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Abstract

Site-specific conjugation of ubiquitin onto a range of DNA repair proteins regulates their criti-

cal functions in the DNA damage response. Biochemical and structural characterization of

these functions are limited by an absence of tools for the purification of DNA repair proteins

in purely the ubiquitinated form. To overcome this barrier, we designed a ubiquitin fusion

protein that is N-terminally biotinylated and can be conjugated by E3 RING ligases onto

various substrates. Biotin affinity purification of modified proteins, followed by cleavage

of the affinity tag leads to release of natively-mono-ubiquitinated substrates. As proof-of-

principle, we applied this method to several substrates of mono-ubiquitination in the Fanconi

anemia (FA)-BRCA pathway of DNA interstrand crosslink repair. These include the FANCI:

FANCD2 complex, the PCNA trimer and BRCA1 modified nucleosomes. This method pro-

vides a simple approach to study the role of mono-ubiquitination in DNA repair or any other

mono-ubiquitination signaling pathways.

Introduction

Ubiquitination is the process of covalent attachment of ubiquitin to a substrate protein.

Conjugation can be via a single ubiquitin, called mono-ubiquitination, or to a single ubiquitin

which is then further modified by a series of ubiquitin molecules, called poly-ubiquitination

[1]. Ubiquitination of substrates contributes to the regulation of all aspects of cellular func-

tion, including the DNA damage response. Coordinated ubiquitination of a substrate is

achieved by an enzymatic cascade of E1, E2 and E3 enzymes. In particular several mono-

ubiquitinated proteins perform critical but unknown functions within the Fanconi anemia

(FA)-BRCA pathway [2–4].

A primary role of the FA-BRCA pathway is to respond to DNA interstrand crosslinks

(ICLs), a type of DNA damage caused by chemotherapeutic agents which covalently link com-

plementary strands of DNA. ICLs stall DNA replication forks and subsequently inhibit DNA
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transcription and replication [5]. The removal of ICLs by the FA-BRCA pathway is therefore

crucial to genome stability. There are at least three essential mono-ubiquitination events

within the FA-BRCA pathway. First, replication stalling induces mono-ubiquitination of

PCNA, a homo-trimeric substrate for the E2 conjugating enzyme RAD6 and E3 ligase RAD18

[6]. The mono-ubiquitination of PCNA at lysine 164 site recruits the DNA repair proteins

REV1 and Pol η to the DNA damage site [7]. Second, PCNA-Ub is necessary for the recruit-

ment of the FA “core complex” of proteins consisting of FANCA, FANCB, FANCC, FANCE,

FANCF, FAAP20, FAAP100 and the E3-RING ligase FANCL [8]. FANCL within the FA core

complex is responsible for the coordinated conjugation of ubiquitin to both FANCD2 and

FANCI within the FANCI:FANCD2 complex [9–11]. The dually-mono-ubiquitinated FANCI:

FANCD2 complex has been hypothesized to recruit the nucleases such as SNM1A and FAN1

that are involved in the first incision of ICL called unhooking [12–14]. Third, unhooking of

the ICL creates a free DNA end that stimulates nucleosome mono-ubiquitination by BRCA1,

which stimulates recombination and replication fork stabilization [15]. BRCA1, and its partner

protein BARD1, interact through a RING-domain heterodimer to mono-ubiquitinate nucleo-

somes in concert with the UBCH5C E2-enzyme [4, 16]. The BRCA1:BARD1 E3-complex spe-

cifically directs mono-ubiquitination to lysines 125, 127 and 129 of histone H2A both in vitro
and in vivo [4], which is hypothesized to promote long-range resection of the DNA by SMAR-

CAD-mediated chromatin unloading [17].

The specific details of direct protein interactions and events mediated by mono-ubiquitina-

tion described above are poorly understood at the mechanistic level. This is because of the

difficulty in purifying sufficient quantities of purely ubiquitinated material for biochemical

analysis. Several strategies have previously been tried. For example, mono-ubiquitinated

