

Review Article

Survival to Discharge Rate and Favorable Neurological Outcome Related to Gender, Duration of Resuscitation and First Document of Patients In-Hospital Cardiac Arrest: A Systematic Meta-Analysis

Afshin Goodarzi¹, Mahnaz Khatiban², Alireza Abdi³, Khodayar Oshvandi⁴*

¹Department of Nursing, Hamadan University of Medical Sciences, Hamadan, Iran

²Mother and Child Care Research Center, Department of Ethics in Medical Education and Department of Medical Surgical Nursing, Nursing and Midwifery School, Hamadan University of Medical Sciences, Hamadan, Iran

³School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran

⁴Chronic Disease (Home Care) Research Center, Nursing and Midwifery School, Hamadan University of Medical Sciences, Hamadan, Iran

*Corresponding author: Khodayar Oshvandi Address: PhD in Nursing, Professor, Chronic Disease (Home Care) Research Center, Nursing and Midwifery School, Hamadan University of Medical Sciences, Hamadan, Iran. Cellphone: +98-918-8117729. e-mail: oshvandi2004@yahoo.com Received: August 22, 2021 Revised: December 15,2021 Accepted: December 27, 2021

ABSTRACT

Objective: To investigate the relationship between outcomes and demographic-clinical variables in in-hospital cardiac arrest (IHCA).

Methods: The Medline database was searched along with Google Scholar, Scopus, Web of Science, and Persian language database without time limitation until January 6^{th} , 2020. The inclusion criteria included papers published in journals or presented in English and Persian congress that reported the IHCA outcomes based on the Utstein criterion. All the descriptive, cross-sectional, and cohort studies on CPR were covered based on inclusion and exclusion criteria. Primary checks covered titles and abstracts followed by a full-text check of the remaining papers from the first screening stage. Data analysis was done using comprehensive meta-analysis (CMA) software version 2.0. The finding's heterogeneity was checked using Q and Cochran tests with heterogeneity >50% and the random-effects model was used to estimate survival and favorable neurological outcome (FNO) in the analysis. To detect the publication bias of studies, the subgroup test, meta-regression test, sensitivity analysis test, funnel plot, and Eagger's regression test were used.

Results: Survival to discharge was 19.1% (95% CI=16.8-21.7) and FNO in the survived to discharge cases was 68.1% (95% CI=55.8-78.3). Survival to discharge and FNO were notably higher in men, CPR duration <15min, and shockable dysrhythmias.

Conclusion: IHCA outcomes are poor in developing countries. The outcomes of IHCA in terms of gender were inconsistent with the result reported by other meta-analyses.

Keywords: Cardiopulmonary resuscitation; CPR; Resuscitation; Cardiac arrest; Neurological.

Please cite this paper as:

Goodarzi A, Khatiban M, Abdi AR, Oshvandi K. Survival to Discharge Rate and Favorable Neurological Outcome Related to Gender, Duration of Resuscitation and First Document of Patients In-Hospital Cardiac Arrest: A Systematic Meta-Analysis. *Bull Emerg Trauma*. 2022;10(4):141-156. doi: 10.30476/BEAT.2022.92465.1307.

Introduction

Cardiopulmonary resuscitation (CPR) is a measure to compensate the function and return vital performance of the heart and lungs and was developed in 1950 [1]. The first instruction was published in 1996 which was later revised in 2020 [2]. Although CPR is the only efficient treatment in the case of cardiac arrest as a lethal condition, the success rate of the procedure is still too low and the survivalto-discharge rate ranges from 0 to 20%. There has been no significant improvement in this rate over the past 30 years [3-5]. This can be justified by the aging population, increased prevalence of physical health problems, and longer response time in the prehospital emergency system, which is due to the growing population and traffic jams in cities [5-9].

Assessing CPR outcomes yields a valuable indicator that is used by the American Heart Association to revise CPR instructions based on the Utstein criterion and its relationship with demographical variables, patient's background and other variables [9-11]. Two studies of Shao *et al.*, [12] and Movahedi *et al.*, [13] showed that gender affects survival. Other studies have emphasized shockable dysrhythmias as an effective factor in survival to discharge. According to Bergum *et al.*, [14], 53% of cardiac arrest cases with shockable dysrhythmia have led to successful CPR and discharge. Hirlekar *et al.*, [9] and Salari *et al.*, [15] have reported a significant relationship between survival to discharge and shockable rhythms.

The neurological outcomes and side effects are the risk factors of a successful CPR that can be affected by prolonged CRP duration and decreased heart output which in return decreases cerebral perfusion [16]. Although there is a specific instruction about the time of CPR termination in pre-hospital cases, the new instructions available in hospitals are ambiguous and challenging [17]. The American Heart Association has given room for clinical judgment in this regard [18]. At any rate, cerebral damages are generally considered a risk factor in cardiac arrest patients. The CPR duration is an efficient factor that needs further examination; still, there is no review study on the studies in this field. Therefore, the present systematic meta-analysis is based on the question of "is there any relationship between the CPR outcomes and demographic-clinical variables (first document, gender, CPR duration) in patients with In-hospital Cardiac arrest (IHCA)"?

Materials and Methods

Study Design

This systematic review and meta-analysis was funded by Hamadan University of Medical Sciences and reported following the PRISMA and MOOSE guidelines to report the systematic reviews and meta-analysis of observational studies [19, 20]. In this study, we aim to investigate the relationship between resuscitation outcomes include survival to discharge, and favorable neurological outcome (FNO) at discharge with the first document, gender, and duration of CPR in IHCA patients. As a result, PECO in the current study is defined as P (patients): Patients with IHCA, E (exposure): Advanced inhospital resuscitation, C (comparison): Gender / First document (shockable with non-Shockable dysrhythmias)/ Duration of resuscitation (\leq 15min with >15 min), As for outcomes (O in PECO): Survival to discharge or 30-day survival and FNO at discharge included *Cerebral Performance Category* (CPC) \leq 2.

Search Strategy

The searching process was initiated by selecting keywords that included both standardized medical subject heading (MESH) and text word includes. With the aim of obtaining papers published in journals and presented in congress, Medline database along Scopus, Web of Science, and Persian language databases including SID and Magiran was searched without time limitation until January 6th, 2020. In addition, a general search was performed in Google Scholar to obtain possibly missed manuscripts. All the found materials were checked based on exclusion and inclusion criteria and irrelevant cases were removed from the study. The search strategy is presented in Appendix 1.

Selection Criteria

The inclusion criteria included papers published in journals or presented in English and Persian congress on adults (older than 13 years old), that reported the outcomes of IHCA (survival to discharge or 30 days' survival and FNO at discharge) based on the Utstein criterion, or they have reviewed the relationship between a "first document, gender or CPR duration", and outcomes of IHCA. Qualitative works, letters to the editor, review studies, repetitious works, studies on animals, infants, children, studies limited to an initial success rate of CPR without any results about survival to discharge, studies with less than 30 subjects, meta-analysis, structured studies, studies on out of hospital cardiac arrest (OHCA) or both (undetermined of the type of cardiac arrest), studies with overlapped study populations, studies on survived patients and without information about the population under study were excluded.

Data Collection

All the descriptive, cross-sectional, and cohort studies on CPR were covered based on inclusion and exclusion criteria. Two independent reviewers screened titles and abstracts of the gathered papers and any disagreements within the process were resolved using a third researcher's opinion. Primary checks covered titles and abstracts followed by a full-text check of the remaining papers from the first screening stage. Data extraction was performed by two researchers, and the final and agreed information of articles was added to a researchers-designed checklist. The checklist included information about author name, publication year, time, type, and place of study, the total number of samples, outcomes (survival to discharge and FNO included CPC \leq 2), and outcomes based on gender, CPR duration, and first document of patients. Table 1 lists the information extracted from the articles.

Outcome

The primary outcome of the present meta-analysis was an overall survival rate to discharge or 30-day survival and FNO at discharge included CPC \leq 2. The secondary outcome was survival rate to discharge or 30-day survival and FNO at discharge based on gender, first document rhythm, and duration of resuscitation (\leq 15min, >15 min).

Methodological Quality (Risk of Bias) Assessment

The Critical Appraisal Skills Program (CASP) for the cross-sectional study was used to the risk of bias assessment [21]. The searched articles were checked based on CASP checklist criteria by two independent researchers, and each researcher independently assessed the articles, and any disagreements within the process were resolved using a third researcher's opinion.

