The fraction of pixel for which
we can demonstrate Granger-causality, therefore,
appears as a lower bound.

For the cases, in which causal relationships could
be identified, we analyzed the (temporal) regression
weights for the target, predictor and conditional vari-
able nucleus-wide (Supplementary Figure 1(a)). The
temporal weights indicate the relevance of a variable
at time ¢ — At to predict the target variable at time ¢,
where At is a time lag. Concomitantly, the temporal
cross-correlation between target and predictor or tar-
get and conditional variable, respectively, is shown for
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Figure 3. Chromatin flow magnitude Granger-causes chromatin structure. (a) All combinations between potential Granger-causal
relationships of the system variables were tested. An exemplary nucleus is shown for which pixels are colored according to the
cause. The flow magnitude (green) is shown to mainly cause structural parameters to vary, while the inverse was barely observed.
Scale bar is 3 pm. (b) The fraction of pixels for which Granger-causality was observed is shown in dependence of the distance to the
nuclear periphery. (c) A loop diagram summarizing the Granger-causal relationship between the flow magnitude, NND and blob

area. Percentages correspond to the average frequency across

the data set at which pixels were detected with a Granger-causal

relationship in the indicated direction, relative to the nucleus size. Percentages <2% were omitted for clarity.

the first 10 time lags (3.6 seconds in total;
Supplementary Figure 1(b)). In general, blob NND
and area exhibit an inverse relationship in both the
regression weights and the temporal cross-correlation
(see below). The influence of the flow magnitude on
the regression is largest when the flow magnitude is
identified as the cause of a structural parameter
and almost negligible otherwise, as expected
(Supplementary Figure 1(a)). In contrast, the cross-
correlation between flow magnitude and either NND
or area (Supplementary Figure 1(b)) differs from zero
for the considered time lags irrespective of the identi-
fied causality. This demonstrates that a causal rela-
tionship between two variables does not necessarily
exist, even when the parameters are correlated. It is
likely that the correlation is established via one or
multiple unobserved factor(s).

We next examined whether individual para-
meters showed any noticeable deviations in regions
in which Granger-causality could be demonstrated
as compared with the rest of the nucleus. The

dynamics was found to be higher and blobs were,
on average, closer in regions in which the flow
magnitude was shown to act upstream of the blob
density (Figure 4(a-c)). This finding is in line with
a correlation approach that previously found that
blobs with close neighbors are on average more
dynamic than blobs further away from each other
[24]. Here we extend this observation by noting that
blobs arise with a higher density actually as
a consequence of locally elevated dynamics in
such nuclear regions. In contrast, the flow magni-
tude appears overall similar for pixels in which the
flow magnitude could be demonstrated to be
a cause for the blob surface area, as compared
with the rest of the nucleus (Figure 4(e)). In these
restricted regions, however, blobs tended to be
smaller and blob density was clearly lower on aver-
age (figure 4(f,g)), an inverse trend as compared
with regions in which flow magnitude was shown
to act upstream of blob density. Regarding the
Granger-causal loop involving only the NND and
blob area, no significant bias in any parameter
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Figure 4. Enhanced dynamics and dense chromatin in regions with Granger causality. (a) The time-averaged flow magnitude across
nuclear regions in which no Granger-causality was detected (bright color in the violin plot and the map on the right) and in regions
in which the flow Granger-causes the NND of blobs. Scale bar is 3 um. (b—c) The average NND and blob area in the same manner as
for (a). (d) The average absolute cross-correlation between flow magnitude and NND for pixels in the two regimes (with/without
Granger-causality). The correlation is significantly enhanced in the long-time limit for regions in which Granger-causality is detected.
(e-h) As for (a—d) in the case of a detected Granger-causality from the flow magnitude to the blob area. Statistical significance was
assessed using a Wilcoxon rank-sum test. The shown p-value is the median from 250 tests on sub-sampled data to avoid reporting

a significance due to the large sample size alone.

under consideration could be evidenced
(Supplementary Figure 2). Whenever a Granger-
causal relationship from chromatin dynamics to
a structural parameter was found, the temporal
cross-correlation was slightly but significantly
enhanced at very long time lags (Figure 4(d,h)),

indicating that the structure-dynamics coherence
was sustained over an extended time in these
regions. It should be noted that the size of chroma-
tin blobs in relatively chromatin-void regions is
likely to be well captured in our analysis due to
a good signal-to-noise ratio, whereas in denser
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chromatin regions multiple small but close chro-
matin blobs might be detected as merged into
a single bigger blob. This artificially increases the
measured blob surface area, while the NND is more
robust to a blob merging effect in regions with high
blob density (Supplementary Figure 3). The follow-
ing discussion is therefore based only on the two
more reliable parameters, blob dynamics and NND
as a proxy for blob density.