PCNA has been made using only a modified E2 enzyme, UBCH5C (S22R) [18, 19]. Ubiquiti-

nated PCNA-Ub has also been generated using non-enzymatic approaches through chemical

ligation where the lysine acceptor residue has been substituted with a chemically-reactive vari-

ant [20, 21]. For histones, which are very small proteins, intein-mediated ligation of histone

fragments and ubiquitin-conjugated peptides were used successfully [22], although this

method has not been described for K127 or K129-modified H2A. Generation of mono-

ubiquitinated FANCI and FANCD2, which are an order of magnitude larger than PCNA and

histones has proven more challenging. One approach generated mono-ubiquitinated FANCI

and mono-ubiquitinated FANCD2 monomers separately, using a hyperactive UBE2T-E2

enzyme and truncated FANCL ligase [23, 24]. However, the substrate of the FA core complex

is DNA-bound FANCI:FANCD2 complex, and ubiquitination of isolated subunits followed by

mixing may not recapitulate the in vivo properties of FANCI:FANCD2 complex. We and oth-

ers have shown that efficient in vitro mono-ubiquitination of FANCI:FANCD2 complex

requires recombinant FA E3-ligase complex (FANCB-FANCL-FAAP100 (BL100)), adaptor

complex (FANCC-FANCE-FANCF (CEF)) and DNA [11, 25].

Here we describe the purification of natively mono-ubiquitinated FANCI:FANCD2 com-

plex, along with other mono-ubiquitinated components of the FA-BRCA pathway. This pro-

cedure makes use of a modified ubiquitin, which is fused to the Avi-tag, a peptide sequence

that is efficiently biotinylated in a site-specific manner in E. coli by the BirA biotin-ligase

[26]. Using in vitro reconstituted E1-E2-E3 reactions that recapitulate the endogenous

mono-ubiquitination reactions, we can then isolate solely ubiquitinated proteins by biotin

affinity purification and elution by proteolytic cleavage of the Avi tag. While the examples

we provide are all within the FA-BRCA pathway, this procedure provides reagents for bio-

chemical and biophysical analysis of any protein where in vitro ubiquitination can be

reconstituted.
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Materials and methods

Protein purification

Table 1 outlines the plasmids used in this study. Plasmids were propagated using NEB-10-beta

competent cells (NEB) and purified using Monarch miniprep kits (NEB). Bacmids were gener-

ated using the Multibac system [27] and purified using alkaline lysis method followed by iso-

propanol precipitation and resuspension in TE buffer.

Avidin-ubiquitin

We designed a ubiquitin coding construct encoding an N-terminal 10xHis tag, followed by a

biotinylatable AviTag, a 3C protease site and then ubiquitin at the C-terminus (Fig 1A). This

construct is hence referred to as Avi-ubiquitin. Avi-ubiquitin was biotinylated by co-expres-

sion with BirA biotin ligase in vivo in E. coli in 500 mL auto-induction media [30] supple-

mented with 11 mg biotin (Sigma-Aldrich) overnight at 37 ˚C. Cells were harvested by

centrifugation at 6000 x g for 15 min at 4 ˚C. The cell pellet was resuspended in buffer A (1x

PBS, 20 mM imidazole, 10% (w/v) glycerol and 1 mM DTT) supplemented with 1 mg/mL lyso-

zyme (Sigma-Aldrich), 1x bacterial protease inhibitor (Sigma-Aldrich), and lysed by sonica-

tion on ice. The lysate was clarified by centrifugation at 16,000 x g for 40 min at 4 ˚C. The

supernatant was mixed with Ni-NTA resin (Thermo Fisher) pre-equilibrated in buffer A for 2

hrs at 4 ˚C, followed by a 10 column volume (CV) wash with buffer A. Avi-ubiquitin was

eluted with a linear gradient of buffer A from 20 mM to 500 mM imidazole over 16 CV. Frac-

tions containing Avi-ubiquitin were pooled and dialyzed against buffer B (1xPBS, 1 mM DTT)

using SnakeSkin dialysis tubing with 3.5 kDa molecular weight cutoff (MWCO) (Thermo

Fisher). Dialyzed eluates were then loaded onto a Vydac 1x25 cm C18 reverse phase column

(VWR) with buffer B containing 0.1% trifluoroacetic acid (TFA). Elution was conducted over

a linear gradient to 0.1% TFA, 70% acetonitrile in buffer B. The fractions containing Avi-

Table 1. Plasmids used in this study.