Statistical Analysis

Data analysis was done using CMA version 2.0. The findings' heterogeneity was checked using Q and Cochran tests with heterogeneity >50%, the random-effects model was used to estimate survival and FNO in the analysis. We used random effect model for analysis because of the high heterogeneity (>50%) of the studies, studies' variation in terms of population, event rate of survival to discharge and location of studies. The subgroup test (to estimate the relationship between survival and FNO and qualitative variables like gender and first document), meta-regression test (to check the relationship between survival and FNO and quantitative variables like publication year); funnel plot, and Eagger's regression test (to check publication bias) were used. Finally, the sensitivity analysis test was used to evaluate the effect of each study on the final results of the meta-analysis. Sensitivity analysis responses to the question "Are the findings robust to the decisions made in the process of obtaining them?", if there are some studies that effects are too different from other studies, we should be dubious about the results and recommend more studies.

Results

Study Characteristics

Our search strategy retrieved 8728 records, of which 5840 remained after duplicates were removed. The parallel exclusion of studies resulted in 326 articles eligible for detailed assessment based on title and abstract. Finally, we included 46 studies in our systematic review and meta-analysis [12, 14, 15, 22-64] (Figure 1).

Risk of Bias Assessment

CASP checklist was used to the risk of bias assessment [21]. This checklist has 11 items that

Fig. 1. PRISMA flow diagram of search strategy and included studies.

Table 1.	. Output informati	on from related ar	ticles								
Row	The first	Study time	Study place	Survival to	FNO ^a	Í	otal N	L	otal N		fotal N
	author	(study type)		discharge or 30 days	N (%)	Surviv gend	al based on ler N (%)	Survival based	l on First Document N (%)	Survival base	d on CPR duration N (%)
				N (%)		FNO bas	ed on gender	FNO based on	the First Document	FNO based o	n CPR duration N
			N (total)			Female	Male	Non-Shockable	Shockable	<15min	>15min
1	Meaney et al.,	1999-2005	U.S.	9125(17.57)	6850(75.07)	NR‡	NR	39391	12528	NR	NR
	[22]	(Prospective)				NR	NR	4469(11.34)	4656(37.16)	NR	NR
			51919			NR	NR	3133(70.1)	3717(79.83)	NR	NR
2	Hessulf et al.	2006-2015	Swedish	5113(28.3)	NR (93)	NR	NR	NR	NR	NR	NR
	[23]	(Retrospective)	Register			NR	NR	NR	NR	NR	NR
			18069			NR	NR	NR	NR	NR	NR
3	Johnson et al.,	Unknown	South India	197(10.1)	161(81.73)	628	1327	1676	279	NR	NR
	[24]	(Prospective)				70(11.1)	127(9.50)	146(8.71)	51(18.27)	NR	NR
			1955			NR	NR	114(78)	47(92)	NR	NR
4	Radeschi et al.,	2012-2014	Italy	228(14.8)	207(90.79)	575	964	1248	291	NR	NR
	[25]	(Retrospective)				89(15.48)	139(14.42)	116(9.29)	112(38.49)	NR	NR
			1539			NR	NR	NR	NR	NR	NR
5	Urberg et al.,	1983-1984	Michigan.	13(11)	NR	58	63	NR	NR	NR	NR
	[26]	(Retrospective)	US.			6(10.34)	7(11.11)	NR	NR	NR	NR
			121			NR	NR	NR	NR	NR	NR
9	Hjalmarsson et	2007-2015	Karolinska	376(27.38)	NR	478	895	897	292	NR	NR
	al., [27]	(Retrospective)	Stockholm			125(26.15)	251(28.4)	151(16.83)	171(58.56)	NR	NR
			1373			NR	NR	NR	NR	NR	NR
7	Andersen et al.,	2017-2018	Denmark	1124(27.8)	NR	NR	NR	2891	703	NR	NR
	[28]	(Retrospective				NR	NR	466(16.1)	405(57.6)	NR	NR
			4049			NR	NR	NR	NR	NR	NR
8	Lundin et al.,	2015-2017	Swedish	1818(30.13)	1660(91.3)	NR	NR	3410	1356	NR	NR
	[29]	(Retrospective)				NR	NR	600(17.59)	857 (63.20)	NR	NR
			6033			NR	NR	543(90.5)	809(94.4)	NR	NR
6	Cicekci et al.,	2013-2015	Konya,	44(11.28)	25(56.82)	NR	NR	NR	NR	NR	NR
	[30]	(Retrospective)	Turkey			10(NR)	34(NR)	10(NR)	34(NR)	29(NR)	15(NR)
			390			NR	NR	5(50)	20(58.82)	18(62.7)	7(46.67)
10	Rohlin et al.,	2007-2017	Swedish	471(29)	NR	NR	NR	NR	NR	635	133
	[31]	(Retrospective)				NR	NR	NR	NR	405(63.78)	36(27.7)
			1639			NR	NR	NR	NR	NR	NR
11	Nadkarni et al.,	2000-2004	US&	6485(17.57)	4390(67.69)	NR	NR	24978	8361	NR	NR
	[32]	(Retrospective)	Canadian's H			NR	NR	2719(10.88)	3013(36)	NR	NR
			36902			NR	NR	1675(61.60)	2268(75.27)	NR	NR

~ ~ ~	R	X	К	X	R	R	R	R	R	R	×	R	×	×	R	R	R	R	×	R	×	R	×	R	X	R	R	R	×	R	×	R	×	R	R	×
IZ Z	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN
NR NR NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
NR NR NR	NR	NR	NR	21	4(19.04)	NR	148	78(52.70)	NR	23	7(30.4)	NR	151	36(23.84)	NR	NR	NR	NR	39	14(35.90)	NR	14	1(7.1)	1 (100)	131	78(59.54)	NR	NR	NR	NR	42	20(47.62)	NR	423	93(21.98)	NR
NR NR NR	NR	NR	NR	523	24(4.59)	NR	267	35(13.10)	NR	80	5(6.2)	NR	551	57(10.34)	NR	NR	NR	NR	67	8(11.4)	NR	83	9(10.84)	9(100)	384	89(23.18)	NR	NR	NR	NR	56	6(10.71)	NR	2289	154(6.73)	NR
989 277(28) NR	193	75(39)	NR	320	15(4.68)	NR	246	75(30.49)	NR	55	6(10.7)	NR	399	56(14.03)	NR	372915	88753(23.8)	NR	NR	NR	NR	NR	NR	NR	340	119(35)	NR	926	138(14.9)	82(59.42)	74	16(21.6)	NR	NR	NR	NR
650 193(29.69) NR	115	45(39)	NR	224	13(5.80)	NR	169	38(22.48)	NR	36	6(14.2)	NR	303	37(12.21)	NR	311423	79724(25.6)	NR	NR	NR	NR	NR	NR	NR	234	72(30.77)	NR	598	77(12.9)	28(36.36)	46	11(23.9)	NR	NR	NR	NR
NR	NR			6(21.43)			NR			NR			NR			NR			NR			12(100)			NR			110(51.16)			NR			NR		
470(29)	120(39)			28(5.1)			113(27.2)			12(11.7)			93(13.24)			68477(24.62)			32(16.6)			12(11.1)			191(33.27)			215(14.1)			27(22.5)			247(9.10)		
Karolinska University 1639	Australia		308	Taiwan		544	New Zealand		415	Turkey		103	Afula, Israel		702	USA		684338	U. K		192	Kenya		108	Stockholm,	Sweden	574	Taiwan		1524	Croatia		120	Beijing,	China	2712
2007-2017 (Retrospective)	1984-1991	(Retrospective)		2008-2011	(Retrospective)		2004-2006	(Retrospective)		2001-2002	(Prospective)		1995-2015	(Retrospective)		2003-2011	(Retrospective)		1987-1988	(Prospective)		2013	(Retrospective)		2012-2017	(Retrospective)		2006-2014	(Retrospective)		2003	(Prospective)		2014	(Prospective)	
Qvick et al., [33]	Heller et al.,	[34]		Kung et al.,	[35]		Jones et al.,	[36]		Tok et al., [37]			Khatib et al.,	[38]		Kolte et al., [39]			Thomas et al.,	[40]		Wachira et al.,	[41]		Widestedt et	al., [42]		Wang et al.,	[43]		Rakic et al.,	[44]		Shao et al., [12]		
12	13			14			15			16			17			18			19			20			21			22			23			24		