In summary, we show that blob dynamics and
blob structural parameters are strongly con-
nected, and chromatin organization appears to
arise as a consequence of chromatin dynamics.
Such a cause-and-effect relationship can only be
demonstrated in restricted areas of the nucleus,
probably because stochasticity overrides determi-
nistic mechanisms everywhere else. Strikingly,
higher dynamics was found to be a cause for
increased blob density (Figure 4; left column).
Since biological experiments can only give access
to a small subset of variables and influences, it
should be kept in mind that the described causal
relationships refer to the concept of Granger-
causality. It is further possible that chromatin
dynamics in itself is not the true cause here but
instead a parameter closely linked to dynamics or
the processes that generate dynamics, etc. The
dynamics-structure Granger-causality described
here can be further coupled via several additional
unobserved factors. Below, we discuss a possible
polymer-theoretical approach and different bio-
logical processes that (i) can induce chromatin
dynamics beyond passive thermal or entropic
contributions, (ii) could potentially give rise to
the formation of transient chromatin blobs and
(iii) could potentially explain how chromatin
dynamics can shape the transient chromatin
structure on the length scales of blobs.

Discussion

The inference of (Granger-) causality in complex
systems provides a powerful tool to infer mechan-
isms from observations. Below we show that the
results of our Granger-causality analysis are consis-
tent with the theory of active semiflexible polymers.
We discuss the major findings of simulations and
analytical descriptions in a qualitative, intuitive way
and describe the implications of this theory for the

organization and dynamics of chromatin. Finally,
we assess if and under which circumstances chro-
matin blobs can be caused by an activity-induced
motion of chromatin.

The theory of active semiflexible polymers may
explain the existence of chromatin blobs

At the root of active polymers are active particles
(self-propelling  particles, dipolar  motors,
enhanced diffusion, etc.). These active particles
can be either incorporated as part of the polymer
itself (several monomers of the chain are active)
or as part of the fluid surrounding a passive
polymer (Figure 5(a)). These active particles are
typically Active Effectors, which provide a local
influx of energy by hydrolysis of ATP and asso-
ciated chromatin remodeling or act by simply
inducing deformation of the chromatin fiber
upon binding. Variations between models yield
qualitatively similar results [35], and since active
effectors can act on the chromatin fiber in var-
ious ways, we shall neglect model-specific differ-
ences in this discussion.

Simulations and analytical approaches of active
semiflexible polymers reveal that the diffusion of
active polymers is enhanced compared to their
passive counterpart [36-40]. The scaling behavior
of the mean square displacement transits from
a ballistic motion at very short time scales due
to the particle propulsion to a subdiffusive regime
at intermediate times and a diffusive regime at
long time scales [41] (Figure 5(b)). Furthermore,
the relaxation time of polymers, ie. the time
needed to recover to the initial conditions after
applied stress, decreases with increasing activity
[36]. In line with this observation, an active poly-
mer also exhibits enhanced conformational fluc-
tuations [40] and appears more flexible. In
particular, the effective persistence length (the
length over which a polymer is approximately
stiff) of active polymers is decreased compared
to their passive counterparts as a consequence of
hairpin-formation [37].

The dependence of the relaxation time on the
activity gives rise to interesting conformational
properties of active polymers. The dimensionless
Péclet number Pe, which is defined as the ratio of
the (activity-induced) advection and (passive)
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Figure 5. Dynamical and structural properties of active semiflexible polymers. (a) Active polymers can be described as polymers
consisting of a mixture of passive (yellow) and active (red) monomers (left). Alternatively, active polymers are modeled as passive
polymers embedded in a bath of active particles (right). Mathematically, a colored noise term can be included in the equations of
motion to model activity [35]. (b) The mean squared displacement (MSD) of a linear active polymer with L10°/, at Pe = 20, subject to
hydrodynamic interactions, is illustratively shown versus time lags in terms of the Zimm time 1, of a passive polymer (adapted from
[54]). The upper x-axis shows an approximate mapping to absolute time in seconds (Supplementary Note 1) and the shaded area
denotes the experimentally accessible time scale. The straight black lines serve as a guide to the eye to identify the different scaling
regimes. (c) The mean squared end-to-end distance <r§> is shown illustratively for two polymers of length L10'/, (dark blue) and
L10?, (light blue) over the Péclet number Pe (adapted from [36]). The shaded area denotes the biologically relevant regime of the
Péclet number (Supplementary Note 1). Ticks along the y-axis indicate one order of magnitude. D) According to the theory and
simulations of active semiflexible polymers, dynamics induced by a host of chromatin players in distinct classes (i.e. polymerases,
chromatin remodelers, topoisomerases, and HMG proteins) (colored dots) can stochastically induce the collapsing of a chromatin
loop into a blob, and enhance blob-blob interactions. This would result in locally increased chromatin blob density and reduced
blob nearest neighbor distances.