Plasmid Protein Selection Reference Use

Fastbac1-FLAG-xFANCI X.laevis FANCI Amp, Gent [11] a

pFastbac1-StrepII-xFANCD2 X.laevis FANCD2 Amp, Gent [11] a

pFastbac1-FLAG-hFANCD2opt Codon optimized human FANCD2 Amp, Gent gene synthesis by Gene Art (Thermo Fisher). Deposited

Addgene: #134904

a

pFL-EGFP-His-hFANCI Human FANCI Amp, Gent [11, 25] a

pFL/pSPL-EGFP-FLAG-B-L-100 FANCL, FAAP100 and codon optimized

FANCB

Amp, Gent,

Spec

[11, 25] a

pFL-MBP-C-E-F FANCC, FANCE, FANCF Amp, Gent [11, 25] a

pGEX-KG-GST-UBE2T Codon optimized human UBE2T Amp [11, 25] b

pet16b-Avi-ubiquitin_rbs_BirA Ubiquitin, E. coli biotin ligase (operon) Amp gene synthesis by Gene Universal. Deposited Addgene:

#134897

b

pET16b-PCNA PCNA Amp gene synthesis by Gene Universal. Deposited Addgene:

#134898

b

pFastbac1-FLAG-BRCA1Δexon11 Codon optimized human BRCA1Δexon11 Amp, Gent gene synthesis by Gene Universal. Deposited Addgene: 137167 a

pFastbac1-StrepII-BARD1 Codon optimized human BARD1 Amp, Gent gene synthesis by Gene Universal. Deposited Addgene: 137166 a

pET28a-UBCH5CS22R UBCH5C Amp a gift from Rachel Klevit [28] (Addgene plasmid # 12644) b

pSRK2706-GST-HRV-3C

protease

HRV-3C protease Amp A gift from David Waugh [29](Addgene plasmid # 78571) b

Amp = Ampicillin, Gent = Gentamycin, Spec = Spectinomycin, use a = bacmid generation for baculovirus expression and protein purification, use b = E. coli BL21

transformation for protein expression and purification

https://doi.org/10.1371/journal.pone.0229000.t001
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ubiquitin were then lyophilized in a freeze dryer, and resuspended in 1xPBS to a final concen-

tration of 2 mg/mL. This protein was then aliquoted prior to plunge freezing in liquid nitrogen

and storage at -80 ˚C. To verify that Avi-ubiquitin was biotinylated, purified Avi-ubiquitin was

gently mixed with SoftLink™ monomeric avidin resin (Promega) pre-equilibrated in buffer B

for 1 hr at 4 ˚C. The resin was washed with 10 CV buffer B and Avi-ubiquitin was eluted with

buffer B supplemented with 5 mM Biotin (ThermoFisher) or 100 nM HRV-3C protease.

FANCI:FANCD2

For expression of the FANCI:FANCD2 complex, His-FANCI and FLAG-FANCD2 plasmids

were integrated into the MultiBac expression system and Bacmid constructs generated as

described [27]. Purified bacmids were transfected into Spodoptera frugiperda (Sf9) cells in

SF900-II medium using FuGene HD transfection reagent (Promega). Infection was monitored

by GFP co-expression. A third-generation amplification of the baculovirus was used to infect

Trichoplusia ni (High Five™, Life Technologies) cells for protein production. 200 mL High Five

insect cells at 1.0 x 106 cells/mL were co-infected with Multibac baculoviruses expressing His-

FANCI and FLAG-FANCD2. At 72 hours post-infection, cells were harvested by

Fig 1. Purification of recombinant Avi-ubiquitin. (A) Schematic of the Avi-ubiquitin construct used for expression and purification of

recombinant Avi-ubiquitin from E. coli cells. #1–4 refers to features of Avi-ubiquitin required for biotinylation and purification. (B)

Coomassie stained SDS-PAGE gel showing purification of recombinant Avi-ubiquitin using Ni-NTA resin. (C) Coomassie stained

SDS-PAGE gel (top), anti-Streptavidin (middle) and anti-ubiquitin (bottom) western blots showing elution of Avi-ubiquitin by using 5

mM biotin or by cleavage of bound ubiquitin using 3C protease. Experiments in (B-C) were performed in triplicate with similar results.