 NR	ND	NK	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	2886(NR)	2296(79.56)
 NR	ND	NK	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	5838(NR)	4738(81.2)
 63 17777)		NK	NR	NR	NR	40	21(52.5)	NR	61	9(14.7)	NR	57	15(28)	13(86.67)	138	63(45.65)	56(88.89)	NR	NR	NR	142	46(32.39)	NR	261	147(56.32)	NR	80	39(48.75)	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
290 32/11)		NK	NR	NR	NR	143	34(23.8)	NR	113	1(1)	NR	126	7(5.55)	NR	347	73(21.04)	49(67.12)	NR	NR	NR	237	28(11.81)	NR	240	40(16.67)	NR	207	19(9.18)	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
 NR	ND	NK	159	43(27)	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	53639	9817(18.30)	7462(76.01)	245	52(21.22)	NR	340	129(37.94)	121(94)	176	39(22.16)	NR	418	92(22)	NR	9166	2680(29.24)	NR	NR	NR	NR
 NR	ND	NK	96	22(22.9)	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	42213	7593(17.99)	5782(76.15)	172	34(19.77)	NR	217	79(36.40)	71(91)	111	19(17.12)	NR	262	33(12.50)	NR	5767	1517(26.30)	NR	NR	NR	NR
 NK			NR			NR			NR			NR			105(77.21)			13244(78.09)			NR			192(92.31)			NR			NR			NR			7034 (80.6)		
49(13.88)			65(24.49)			55(30)			44(13)			22(12.02)			136(27.8)			16960(17.69)			86(21)			208(37.34)			58(20.2)			125(18.38)			4197(28.1)			9912(15.4)		
 Singapore	257	ccc	USA Stony	Brook Univ	255	Unknown		183	Dayton Ohio		340	Finland		183	Japan		491	Philadelphia		95852	New York		417	Sweden		557	Sweden		287	New York		680	Swedish	Register	14933	(NRCPR)	Michigan	64339
2008-2009 (Retrospective)	(a mand commun)		2012-2013	(Prospective)		2017-2018	(Retrospective)		1988-1990	(Retrospective)		1993-1997	(Prospective)		2008-2009	(Prospective)		2000-2008	(Prospective)		2007-2013	(Retrospective)		1994-1998	(Prospective)		2007-2010	(Retrospective)		2012 - 2018	(Prospective)		2007-2014	(Prospective)		2000-2008	(Prospective)	
Chua et al., [45]			Garry et al.,	[46]		Chong et al.,	[47]		Saklayen et al.,	[48]		Skrifvars et al.,	[49]		Yokoyama et	al., [50]		Topjian et al.,	[51]		DeVoe et al.,	[52]		Herlitz et al.,	[53]		Ohlsson et al.,	[54]		Parikh et al.,	[55]		Al-Dury et al.,	[56]		Goldberger et	al., [57]	
25			26			27			28			29			30			31			32			33			34			35			36			37		

																										I
NR	NK	NR	43	12(27.91)	NR	125(>10min)	18(14.4)	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	41(NR)	12(29.27)	NR	NR	NR	NR	NR	NR	NR
NR	NK	NR	60	55(61.11)	NR	127(<10min)	26(20.47)	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	83(NR)	45(54.22)	NR	NR	NR	NR	NR	NR	NR
NR	NK	NR	140	53(37.86)	NR	57	16(28.08)	NR	NR	NR	NR	NR	NR	NR	78	15(19.2)	NR	61	30(49.18)	NR	72	38(52.8)	NR	3982	1727(49)	1602(99.1)
NR	NK	NR	180	15(8.33)	NR	195	28(14.36)	NR	NR	NR	NR	NR	NR	NR	172	3(1.7)	NR	126	27(21.43)	NR	207	30(14.29)	NR	17018	1735(10.19)	1524(96)
196	ðU(40.02)	NR	NR	NR	NR	137	33(24.09)	NR	NR	NR	NR	NR	NR	NR	149	10(6.7)	NR	132	42(31.82)	NR	NR	NR	NR	NR	NR	NR
90 000000	(nc)/7	NR	NR	NR	NR	115	11(9.56)	NR	NR	NR	NR	NR	NR	NR	101	8(7.9)	NR	57	15(26.31)	NR	NR	NR	NR	NR	NR	NR
NR			NR			NR			NR			NR			NR			NR			NR			3759(97.5)		
107(37.4)			68(21.25)			44(17.50)			10(13.5)			10(3.3)			18(7.2)			57(30.2)			71(25)			4153(18.35)		
Swedish		286	Fujian, China		320	South India		252	Iran		74	Iran		302	Iran		250	Germany		189	Norway		306	UK		22628
2007-2011 (Petrocreative)	(manapacenter)		2012-2016	(Retrospective)		2016-2017	(Prospective)		2010	(Prospective)		Unknown	(Prospective)		2006	(Retrospective)		2004-2006	(Retrospective)		2009-2013	(Prospective)		2011-2013	(Prospective)	
Israelsson et al [58]	U a1., [JO]		Li et al., [59]			Ravipragasam	et al., [60]		Keivanpazhoh	et al., [61]		Jaberi et al.,	[62]		Salari et al.,	[15]		Mohnle et al.,	[63]		Bergum et al.,	[14]		Nolan et al.,	[64]	
38			39			40			41			42			43			44			45			46		,

Favorable Neurological Outcome (CPC<=2); bNo Reported

Table 2. Methodological quality (risk of bias) assessment (CASP Checklist)

Author: Vear	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11
Meaney and et al: 2010	Y¶	Y	V	V	Y	Y	Y	Y	Y	V	Ee
Hessulf and et al:2017	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Johnson and et al:2014	V	V	V	C†	V	V	r C	C	V	V	G [¥]
Radeschi and et al:2017	V	V	V	V V	V	V	v	v	V	V	F
Urberg and et al:1987	I V	I V	I V	I N†	I V	N	N	Г С	v	N	L F [₽]
Hialmarsson and et al. 2017	I V	v V	I V	V	I V	V	V	v	I V	V	F
Andersen and et al:2019	I V	v	I V	I V	I V	I V	I V	I V	v	I V	E
Lundin and et al:2019	I V	I V	I V	I V	I V	I V	I V	I V	I V	I V	E
Cicekci and et al:2019	I V	I V	ı V	ı N	I V	ı V	1 C	I C	I V	I V	E G
Poblin and et al:2018	I V	I V	I V	V	I V	I V	v	v	I V	I V	E E
Nadkarni and et al:2006	I V	I V	ı V	I V	I V	ı V	ı V	ı V	I V	I V	E
Ovials and at al:2018	I V	I V	I V	I V	I V	I V	I V	I V	I V	I V	E
Hollor and at al:1005	I V	I V	I V	1 N	I V	1 V	1 V	I V	I V	1 V	E
Kung and at al:2014	I V	I V	I V	N C	I V	I V	I V	I V	I V	I V	E
Longs and et al;2014	I V	I V	I V	v	I V	I V	I V	I V	I V	I V	E E
	I V	I V	I V	I	I V	I	I V	I C	I V	I C	E
Valta and et al;2004	Y V	Y V	Y V	IN C	Y V	IN V	r C	C	Y V	V	G
Kolle and et al; 2014^{+}	Y V	Y V	Y	U N	Y V	Y V	C	C	Y V	Y V	C
Thomas and et al;1990	Y V	Y V	Y V	IN N	Y V	Y	C N	C	Y V	Y	G
	Y V	Y V	Y	N	Y V	IN N	IN W	C	Y V	IN N	Г
Widestedt and et al;2018	Y	Y	Y	U	Y	Y	Y	C V	Y	Y	E
wang and et al;2016	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Rakic and et al;2005	Y	Y	Y	N	Y	N	Y	Y	Y	N	G
Shao and et al;2016	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Chua and et al;2015*	Y	Y	Y	C	Y	Y	C	C	Y	Y	C
Garry and et al;2015*	Y	Y	Y	C	Y	Y	C	C	Y	Y	C
Chong and et al;2018*	Y	Y	Y	C	Y	Y	C	C	Y	Y	C
Saklayen and et al;1990	Y	Y	Y	N	Y	Y	N	C V	Y	Y	G
Skrifvars and et al;2005	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Yokoyama and et al;2011	Y	Y	Y	Y	Y	Y	C	Y	Y	Y	E
Topjian and et al;2010	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Devoe et al;2016	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Herlitz et al;2001	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Ohlsson et al;2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Parikh et al;2019	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Al-Dury et al;2017	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Israelsson et al;2014	Y	Y	Y	С	Y	С	Y	Y	Y	Y	E
Mohnle et al;2012	Y	Y	Y	С	Y	N	Y	Y	Y	Y	E
Ravipragasam and et al;2019	Y	Y	Y	Ν	Y	Y	Y	Y	Y	Y	Е
Li et al;2019	Y	Y	Y	С	Y	Y	Y	Y	Y	Y	E
Jaberi et al;2011	Y	Y	Y	Ν	Y	Y	С	Ν	Y	Y	G
Goldberger et al;2012	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Nolan et al;2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E
Bergum et al;2015	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Е
Keivanpazhoh et al;2011	Y	Y	Y	N	Y	Ν	N	С	Y	N	F
Salari et al;2010	Y	Y	Y	N	Y	С	Y	Ν	Y	Y	G
Khatib and et al;2017	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	E

Item1: Did the study address a clearly focused issue?

Item2: Did the authors use an appropriate method to answer their question?

Item3: Were the subjects recruited in an acceptable way?

Item4: Were the measures accurately measured to reduce bias?

Item5: Were the data collected in a way that addressed the research issue?

Item6: Did the study have enough participants to minimize the play of chance?