diffusion rate in a system (Supplementary Note 1), The activity component in these models thus
is commonly used to denote the activity strength ~ causes (i) enhanced conformational flexibility
in active polymers. For moderate activities as and diffusion with an intermediate subdiffusive

reflected by a low value of Péclet number Pe, the ~ regime and (ii) a shrinkage of polymers in spe-
polymer experiences a significant shrinkage in cific regimes, which are determined by the activ-
terms of its means square end-to-end distance ity and polymer characteristics such as its total

[36] and its radius of gyration [37]. For very length and its persistence length. We propose
that the previously observed chromatin nanodo-

mains/blobs [24,25,47] might be formed due to
the local activity of various Active Effectors and
that at least aspects of the dynamic and struc-
tural behavior of chromatin blobs can be cap-
tured by the theory of active semiflexible
polymers (Figure 5(d)). This notion fits well
with the findings that the blob dynamics and
NND influence each other over space and time
and that chromatin dynamics is at the root of
blob organization (Figures 3 and 4). Below, we

large activities, however, it swells monotonically
(Figure 5(c)). Shrinkage was also described in
terms of a coil-to-globule-like transition upon
increasing activity [42], which may be one reason
why chromatin is well described by a fractal glo-
bule [43,44] with many-body contacts [45], that
further displays anomalous diffusion [46].
Notably, however, the Péclet number might be as
large as to cause the swelling of polymers in spe-
cific settings (Figure 5(c)).
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consider biologically relevant and experimentally
accessible time and length scales to evaluate if
the theory of active semiflexible polymers can be
united with experimental findings.

Experimentally and biologically relevant time
and length scales of chromatin blob formation

Chromatin blobs were mainly observed on the
length scale of tens [24,25,47] to hundreds [48]
of nanometers. While most studies employed
super-resolution microscopy on fixed samples,
only two studies gave access to high-resolution
chromatin dynamics using Structured
Mlumination Microscopy [48] and Deep-PALM
imaging [24]. The time resolution in the latter
was 360 ms, while images were acquired for up
to 60 s. The experimentally accessible time range is
thus in the order of 10° — 10* seconds. Time in
simulations is usually expressed by reference to the
Zimm time 7z, which is of the order of
10°s (Supplementary Note 1). Matching this time
approximately to the simulated time scale for the
dynamics of active polymers shows that only the
subdiffusive regime is experimentally observable
(shaded area in Figure 5(b)), which is in line
with the subdiffusion of chromatin indeed mea-
sured in experiments [12,16,20,24,49].

The unit-less Péclet number Pe, defined as the
ratio of advection and diffusion rate
(Supplementary Note 1), conveys how much flow
in a system depends on active animation rather
passive diffusion. An upper bound on the diffusion
constant of chromatin in vivo was estimated in the

order of D10~—3[,tm2/5“ (ref. [20]). Taking into
account the reported speed for processive enzymes
such as transcribing RNA polymerase II or SMC
proteins in vitro, the Péclet number was estimated
to be between 0.1 and 100 for chromatin
(Supplementary Note 1 for details of the estima-
tion; the shaded area in Figure 5(c)). This range
largely overlaps with the range where shrinkage is
expected for chromatin segments, suggesting that
active effector-induced activity may indeed contri-
bute to the collapse of chromatin locally. It should
be noted, however, that there are clearly local
contexts, and exceptional time and length scales,

in which Péclet numbers can be as large as to
cause polymers to swell, rather than shrink

(Figure 5(c)).

The treatment of active circular polymers and
polymer-polymer interactions can recapitulate
experimental observations

The considerations above strongly suggest that the
formation of chromatin blobs may be conceivably
activity driven. The observation that changes in
the nearest-neighbor distance of chromatin blobs
can be frequently traced back to be caused by their
dynamics (Figure 4(a-c)) further lends support to
the theory. Area fluctuations of blobs for which
their area is causally related to flow dynamics
could reflect a growth/shrinkage of blobs accord-
ing to the preceding dynamics (Figure 5(d)).
Notably, that these blobs appear far from their
closest neighbors opens up the possibility to
track such blobs in three dimensions using Deep-
PALM in the future to verify this hypothesis.
Nevertheless, a direct translation of the theory of
active semiflexible polymers to experimental data
remains difficult due to the multitude of influ-
ences on chromatin that exist in vivo, and
a number of possible additional mechanisms can
be found in the literature. Considering structural
elements of chromatin such as TADs and sub-
TADs as well as chromatin loops such as those
that can be extruded by SMC complexes [7,8], one
should further take into account that chromatin
blobs may at times correspond to sub-regions of
quasi-circular, not of linear polymers. Such quasi-
circular polymers may be stabilized by DNA brid-
ging factors and/or SMC proteins at the loop bases
[50] as well as a host of transcription factors
operating as dimers. However, it is also likely
that such circular structures would form in
a highly dynamic and transient manner, as largely
demonstrated for TADs, for instance, using
a variety of techniques [4,51]. The results for lin-
ear active polymers are qualitatively transferable
to circular ones [40], strengthening the hypothesis
that blobs could correspond to loops or sub-TADs
[24].