Note: cleaved ubiquitin is below the 10 kDa lower limit for optimal binding to PVDF membranes, so only weakly observed by western

blot.

https://doi.org/10.1371/journal.pone.0229000.g001
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centrifugation at 500 x g for 5 min at 4 ˚C. The harvested cells were resuspended in buffer C

(20 mM Tris-HCl pH 8.0, 100 mM NaCl, 10% glycerol) supplemented with 1 mM EDTA and

1X mammalian protease inhibitor (Sigma-Aldrich) and lysed by sonication on ice. The lysate

was clarified by centrifugation at 16,000 x g for 45 min at 4 ˚C. The supernatant was added to

M2 anti-FLAG affinity resin (Sigma-Aldrich) pre-equilibrated in buffer C, and gently mixed at

4˚C for 2 hrs. The resin was washed with 10 CV of buffer C and eluted in the buffer C supple-

mented with 5 μg/mL FLAG peptide. Fractions containing FANCI:FANCD2 were pooled and

loaded on to TALON metal resin (Takara Bio) pre-equilibrated in buffer C and eluted with

buffer C supplemented with 250 mM imidazole. FANCI:FANCD2 complex containing frac-

tions were pooled, aliquoted, plunge-cooled in liquid nitrogen and stored at -80 ˚C.

Xenopus laevis FANCI:FANCD2, human UBE2T, Flag-FANCB-FANCL-FAAP100 and

MBP-FANCC-FANCE-FANCF were purified as previously described [11]. His-UBE1 was

purchased from Boston Biochem.

PCNA

Human PCNA was purified as described [31] with slight modifications. Untagged PCNA was

overexpressed in BL21(DE3) cells in autoinduction media at 37 ˚C overnight. Cells were har-

vested at 6000 x g for 15 min at 4 ˚C, resuspended in 50 mM Tris-HCl pH 8.0, 0.1 M NaCl,

10% glycerol, 1 mM EDTA and 1X bacterial protease inhibitor (Sigma-Aldrich)) and lysed by

sonication on ice. After centrifugation at 16,000 x g for 30 min at 4 ˚C, the clarified lysate was

applied to Q Sepharose Fast Flow column (GE Healthcare) pre-equilibrated in buffer D (20

mM Tris-HCl pH 8.0, 10% glycerol). The loaded column was washed with 15 CV of 27% buffer

D (buffer C + 1 M NaCl), followed by a 2.7 CV gradient from 27% to 54% buffer D and then a

5 CV gradient from 54% to 57% buffer D. PCNA proteins eluted in the final gradient and

these fractions were assessed by SDS-PAGE. Fractions containing PCNA were dialyzed into

buffer C and loaded onto HiPrep Heparin Fast Flow 16/10 (GE Healthcare), pre-equilibrated

in buffer C. The loaded resin was washed with 5 CV of buffer C, followed by a 5 CV elution

gradient from 0% to 100% buffer D. Eluted proteins were collected in 2 mL fractions and ana-

lyzed by SDS-PAGE. PCNA containing fractions were pooled, concentrated and buffer

exchanged into buffer C using Amicon Ultra 10 kDa MWCO centrifugal filter (Millipore). The

purified PCNA proteins were aliquoted, plunge-cooled in liquid nitrogen and stored at -80 ˚C

in aliquots.

BRCA1Δexon 11:BARD1 complex

Sf9 insect cells at 1.0 x 106 cells/mL were co-infected with Multibac baculoviruses expressing

FLAG-BRCA1Δexon 11 and StrepII-BARD1 for 48 hrs. Cells were harvested by centrifugation at

500 x g for 5 min at 4 ˚C. The cell pellet was resuspended in buffer E (50 mM TEA pH 7.4, 150

mM NaCl, 10% glycerol) supplemented with 1 mM EDTA and 1X mammalian protease inhib-

itor (Sigma-Aldrich) prior to lysis by sonication. The lysate was clarified by centrifugation at

16,000 x g at 4 ˚C for 30 min. The clarified lysate was gently mixed with Streptactin resin (GE

Healthcare) pre-equilibrated in buffer E for 2 hrs at 4 ˚C. The loaded resin was washed in

batch with 20 CV buffer E five times for 5 min each wash, and the protein was eluted in buffer

E containing 0.5 mg/mL desthiobiotin (Sigma-Aldrich). The purified proteins were aliquoted

and plunge-cooled in liquid nitrogen prior to storage at -80 ˚C.