Item7: How are the results presented and what is the main result?

Item8: Was the data analysis sufficiently rigorous?

Item9: Is there a clear statement of findings?

Item10: Can the results be applied to the local population?

Item11: How valuable is the research?

*. presented in Congress; ¹. Yes; [‡]. Can't Tell; [†]. NO; [€].Excellent; [¥].GOOD; ^F. Fair

10 items evaluate the content of the article from different angles and item 11 is related to commenting on the overall quality of the article based on the result obtained from the first 10 items. Based on the researchers' evaluation of the articles, about 74% of the articles published in journals were evaluated as an excellent and only 2 articles were in an acceptable condition. In 12 articles, bias measurement and classification methods could not be deduced, and in 6 articles, there are enough participants to minimize the play of chance (Table 2).

Publication Bias

There were no evidences of publication bias in the assessment of survival to discharge on women (t=0.33, p=0.13), survival to discharge on men (t=1.5, p=0.74) and the rate of FNO (t=0.65, p=0.52) based on the results of funnel plot and Eagger's regression test (Figure 2).

Sensitivity Analysis

The results of the sensitivity analysis test showed the parallel effect of each study on the conclusion and the robustness of the model; therefore, we did not delete any studies to compare with the remaining results (Figure 3).

Meta-analysis Survival to Discharge

Based on the results of systematic and metaanalysis review on 46 articles of 1,020,799 cases with IHCA, survival to discharge was equal to 19.1% (95% CI=16.8-21.7) (Figure 4). In addition, metaregression results showed that survival to discharge rate had a declining trend over the past few years. Figure 5 illustrates heterogeneity in survival to discharge in different studies and countries, therefore, the higher survival rates are in Australia (39%), Sweden with (32.7%) and Germany (30.2%), and the lowest survival rates are in Iran (6.9%) and Taiwan (8.7%) (Q-value=20707.47, $p \le 0.001$).

The results about survival to discharge in men and women showed that survival to discharge in women with 364,593 cases was 19.8% (95% CI=17.6-22.2) and this figure for men with 444,463 cases was 22.2% (95% CI=20.2-24.3) (Figure 6).

Only three studies used a similar pattern to report the survival to discharge based on CPR duration. The meta-analysis results on these studies indicated that out of 2,148 cases with initial successful resuscitation (ROSC) and CPR duration \leq 15min, survival rate was 47.3% (95% CI=28.9-66.6) and in CPR duration>15min in 359 cases, this rate was

Fig. 2. Regression of survival and the time of publication of articles, Regression of FNO (CPC<=2) and survival to discharge and Funnel plot for publication bias in survival to discharge of women, men and FNO

Fig. 5. Survival rate to discharge based on study location

thor's same		Statist	ics for e	ch study		Event rate and 95%
	Event	Lower	Upper limit	Z-Value	p-Value	
Dury1 2017	0,280	0.273	0.287	-51.940	0.000	
lexis1 2010	0.177	0.175	0.179	-181.621	0.000	
ndersen1.2019	0.278	0.264	0.292	-27.253	0.000	
ergum1 2015	0232	0.188	0.283	-8838	0.000	
hong1 2018	0.301	0,239	0.371	-5239	0.000	
huat 2015	0.139	0 107	0.179	-11.857	0.000	
loekoi 2018	0 113	0.085	0.143	-12.885	0.000	
Word 2016	0.206	0 170	0.243	.11 136	0.000	
arry 1 2015	0.255	0.205	0.312	.7465	0.000	
dicherger 2012	0.154	0.151	0.157	-155 953	0.000	
der1 1995	0.390	0.337	0.445	-3842	0.000	
ofity 1 2001	0.373	0.334	0.414	-5908	0.000	
essuit 2017	0.283	0.276	0,290	-56 297	0.000	
almarsson1 2017	0274	0251	0.298	-16 113	0.000	
ravisson1 2014	0 374	0.200	040	4211	0.000	
aberi 2011	0.033	0.018	0.000	.10.492	0,000	
msm1 2014	0 101	0.099	0.115	.29 131	0.000	I I T
mes1 2011	0.272	0.222	0.317	.8014	0,000	
at an az hoh 2011	0 135	0.074	0.233	5 450	0,000	
hight 2017	0 1 22	0 109	0 160	. 10.879	0,000	
dent 2014	0 100	0,000	0 101	-545 273	0,000	
1 2019	0.212	0 171	0.261	.0 595	0,000	
12019	0.301	0.200	0.313	-30.000	0.000	
anna 1 2010	0 176	0.173	0.170	134 003	0,000	
Indenty 12010	0.302	0.240	0.371	5 208	0,000	I I I
officiania 2006	0.302	0.172	0.5/1	112.005	0.000	
dan 1 2015	0.100	0.172	0.100	91 014	0.000	
bloccost 2014	0.104	0.1/9	0.109	02/2	0.000	
1550112019	0.202	0.100	0.235	15,062	0.000	
ankin 2019	0.104	0.100	0.215	- 15,000	0.000	I I I
MUN 12010	0.201	0.200	0.509	- 20 0003	0.000	_=
abis011.2017	0.148	0.131	0.167	-24.311	0.000	
and 12000	0.225	0.139	0.308	-2007	0.000	
avpragasami 2019	0.1/5	0.133	020	-9.301	0.000	1 1 1
Umi1.2010	0.013	0.578	0.04/	0.223	0.000	
akayeni, 1900	0.020	0.046	0.109	11,756	0,000	
000112010	0.072	0.040	0.111	- 10.440	0.000	
10012010	0.031	0.001	0.103	0.757	0.000	
minutes 1,2005	0.120	0.080	0.1/0	101.6-	0,000	
010000	0.001	0.000	0.0/4	-13,01/	0.000	
1011115 1, 1950	0.167	0.120	0.285	-8.311	0.000	
061.2004	0.117	0.067	0.194	-0.597	0.000	
Derg1, 1967	0.107	0.063	0.1/6	1212	0.000	
achiral 2015	0.111	0.064	0.185	-0./91	0.000	■
angt 2016	0.141	0.124	0.159	-24.54/	0.000	
roested 1.2018	0.333	0.2%	0.3/2	-7.855	0.000	
den						
okoyama1.2011	02//	0 239	0.318	-9.514	0.000	

Fig. 4. Survival to discharge (Survival rate: 19.1%, Q-value=11896.47, P<0.001)

Favours A

Favours B

Group by	Author's name		Stati sti	ics for e	ach study			Event	rate and S	5% CI	
survival of gender		Event	Lower	Upper							
		rate	limit	limit	Z-Value	p-Value					
female	Al-Dury 2 2017	0.283	0.252	0.275	-34.445	0.000	1	1	1	• 1	1
female	Alexis 2.2010	0.180	0.178	0.184	-119.727	0.000				ī _	
female	DeVoe2 2018	0.198	0.145	0.284	-7.317	0.000					
female	Garry 2:2015	0.229	0.158	0.324	-4.995	0.000			14	-	
female	Heller2 1995	0.391	0.307	0.483	-2312	0.021			1.	- -	
female	Herit::2 2001	0.384	0.303	0.430	-3.954	0.000				÷.	
female	Hjalmars son2.2017	0.282	0.224	0.303	-9.974	0.000					
female	Israelsson2.2014	0.300	0.214	0.402	-3.684	0.000				+	
female	Johns on 2 2014	0.111	0.089	0.139	-16.371	0.000					
female	Jones 2.2011	0.225	0.168	0.294	-6.717	0.000					
female	Khatib2 2017	0.122	0.090	0.164	-11.242	0.000					
female	Kote2 2014	0.258	0.254	0.258	-259.832	0.000					
female	Mbhnie2 2012	0.283	0.185	0.382	-3.423	0.001			1 -	╉╴│	
female	Ohiss on 2 2014	0.171	0.112	0.253	-6.259	0.000				F	
female	Park h2 2019	0.126	0.091	0.172	-10.404	0.000				_	
female	Qv idt 2.2018	0.297	0.283	0.333	-10.041	0.000					
female	Radeschi2 2017	0.155	0.127	0.187	-14.723	0.000					
female	Rakic2.2005	0.239	0.138	0.382	-3.349	0.001			1_1		
female	Ravipragas am2 2019	0.096	0.054	0.165	-7.085	0.000					
female	Salar (2.2010	0.079	0.040	0.150	-0.058	0.000					
female	Tekung1.2014	0.053	0.031	0.090	-10.095	0.000					
female	Tok 2 2004	0.167	0.077	0.325	-3.599	0.000					
female	Urberg2 1987	0.103	0.047	0.212	-5.009	0.000					
female	warg2.2010	0.129	0.104	0.158	-15.000	0.000			1	- 1	
female	Widestect2 2018	0.308	0.252	0.3/0	-5.725	0.000					
tenale	10 - 2 00/7	0.198	0.1/0	0.222	-10.364	0.000			11		
Lhis	Alexie 2 2010	0.102	0.100	0.108	122 079	0.000				- 1	
1.his	Dallba3 2018	0.212	0.100	0.268	.8 394	0.000			1.7		
Ihia	Garry 3 2015	0 270	0.207	0.345	.5.552	0.000			1.1		
Male	Heller3 1995	0.389	0.322	0.459	-3.069	0.002				-	
Male	Heritz3 2001	0.379	0.329	0.432	-4.403	0.000					
Male	Hialmars sor 3, 2017	0.280	0.252	0.311	-12.683	0.000					
Male	Israelsson3.2014	0.408	0.342	0.478	-2.557	0.011				- -	
Male	Johns on 3 2014	0.098	0.081	0.113	-24.088	0.000				-1	
Male	Jones 3.2011	0.305	0.251	0.365	-5.951	0.000			1-		
Male	Khatib3 2017	0.140	0.110	0.178	-12.575	0.000				-	
Male	Kote3.2014	0.238	0.237	0.239	-302.628	0.000			17		
Male	Mbhnle3 2012	0.318	0.244	0.402	-4.078	0.000				+	
Male	Ohlsson3 2014	0.222	0.168	0.289	-6.923	0.000			14		
Male	Park h3 2019	0.220	0.183	0.282	-10.718	0.000					
Male	Qv idk 3.2018	0.280	0.253	0.309	-13.332	0.000					
Male	Radeschi3 2017	0.144	0.123	0.168	-19.424	0.000					
Male	Rakic3.2005	0.216	0.137	0.324	-4.561	0.000					
Male	Ravipragas am3 2019	0.241	0.177	0.319	-5.745	0.000			1		
Male	Salari3.2010	0.087	0.038	0.120	-8.039	0.000					
Male	Tekung2.2014	0.047	0.028	0.078	-11.390	0.000					
Male	Tok3 2004	0.109	0.050	0.222	-4.855	0.000				·	
Nale	Urberg3. 1987	0.111	0.054	0.215	-5.187	0.000					
NB/B	wang3.2016	0.149	0.128	0.173	-18.880	0.000				-	
Make	Widestect 3.2018	0.360	0.301	0.402	-5.444	0.000					
124		0.222	0.202	0.243	-20.305	0.000	1	1	1	7 I	1
							-1.00	-0.50	0.00	0.50	1.00
								Execute A		Execute O	
								CATOMS A			