Activity was independently shown to enhance
the looping probability of chromatin segments



[52]. Of note, there are hints that crowding may
further promote blob formation in a crowder size-
and concentration-dependent manner [53], and
taking into account hydrodynamic interactions
may result in even further shrinkage of polymers
[54]. Interestingly, a simulation involving ensem-
bles of active semiflexible polymers showed that
the different polymers also get closer with increas-
ing activity [38], suggesting that activity can
enhance chromatin fiber density which may, in
turn, promote blob formation. Furthermore,
a clustering of active segments was observed
upon ‘switching on’ activity of a subset of mono-
mers of a chain, resulting in the segregation of
active and inactive polymer regions reminiscent
of chromatin blobs [55,56]. These computational
results are in line with our observation that
regions in which a high blob density is shown to
depend on chromatin dynamics are also regions
where dynamics is more elevated (Figure 4).
Altogether it, therefore, appears that activity may
promote both blob formation and blob-blob inter-
actions both in a fiber and between fibers, by
simultaneously enhancing blob mobility and
decreasing the distance between blobs, possibly
promoting, in turn, the collapsing of larger seg-
ments (Figure 5(d)).

Conclusions

Using a framework to infer Granger-causal rela-
tionships between spatio-temporal variables
derived from a previous whole-chromatin live
super-resolution imaging study [24], we analyzed
if and how chromatin dynamics and organiza-
tion influence each other. Within a subset of
simultaneously observed variables in a system,
this framework allowed us to pinpoint directed,
Granger-causal relationships among parameters
beyond the more conventional description of
a basic correlation relationship. Within the lim-
itations of our data set, we found that dynamics
can be considered as a cause of structural para-
meters, and in particular that locally elevated
chromatin dynamics causes blobs to be closer
to each other. This is a rather counter-intuitive
result as high chromatin density is commonly
associated with closed chromatin, in which
reduced chromatin density is expected due to
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increased constraints on DNA. Our results sug-
gest that closed chromatin is, in fact, a very
active environment as further supported by the
fact that a number of active effectors are known
to be key determinants of closed chromatin
assembly and function [10,57]. In addition,
active processes have been shown experimentally
[58,59] to drive coherent motion of chromatin
[16,21]

To gain further insights into the existence of
possible spatio-temporal causal relationships, the
presented analysis may be extended to include
the influence of variables at neighboring pixels.
This is particularly important as chromatin blobs
naturally move from frame to frame. However,
since the number of regression parameter scales
with the number of neighboring pixels (3 para-
meters x 10-time lags x 4 or 8 neighboring
pixels = 120 to 240 parameters), the current
length of the time series (166 data points) does
not allow for reliable inference of causality
including neighboring pixels. Further enhancing
the time resolution of chromatin super-
resolution imaging and circumventing photo-
bleaching for longer acquisition may alleviate
such restrictions in the future.

We demonstrate more broadly that the the-
ory of active semiflexible polymers has the
potential to explain the experimentally
observed characteristics of chromatin blobs on
biologically relevant scales, and can further
provide an intuitive explanation for the obser-
vation that increased blob mobility can locally
co-exist with dense chromatin. Blobs, as we are
able to observe them, may nevertheless arise as
a result of further stabilization by bridging
and/or cross-linking factors. To probe this the-
ory more explicitly, the analysis presented here
may be carried out in cells that are depleted of
certain key factors such as SMC proteins, het-
erochromatin players or ATP. In particular,
a global loss of causality is expected in ATP-
depleted cells.

Our analysis altogether reveals that chromatin
dynamics is a key determinant of genome orga-
nization in nuclear space. However, such
Granger-causality could be demonstrated only
in restricted areas of the nucleus that are largely
non-overlapping for distinct combinations of
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parameters. The identification per se of Granger-
causal relationships in a nucleus indicates that
(multiple) deterministic molecular mechanisms
likely exist that are responsible for chromatin
organization. The sparsity of such Granger-
causal relationships is however consistent with
the idea that chromatin dynamics in nuclear
space is largely dominated by stochasticity [60].
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