Nucleosome reconstitution

The DNA used to generate nucleosomes was the 147 bp Widom 601 sequence [32] prepared

by annealing complementary single stranded 147 bp Ultramers™ (Integrated DNA
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Technologies) with the sequence 5’- ATCGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTC
GTAGACAGCTCTAGCACCGCTTAAACGCACGTACGCGCTGTCCCCCGCGTTTTAACCGCCAA
GGGGATTACTCCCTAGTCTCCAGGCACGTGTCAGATATATACATCCGAT-3’. To prepare

nucleosomes, 10 μM recombinant human histone octamers (histonesource.com) were buffer

exchanged into buffer F (2 M NaCl, 10 mM Tris-HCl pH 7.5, 1 mM EDTA, 5 mM DTT) using

a 7 kDa MWCO Zeba desalting column (Thermo Fisher), combined at a 1:1 molar ratio with

Widom 601 dsDNA in buffer F and incubated for 30 min at 4 ˚C. The reconstitution reaction

was dialyzed in buffer F with decreasing salt concentration stepwise from 2.0 M, 1.0 M, 0.8 M,

0.6 M to 0.2 M NaCl with incubation time of 2–3 hrs with 0.8 M NaCl buffer dialysis being an

overnight step using a 7 kDa MWCO Slide-A-Lyzer mini dialysis unit (Life Technologies).

The nucleosome reconstitution was confirmed by electromobility shift assay using 6% native

acrylamide gel, visualized with ethidium bromide and Coomassie blue. The reconstituted

nucleosomes were stored at 4 ˚C and used within 4 weeks of production.

UBCH5C (S22R)

UBCH5C (S22R) purification was performed as described previously [28].

HRV-3C protease

GST-tagged HRV-3C protease was overexpressed in BL21 (DE3) in auto-induction media at

37 ˚C overnight. Cells were harvested by centrifugation at 6000 x g for 15 min at 4 ˚C. The cell

pellet was resuspended in buffer G (50 mM Tris-HCl pH 7.4, 100 mM NaCl, 1 mM EDTA,

10% glycerol and 1 mM DTT), supplemented with 1 mg/mL lysozyme (Sigma-Aldrich) and 1x

bacterial protease inhibitor (Sigma-Aldrich), and lysed by sonication on ice. The lysate was

clarified by centrifugation at 16,000 x g at 4 ˚C for 30 min. The supernatant was gently mixed

with pre-equilibrated GSH resin for 2 hrs at 4 ˚C, washed with 10 CV buffer G and eluted with

buffer G supplemented with 20 mM reduced glutathione. Fractions containing GST-HRV3C

were pooled, aliquoted, plunge-cooled in liquid nitrogen and stored at -80 ˚C. Note: HRV-3C

protease can also be purchased from commercial sources as PreScission1 Protease.

In vitro ubiquitination assays

FANCI:FANCD2 complex. Ubiquitination reactions contained 100 nM purified human

or Xenopus FANCI:FANCD2, 50 nM UBE1 (Boston Biochem), 100 nM UBE2T, 100 nM

BL100, 100 nM CEF, 7.5 ng/μl pUC19 plasmid DNA, 10 μM Avi-ubiquitin and 2 mM ATP in

50 mM Tris-HCl pH 7.4, 150 mM NaCl, 2.5 mM MgCl2, 0.01% Triton X-100 and 1 mM DTT.

Reactions were incubated for 90 min at 37 ˚C.

PCNA. Ubiquitination reactions contained 50 nM UBE1, 100 nM UBCH5C, 100 nM

PCNA, 10 μM Avi-ubiquitin and 2 mM ATP in 50 mM MMT buffer (DL-Malic acid, MES

monohydrate, Tris) pH 9.0, 25 mM NaCl, 2.5 mM MgCl2, 0.01% Triton X-100 and 1 mM

DTT. Reactions were incubated for 90 min at 37 ˚C.

Nucleosomes. Ubiquitination reactions contained 50 nM UBE1, 150 nM UBCH5C, 100

nM nucleosomes, 100 nM BRCA1:BARD1 complex, 10 μM Avi-ubiquitin and 2 mM ATP in

50 mM Tris-HCl pH 7.4, 25 mM NaCl, 2.5 mM MgCl2, 0.01% Triton X-100 and 1 mM DTT.

Reactions were incubated for 90 min at 37 ˚C.