Fig. 6. Comparison of survival to discharge in female with male

significantlylower(13.2%)(95%CI=6.5-25)(Figure 7). Also, survival rate to discharge in 135,996 cases under study with shockable and non-shockable dysrhythmias was 39.3% (95% CI=35.6-43.1) and 12.1% (95% CI=11-13.3), respectively ($p \le 0.001$) (Figure 8).

FNO (CPC≤2) at Discharge

From 46 articles entered to the meta-analysis, 15 articles with total cases of 302,850 reported FNO at discharge. This index relative to survivors until discharge was equal to 68.1% (95% CI=55.8-78.3) (Figure 9). Meta-regression results on survival to discharge and FNO showed that the higher of survival to discharge and the higher of FNO (p<0.001) (Figure 2).

Only three studies reported FNO related to gender. According to the meta-analysis results, FNO in men and women at discharge was 79.1 (95% CI=63-89.4) and 71.2 (95% CI=41.3-89.7), respectively; therefore, men had better outcomes (Figure 10). In addition to gender, shockable background dysrhythmias were another factor in neurological outcome. With shockable and non-shockable dysrhythmias, FNO was equal to 86.4 (95% CI=79.9-91) and 76.9 (95% CI=67.4-84.3), respectively (Figure 11). In addition,

Fig. 7. Survival rate to discharge based on CPR duration

Fig. 8. Survival to discharge based on the first document rhythm

taking into account the limitations of the studies, it was not possible to assess the relationship between FNO and CPR duration (only two articles entered the meta-analysis). The assessment of the results of these two studies showed the duration of CPR affected the FNO at discharge, therefore, it will be high in CPR duration and low in FNO index (Table 1).

Author's name		Statisti	cs for ea	ch study	1		Eventr	ate and	95% CI	
	Event rate	Lower	Upper limit	Z-Value	p-Value					
Alexis1.2010	0.664	0.657	0.670	45.330	0.000	1	1	1		
Cicekci1.2018	0.568	0.420	0.705	0.902	0.367				-	
Goldberger.2012	0.710	0.701	0.718	40.387	0.000					
Herlitz1.2001	0.923	0.878	0.952	9.550	0.000					
Hessulf.2017	0.283	0.276	0.290	-56.297	0.000					
Johnson1.2014	0.817	0.757	0.865	8.125	0.000					
Lundin1.2019	0.913	0.899	0.925	28.250	0.000					
Meaney1.2010	0.751	0.742	0.759	45.552	0.000					
Nadkarni3.2006	0.677	0.665	0.688	27.859	0.000					Ī
Nolan1.2015	0.905	0.896	0.914	42.595	0.000					
Radeschi1.2017	0.148	0.131	0.167	-24.377	0.000					Γ
TeKung3.2014	0.214	0.100	0.402	-2.821	0.005			1		
Wachira1.2015	0.962	0.597	0.998	2.232	0.026				- I -	-
Wang1.2016	0.512	0.445	0.578	0.341	0.733				÷.	Т
Yokoyama1.2011	0.772	0.694	0.835	5.968	0.000				T	
	0.681	0.558	0.783	2.827	0.005					
						-1.00	-0.50	0.00	0.50	1.00

Favours A Favours B

Fig. 9. Favorable neurological outcome during discharge (CPC<=2)

Group by	Author's	nam	statist	ics for e	ach stud	1		Even	trate and 9	5% CI	
survival of gender		Event rate	Lower limit	Upper limit	Z-Value	p-Value					
female	Alexis2.2010	0.761	0.752	0.771	43.110	0.000					
female	Herlitz2.2001	0.899	0.810	0.949	5.854	0.000					ł
female	Wang2.2016	0.364	0.264	0.476	-2.362	0.018				₽	
female		0.712	0.413	0.897	1.410	0.159					
Male	Alexis3.2010	0.760	0.752	0.768	48.794	0.000					
Male	Herfitz3.2001	0.938	0.881	0.969	7.441	0.000					
Male	Wang3.2016	0.594	0.510	0.673	2.200	0.028					
Male		0.791	0.630	0.894	3.264	0.001					
							-1.00	-0.50	0.00	0.50	1.00

urs A Favours B

Fig. 10. Favorable Neurological Outcome (CPC<=2) by gender

Group by	Author's na	me	Ratisti	csfore	ach study			Eve	nt rate and 9	5% CI	
surviual based on shokable honshokable		Event rate	Lover limit	Upper limit	Z-Value	p-Value					
Nan shoclable	Cicekci2.2018	0.500	0.225	0.775	0.000	1.000		1	-		1
Nan shoclable	Johnson4.2014	0.781	0.706	0.841	6351	0.000					
Nan shockable	Lundin2.2019	0.905	0.879	0.926	18.189	0.000					
Non shockable	Meaney2 2010	0.701	0.687	0.714	28.084	0.000					
Nan shadable	Nadari1.2006	0.616	0.598	0.634	11.909	0.000					
Nan shodable	Nolan22015	0.878	0.862	0.893	26.918	0.000					
Non shockable	Wachira2.2015	0.950	0.525	0.997	2.029	0.042				-	
Nan shociable	Yokyama22011	0.671	0.556	0.769	2.865	0.004					
Non shociable		0.769	0.674	0.643	4951	0.000				•	
Shockable	Cicekci3.2018	0.588	0.419	0.739	1.024	0.306				₽	
Stociable	Johnsond 2014	0.922	0.809	0.970	4731	0.000					
Shockable	Lundin3.2019	0.944	0.926	0.958	19.013	0.000					
Shockable	Maarey3.2010	0.798	0.787	0.810	37,670	0.000					
Shockable	Nadari2 2006	0.753	0.737	0.768	26.363	0.000					
Stociable	Nolan3.2015	0.928	0.914	0.939	27.466	0.000					
Stociable	Wachira1.2015	0.962	0.597	0.998	2,232	0.026				-	
Shockable	Yokyama3.2011	0.889	0.785	0.946	5.187	0.000					
Shockable		0.864	0.799	0.910	7.780	0.000				•	
							-200	-1.00	0.00	1.00	200
								Favoral		FavorsB	

Fig. 11. Favorable Neurological Outcome (CPC<=2) based on the first document rhythm

Discussion

This systematic review study and meta-analysis were conducted to assess the relationship between resuscitation outcomes and demographic-clinical variables in patients with IHCA. By resuscitation outcome, survival to discharge or 30-day survival and FNO were intended. Survival to discharge or 30day discharge results of 46 articles was 19.1% based on meta-analysis [12, 14, 15, 22-64]. In addition, the results of our study showed that the survival to discharge rate had a declining trend over the past few years. According to the updated report by the American Heart Association, survival to discharge is equal to 25%, in addition, D'Arrigo et al., reported this index equal to 37.9% [65, 66]. One reason for the declining statistics can be the inclusion of studies conducted in developing countries.

FNO at discharge was 68.1%, compared to the results of the meta-analysis performed in-hospital cardiac arrest which shows a declining trend over the past few years [65]. According to the results, FNO has a direct relationship with patients' survival, therefore, it will be high in the survival to discharge and the FNO. The decrease in survival to discharge can explain the decrease in FNO.

Survival to discharge or 30-day survival and FNO were notably higher in men compared to women. Bougouin et al., [67] systematically assessed outof-hospital cardiac arrest patients and reported results inconsistent with the present study. The different survival rates between men and women are indicative to a pathophysiological difference of cardiac arrest in women and men, and the results of our study challenge the classic paradigm of better prognosis in women. According to this paradigm, female hormones improve vascular performance at higher fertility ages by lowering lipoproteins levels and decreasing the risk of cardiac arrest [68-70]. This finding is also contradictory to the fact that estrogen has a protective effect on the nervous and cardiac system [71, 72]. The studies showed that the rate of shockable dysrhythmias in men was higher than in women [9, 14, 15, 22, 33]. Sensitivity of shockable dysrhythmias to timely shocks [14] can be a reason for different survival rates and better neurological outcomes in men.

Survival to discharge and FNO with shockable dysrhythmias were notably higher than those with non-shockable dysrhythmias. One of the predictors of survival to discharge in D'Arrigo *et al.*, [66] was the shockable background dysrhythmia. Only in one study with a small sample group, survival to discharge was higher with non-shockable dysrhythmias [41]. On the other hand, studies on several clinics and larg sample groups showed that shockable dysrhythmias were determinants of survival to discharge and FNO [11, 32, 64]. There is reliable evidence of reversibility, survival to discharge, and FNO when a defibrillator is used soon enough [14].

The results indicated that CPR duration was a determinant of survival to discharge, therefore, survival to discharge was notably higher when less than 15min compared with CPR duration >15min. There were a limited number of the evaluated CPR studies duration effect on survival to discharge; still, the results supported the higher survival to discharge with shorter CPR duration [31, 59, 60, 63]. In addition, despite the limited findings of the duration of CPR and FNO (CPC ≤ 2) at discharge that did not allow a meta-analysis, the results showed that the duration of CPR affected neurological performance at discharge [30, 57]. Schultz et al., [73] argued that CPR duration affected the resuscitation outcomes and concluded that the survival rate for CPR duration >10min was only 2%. Ballew et al., [74] reported similar results so the survival to discharge with CPR duration <5min and CPR duration >20min was 45% and 5%, respectively. These findings and other studies show that resuscitation duration is an independent factor to predict the low survival rate in patients after CPR [75]. Goldberger et al., [57] reported contrary results. The results of a multicenter study by Goldberger et al., [57] showed a better survival to discharge at hospitals with longer CPR duration. They argued that computation of total CPR duration for the survived distribute results toward a shorter duration of resuscitation. However, like other studies, Goldberger noted that duration of resuscitation was a factor in the poor neurological outcome in discharged patients.

We are aware that our research may have some limitations. Search bias in Persian and English languages, unavailability of some of the studies full-text, and lack of adequate information in the available summaries were some of the limitations. In addition, limitations includes using of different models by studies on the relationship of CPR duration, the outcome of CPR and failure to report the results based on different age groups.

Conclusion

In conclusion, inconsistent with some of the metaanalysis studies on OHCA, our results showed that survival to discharge rate with strong evidence, and FNO in adults (CPC ≤ 2) in men was higher than women. Despite limitations in studies with a similar time pattern on the effect of CPR duration on survival to discharge and FNO, the results of the present meta-analysis showed this factor effect on the mentioned outcomes. Adherence to the same pattern in the classification of the variables studied in the report on the outcomes of CPR will pave the way for future meta-analysis studies.

The results of our study showed that the outcomes of cardiac arrest in developing countries are weak and make it clearer to health care providers for identifying gaps in the survival chain and improve the quality of cardiopulmonary resuscitation. Although nonshockable dysrhythmias and prolonged resuscitation time were identified as factors associated with weaker resuscitation outcomes, patient's significant percentage with non-shockable dysrhythmias or prolonged resuscitation, with FNO was discharged. Therefore, adherence to guidelines until the end of resuscitation time and these factors non-interference in the quality of resuscitation is recommended for rescuers. On the other hand, about 32% of discharged resuscitated people are in the CPC>2 and will experience-dependent life. This result can be considered by health policymakers for rehabilitation needs and planning.

Declarations

Ethics approval: The Institutional Review Board and the Ethics Committee of Hamadan University of Medical Sciences, Hamadan, Iran, approved this study (codes: 9803282410 and IR.UMSHA. REC.1398.208).

References

- Kouwenhoven WB, Jude JR, Knickerbocker GG. Closedchest cardiac massage. JAMA. 1960;173:1064-7.
- Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142(16 suppl 2):S366-S468.
- 3. Ebell MH, Afonso AM. Pre-arrest predictors of failure to survive after in-hospital cardiopulmonary resuscitation: a meta-analysis. *Fam Pract.* 2011;28(5):505-15.
- Schneider AP 2nd, Nelson DJ, Brown DD. In-hospital cardiopulmonary resuscitation: a 30-year review. J Am Board Fam Pract. 1993;6(2):91-101.
- 5. Sasson C, Rogers MA, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. *Circ Cardiovasc Qual Outcomes*. 2010;**3**(1):63-81.
- Gijsen R, Hoeymans N, Schellevis FG, Ruwaard D, Satariano WA, van den Bos GA. Causes and consequences of comorbidity: a review. J Clin Epidemiol. 2001;54(7):661-74.
- Marengoni A, Angleman S, Melis R, Mangialasche F, Karp A, Garmen A, et al. Aging with multimorbidity: a systematic review of the literature. *Ageing Res Rev.* 2011;10(4):430-9.
- 8. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G.

Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. *J Gerontol A Biol Sci Med Sci.* 2004;**59**(3):255-63.

- 9. Hirlekar G, Karlsson T, Aune S, Ravn-Fischer A, Albertsson P, Herlitz J, et al. Survival and neurological outcome in the elderly after in-hospital cardiac arrest. *Resuscitation*. 2017;**118**:101-106.
- **10.** Goodarzi A, Jalali A, Almasi A, Naderipour A, Kalhorii RP, Khodadadi A. Study of survival rate after cardiopulmonary resuscitation (CPR) in hospitals of Kermanshah in 2013. *Glob J Health Sci.* 2014;7(1):52-8.
- 11. Nolan JP, Berg RA, Andersen LW, Bhanji F, Chan PS, Donnino MW, et al. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Template for In-Hospital Cardiac Arrest: A Consensus Report From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia). Resuscitation. 2019;144:166-177.
- 12. Shao F, Li CS, Liang LR, Qin J, Ding N, Fu Y, et al. Incidence and outcome of adult in-hospital cardiac arrest in Beijing, China. *Resuscitation*.

Consent for publication: Not applicable.

Conflict of interests: The authors declare that they have no competing interests

Funding: Financial resources for the design of the present study and collection, analysis, and interpretation of data and in writing the manuscript provided by Hamadan University of Medical Sciences.

Authors' contributions: Study design: AG, KO, and MKH; Data collection: AG and ARA; Data extraction: AG and ARA; Analysis: AG and ARA; Drafting: AG, KO, ARA; Critically revised the paper: All authors.

Acknowledgments: We would like to thank the Research Administration of Hamadan University of Medical Sciences, Hamadan, Iran, who supported us in doing this study.

2016;**102**:51-6.

- 13. Movahedi A, Kavosi A, Behnam Vashani H, Mohammadi G, Mehrad Majd H, et al. 24 hour survival rate and its determinants in patients with successful cardiopulmonary resuscitation in Ghaem Hospital of Mashhad. J Neyshabur Univ Med Sci. 2016;3(4):56-63.
- 14. Bergum D, Nordseth T, Mjølstad OC, Skogvoll E, Haugen BO. Causes of in-hospital cardiac arrest - incidences and rate of recognition. *Resuscitation*. 2015;**87**:63-8.
- **15.** Salari A, Mohammadnejad E, Vanaki Z, Ahmadi F. Survival rate and outcomes of cardiopulmonary resuscitation. *Iranian Journal of Critical Care Nursing*. 2010;**3**(2):45-9.
- Welbourn C, Efstathiou N. How does the length of cardiopulmonary resuscitation affect brain damage in patients surviving cardiac arrest? A systematic review. Scand J Trauma Resusc Emerg Med. 2018;26(1):77.
- Bossaert LL, Perkins GD, Askitopoulou H, Raffay VI, Greif R, Haywood KL, et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 11. The ethics of resuscitation and endof-life decisions. *Resuscitation*. 2015;95:302-11.
- 18. Mancini ME, Diekema DS, Hoadley TA, Kadlec KD, Leveille MH, McGowan JE, et al. Part 3: Ethical Issues: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.

Circulation. 2015;**132**(18 Suppl 2):S383-96.

- **19.** Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. *Ann Intern Med.* 2009;**151**(4):264-9, W64.
- 20. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008-12.
- **21.** Ma LL, Wang YY, Yang ZH, Huang D, Weng H, Zeng XT. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? *Mil Med Res.* 2020;**7**(1):7.
- 22. Meaney PA, Nadkarni VM, Kern KB, Indik JH, Halperin HR, Berg RA. Rhythms and outcomes of adult in-hospital cardiac arrest. *Crit Care Med.* 2010;**38**(1):101-8.
- 23. Hessulf F, Karlsson T, Lundgren P, Aune S, Strömsöe A, Södersved Källestedt ML, et al. Factors of importance to 30-day survival after in-hospital cardiac arrest in Sweden A population-based register study of more than 18,000 cases. *Int J Cardiol.* 2018;255:237-242.
- 24. Johnson S, Nileshwar A. Initial rhythm and outcome of in-hospital adult cardiac arrest in a tertiary care hospital. *Indian Journal of Respiratory Care*. 2014;3(1):421.
- **25.** Radeschi G, Mina A, Berta G, Fassiola A, Roasio A, Urso F, et al. Incidence and outcome of in-hospital cardiac arrest in Italy: a multicentre observational study in the Piedmont Region. *Resuscitation*. 2017;**119**:48-55.
- Urberg M, Ways C. Survival after cardiopulmonary resuscitation for an in-hospital cardiac arrest. *J Fam Pract.* 1987;25(1):41-4.
- 27. Hjalmarsson P, Memar M, Geara SJ, Bouzereau M, Allberg A, Elgadi A, et al. Trends in co-morbidities and survival for in-hospital cardiac arrest -A Swedish cohort study. *Resuscitation*. 2018;**124**:29-34.
- Andersen LW, Holmberg MJ, Løfgren B, Kirkegaard H, Granfeldt A. Adult in-hospital cardiac arrest in Denmark. *Resuscitation*. 2019;140:31-36.
- **29.** Lundin A, Rylander C, Karlsson T, Herlitz J, Lundgren P. Adrenaline, ROSC and survival in patients resuscitated from in-hospital cardiac arrest. *Resuscitation*. 2019;**140**:64-71.
- **30.** Cicekci F, Uca AU, Kara I, Kara I.

A Study of Cerebral Performance Categories Based on Initial Rhythm and Resuscitation Time Following In-Hospital Cardiac Arrest in a State Hospital in Turkey. *Hospital Practices and Research*. 2018;**3**(2):44-9.

- **31.** Rohlin O, Taeri T, Netzereab S, Ullemark E, Djärv T. Duration of CPR and impact on 30-day survival after ROSC for in-hospital cardiac arrest-A Swedish cohort study. *Resuscitation*. 2018;**132**:1-5.
- **32.** Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME, et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. *JAMA*. 2006;**295**(1):50-7.
- **33.** Qvick A, Radif M, Brever C, Myrvik JO, Schenk Gustafsson K, Djärv T. Survival of in-hospital cardiac arrest in men and women in a large Swedish cohort. *Scand J Trauma Resusc Emerg Med.* 2018;**26**(1):108.
- 34. Heller RF, Steele PL, Fisher JD, Alexander HM, Dobson AJ. Success of cardiopulmonary resuscitation after heart attack in hospital and outside hospital. *BMJ*. 1995;311(7016):1332-6.
- **35.** Kung C-T, Cheng H-H, Hung S-C, Li C-J, Liu C-F, Chen F-C, et al. Outcome of in-hospital cardiac arrest in adult general wards. *International Journal* of Clinical Medicine. 2014;**5**(19):1228.
- **36.** Jones P, Miles J, Mitchell N. Survival from in-hospital cardiac arrest in Auckland City Hospital. *Emerg Med Australas*. 2011;**23**(5):569-79.
- 37. Tok D, Keleş GT, Toprak V, Topcu I. Assessment of in-hospital cardiopulmonary resuscitation using Utstein template in a university hospital. *Tohoku J Exp Med.* 2004;202(4):265-73.
- **38.** Khatib J, Schwartz N, Bisharat N. Twenty Year Trends of Survival after In-Hospital Cardiac Arrest. *Isr Med Assoc J.* 2017;**19**(12):756-760.
- **39.** Agerström J, Carlsson M, Bremer A, Herlitz J, Rawshani A, Årestedt K, et al. Treatment and survival following in-hospital cardiac arrest: does patient ethnicity matter? *Eur J Cardiovasc Nurs.* 2021:zvab079.
- 40. Thomas RD, Waites JH, Hubbard WN, Wicks M. Cardiopulmonary resuscitation in a district general hospital: increased success over 7 years. Arch Emerg Med. 1990;7(3):200-5.
- **41.** Wachira BW, Tyler MD. Characterization of in-hospital cardiac arrest in adult patients at a tertiary hospital in Kenya. *African Journal of Emergency Medicine*. 2015;**5**(2):70-4.
- 42. Widestedt H, Giesecke J, Karlsson

P, Jakobsson JG. In-hospital cardiac arrest resuscitation performed by the hospital emergency team: A 6-year retrospective register analysis at Danderyd University Hospital, Sweden. *F1000Res*. 2018;7:1013.

- **43.** Wang CH, Huang CH, Chang WT, Tsai MS, Yu PH, Wu YW, et al. Associations among gender, marital status, and outcomes of adult in-hospital cardiac arrest: A retrospective cohort study. *Resuscitation*. 2016;**107**:1-6.
- 44. Rakić D, Rumboldt Z, Carević V, Bagatin J, Polić S, Pivac N, et al. In-hospital cardiac arrest and resuscitation outcomes: rationale for sudden cardiac death approach. *Croat Med J.* 2005;46(6):907-12.
- **45.** Chua J, Lin Z, Tan J, Surentheran S, Iskander MHB, Leong B. Predictors of return of spontaneous circulation and survival in in-hospital cardiac arrest: a retrospective study in a single institution. *Critical Care*. 2015;**19**(1):1-201.
- 46. Garry J, Nguyen R, Schoenfeld E, Parnia S, Patel J. Impact of Gender on Clinical Outcomes in Adults With In-hospital Cardiac Arrest. *Circulation*. 2015;132(suppl_3):A18700-A.
- **47.** Chong S, Brenner N, Benz P, Woo S, Wilson M, Titus S, et al. Characteristics of patients with sudden in hospital cardiac arrest with a shockable initial rhythm in a system with mature rapid response and code blue teams. *Circulation*. 2018;**138**(Suppl_2):A259-A.
- 48. Saklayen M, Liss H, Markert R. In-hospital cardiopulmonary resuscitation. Survival in 1 hospital and literature review. *Medicine* (*Baltimore*). 1995;74(4):163-75.
- **49.** Skrifvars MB, Saarinen K, Ikola K, Kuisma M. Improved survival after in-hospital cardiac arrest outside critical care areas. *Acta Anaesthesiol Scand.* 2005;**49**(10):1534-9.
- 50. Yokoyama H, Yonemoto N, Yonezawa K, Fuse J, Shimizu N, Hayashi T, et al. Report from the Japanese registry of CPR for in-hospital cardiac arrest (J-RCPR). *Circ J.* 2011;75(4):815-22.
- Topjian AA, Localio AR, Berg RA, Alessandrini EA, Meaney PA, Pepe PE, et al. Women of child-bearing age have better inhospital cardiac arrest survival outcomes than do equal-aged men. *Crit Care Med.* 2010;38(5):1254-60.
- **52.** DeVoe B, Roth A, Maurer G, Tamuz M, Lesser M, Pekmezaris R, et al. Correlation of the predictive ability of early warning metrics and mortality for cardiac arrest patients

receiving in-hospital Advanced Cardiovascular Life Support. *Heart Lung.* 2016;**45**(6):497-502.

- **53.** Herlitz J, Rundqvist S, Bång A, Aune S, Lundström G, Ekström L, et al. Is there a difference between women and men in characteristics and outcome after in hospital cardiac arrest? *Resuscitation.* 2001;**49**(1):15-23.
- 54. Ohlsson MA, Kennedy LM, Juhlin T, Melander O. Evaluation of pre-arrest morbidity score and prognosis after resuscitation score and other clinical variables associated with in-hospital cardiac arrest in southern Sweden. *Resuscitation*. 2014;85(10):1370-4.
- **55.** Parikh PB, Malhotra A, Qadeer A, Patel JK. Impact of Sex on Survival and Neurologic Outcomes in Adults With In-Hospital Cardiac Arrest. *Am J Cardiol*. 2020;**125**(3):309-312.
- **56.** Al-Dury N, Rawshani A, Israelsson J, Strömsöe A, Aune S, Agerström J, et al. Characteristics and outcome among 14,933 adult cases of in-hospital cardiac arrest: A nationwide study with the emphasis on gender and age. *Am J Emerg Med.* 2017;**35**(12):1839-1844.
- **57.** Goldberger ZD, Chan PS, Berg RA, Kronick SL, Cooke CR, Lu M, et al. Duration of resuscitation efforts and survival after in-hospital cardiac arrest: an observational study. *Lancet*. 2012;**380**(9852):1473-81.
- 58. Israelsson J, Persson C, Strömberg A, Arestedt K. Is there a difference in survival between men and women suffering in-hospital cardiac arrest? *Heart Lung.* 2014;43(6):510-5.
- 59. Li H, Wu TT, Liu PC, Liu XS, Mu Y, Guo YS, et al. Characteristics and outcomes of in-hospital cardiac arrest in adults hospitalized with acute coronary syndrome in China. *Am J Emerg Med.* 2019;37(7):1301-1306.
- **60.** Ravipragasam S, Chandar D, Pandit VR, Cheriyan A. Survival to

discharge after in-hospital cardiac arrest at emergency department and its associated factors: a prospective observational study. *Journal of Acute Disease*. 2019;8(5):185.

- **61.** Islamlo F. Quality and outcome of cardiopulmonary resuscitation in imam Khomeini teaching hospital-report according to Utstein style. *Studies in Medical Sciences.* 2011;**22**(4):346-52.
- Jaberi Y, Changizian L, Mazlomzadeh S. Predictors of outcome in in-hospital cardio-pulmonary resuscitation. Journal of Advances in Medical and Biomedical Research. 2011;19(75):48-57.
- **63.** Möhnle P, Huge V, Polasek J, Weig I, Atzinger R, Kreimeier U, et al. Survival after cardiac arrest and changing task profile of the cardiac arrest team in a tertiary care center. *ScientificWorldJournal*. 2012;**2012**:294512.
- 64. Nolan JP, Soar J, Smith GB, Gwinnutt C, Parrott F, Power S, et al. Incidence and outcome of in-hospital cardiac arrest in the United Kingdom National Cardiac Arrest Audit. *Resuscitation*. 2014;**85**(8):987-92.
- **65.** D'Arrigo S, Cacciola S, Dennis M, Jung C, Kagawa E, Antonelli M, et al. Predictors of favourable outcome after in-hospital cardiac arrest treated with extracorporeal cardiopulmonary resuscitation: A systematic review and meta-analysis. *Resuscitation*. 2017;**121**:62-70.
- 66. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. *Circulation*. 2018;137(12):e67-e492.
- **67.** Bougouin W, Mustafic H, Marijon E, Murad MH, Dumas F, Barbouttis A, et al. Gender and survival after sudden

cardiac arrest: A systematic review and meta-analysis. *Resuscitation*. 2015;**94**:55-60.

- **68.** Kim C, Fahrenbruch CE, Cobb LA, Eisenberg MS. Out-of-hospital cardiac arrest in men and women. *Circulation*. 2001:**104**(22):2699-703.
- **69.** Pell JP, Sirel J, Marsden AK, Cobbe SM. Sex differences in outcome following community-based cardiopulmonary arrest. *Eur Heart J.* 2000;**21**(3):239-44.
- 70. Perers E, Abrahamsson P, Bång A, Engdahl J, Lindqvist J, Karlson BW, et al. There is a difference in characteristics and outcome between women and men who suffer out of hospital cardiac arrest. *Resuscitation*. 1999;40(3):133-40.
- McCullough LD, Hurn PD. Estrogen and ischemic neuroprotection: an integrated view. *Trends Endocrinol Metab.* 2003;14(5):228-35.
- 72. Noppens RR, Kofler J, Grafe MR, Hurn PD, Traystman RJ. Estradiol after cardiac arrest and cardiopulmonary resuscitation is neuroprotective and mediated through estrogen receptor-beta. J Cereb Blood Flow Metab. 2009;29(2):277-86. PMC2682442..
- **73.** Schultz SC, Cullinane DC, Pasquale MD, Magnant C, Evans SR. Predicting in-hospital mortality during cardiopulmonary resuscitation. *Resuscitation*. 1996;**33**(1):13-7.
- 74. Ballew KA, Philbrick JT, Caven DE, Schorling JB. Predictors of survival following in-hospital cardiopulmonary resuscitation. A moving target. Arch Intern Med. 1994;154(21):2426-32.
- **75.** Bedell SE, Delbanco TL, Cook EF, Epstein FH. Survival after cardiopulmonary resuscitation in the hospital. *New England journal of medicine*. 1983;**309**(10):569-76.

Open Access License

All articles published by Bulletin of Emergency And Trauma are fully open access: immediately freely available to read, download and share. Bulletin of Emergency And Trauma articles are published under a Creative Commons license (CC-BY-NC).

Appendix 1. Search query

Filters applied: Full text, Congress, Observational Study, Humans, English, Persian, Adolescent: 13-18 years, Adult: 19+ year Search terms:

Medline search query

1. ("Cardiopulmonary resuscitation"[Title/Abstract]) OR ("Advanced life support"[Title/Abstract]) OR ("Cardiac arrest"[Title/Abstract]) OR ("In-hospital Cardiac arrest"[Title/Abstract]) OR (IHCA[Title/Abstract]) AND ("Neurological outcome"[Title/Abstract] OR "success rate of Cardiopulmonary resuscitation"[Title/Abstract] OR "Survival to discharge"[Title/Abstract] OR "Favorable neurological outcome"[Title/Abstract])

2. ("Cardiopulmonary resuscitation"[Title/Abstract]) OR ("In-hospital Cardiac arrest"[Title/Abstract]) OR ("Neurological outcome"[Title/Abstract]) OR ("Survival to discharge"[Title/Abstract]) OR ("Survival neurological outcome"[Title/Abstract]) OR ("Survival to discharge"[Title/Abstract]) OR ("Favorable neurological outcome"[Title/Abstract]) AND (Sex[Title/Abstract] OR gender[Title/Abstract] OR "Duration of resuscitation"[Title/Abstract] OR Shockable [Title/Abstract] OR "non-shockable" [Title/Abstract]) \Scince direct query[Due to limited acceptance of booleans connectors (max 8 per field)]

1. ("Cardiopulmonary resuscitation"[Title/Abstract]) OR ("Advanced life support"[Title/Abstract]) OR ("Cardiac arrest"[Title/Abstract]) OR ("In-hospital Cardiac arrest"[Title/Abstract]) OR (IHCA[Title/Abstract]) AND ("Neurological outcome"[Title/Abstract]) OR "success rate of Cardiopulmonary resuscitation"[Title/Abstract] OR "Survival to discharge"[Title/Abstract] OR "Favorable neurological outcome"[Title/Abstract])

2. ("Cardiopulmonary resuscitation"[Title/Abstract]) OR ("In-hospital Cardiac arrest"[Title/Abstract]) OR ("Neurological outcome"[Title/Abstract]) OR ("Success rate of Cardiopulmonary resuscitation"[Title/Abstract]) OR ("Survival to discharge"[Title/Abstract]) OR ("Favorable neurological outcome"[Title/Abstract]) AND (sex"[Title/Abstract] OR gender[Title/Abstract] OR "duration of resuscitation" [Title/Abstract])

3. ("Cardiopulmonary resuscitation"[Title/Abstract]) OR ("In-hospital Cardiac arrest"[Title/Abstract]) OR ("Neurological outcome"[Title/Abstract]) OR ("Survival to discharge"[Title/Abstract]) OR ("Favorable neurological outcome"[Title/Abstract]) AND (shockable[Title/Abstract] OR "non-shockable"[Title/Abstract])

Scopus search query

1. TITLE-ABS-KEY ("Cardiopulmonary resuscitation" OR "Advanced life support" OR "Cardiac arrest" OR "In-hospital Cardiac arrest" OR IHCA AND ("Neurological outcome" OR "success rate of Cardiopulmonary resuscitation" OR "Survival to discharge" OR "Favorable neurological outcome")

2. TITLE-ABS-KEY ("Cardiopulmonary resuscitation" OR "In-hospital Cardiac arrest" OR "Neurological outcome" OR "success rate of Cardiopulmonary resuscitation" OR "Survival to discharge" OR "Favorable neurological outcome" AND (sex OR gender OR "duration of resuscitation" OR shockable OR "non-shockable")