Purification of mono-ubiquitinated proteins

At the completion of reactions, ubiquitination mixtures were added to Avidin agarose resin

(Pierce) and incubated with gentle mixing for 2 hrs at 4˚C. Non-ubiquitinated proteins were
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washed away from the resin with 10 CV of buffer H (50 mM Tris-HCl pH 7.4, 150 mM NaCl,

10% glycerol and 1 mM DTT). Bound, ubiquitinated proteins were cleaved overnight by 100

nM GST-HRV-3C in buffer H. The GST-HRV-3C protease was removed using glutathione

affinity purification and the purified, ubiquitinated complexes were dialyzed into buffer H using

a 20 kDa MWCO dialysis membrane (Pacific Laboratory) to remove unconjugated ubiquitin.

Antibodies

The following antibodies were used in this study: rabbit polyclonal antibodies against PCNA

(ab15497, Abcam), histone H2A (ab18255, Abcam) and StrepII (ab76949, Abcam); mouse

monoclonal antibodies against FLAG (Sigma, M2) and ubiquitin (ab7254, Abcam); and

DyLight™ 800-conjugated Streptavidin (S000-32, Rockland).

Mass spectrometry

Protein bands were destained and dehydrated with 500 μL acetonitrile and subsequently reduced

with 500 μL 10 mM dithiothreitol (DTT) in 25 mM ammonium bicarbonate (NH4HCO3) at 55

˚C for 1 hr and then alkylated with 200 μL 55 mM iodoacetamide in 25 mM NH4HCO3 at room

temperature for 45 min in the dark. Samples were digested overnight with 125 ng trypsin (Pro-

mega) per band at 37 ˚C in a final volume of 20 μL. The resultant peptides were subjected to

sonication with 50 μL of 50% acetonitrile, 5% formic acid and prepared for mass spectrometry

by concentration under vacuum to a 10–15 μL final volume. Peptide mixtures were analyzed by

reverse-phase HPLC-MS/MS. Mass spectra of digested protein gel bands were obtained using

an electrospray ionisation (ESI)-quadrupole-time-of-flight Q Exactive Plus mass spectrometer

(ThermoFisher Scientific). The analysis program MASCOT was used to identify mono-

ubiquitination sites on FANCI:FANCD2, PCNA, BRCA1Δexon11:BARD1 and nucleosomes.

Results

Expression, purification and quality control of recombinant proteins

In order to purify natively mono-ubiquitinated proteins, we engineered a bacterial expression

construct that encodes human ubiquitin with: 1) an N-terminal 10xHis tag for affinity purifi-

cation, 2) an Avi-tag for site-specific biotinylation [33] and biotin-affinity purification, 3) a 3C

protease site for site-specific protease cleavage, leaving native ubiquitin with one artefactual N-

terminal proline,z and 4) a second ORF for co-expression of BirA biotin ligase for efficient

bacterial biotinylation of recombinant protein [26] (Fig 1A). From this construct, we obtained

21.3 mg of Ni-affinity purified recombinant Avi-ubiquitin from 500 mL E. coli culture (Fig

1B). To verify that the Avi-ubiquitin purified by this method was biotinylated, we loaded the

purified recombinant Avi-ubiquitin onto SoftLink™ monomeric avidin resin (Promega),

which binds only the biotinylated form, but permits elution of bound proteins using biotin

(~50% Avi-ubiquitin were eluted, lanes 1–3, Fig 1C). We observed that there was only a very

faint band (<5%) corresponding to Avi-ubiquitin in the flow-through (lane 2, Fig 1C), demon-

strating the efficient (>95%) biotinylation of the Avi-ubiquitin. Additionally, treatment of the

bound sample with HRV-3C protease resulted in release of>95% of the cleaved ubiquitin

while the Avi-tag remained immobilized (lanes 4–6, Fig 1C).

Avi-ubiquitin can be used to efficiently mono-ubiquitinate FANCI:

FANCD2, PCNA and nucleosomes

We have previously shown that the maximal mono-ubiquitination of Xenopus laevis FANCI:

FANCD2 complex requires the FA RING-E3 ligase subcomplex: FANCB-FANCL-FAAP100

Preparation and purification of mono-ubiquitinated proteins using Avi-tagged ubiquitin
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(BL100), and the adaptor protein: FANCC-FANCE-FANCF (CEF) [11]. We have previously

preferred the X. laevis xFANCI:xFANCD2 complex for mono-ubiquitination reactions

because the native human FANCD2 cDNA sequence is highly unstable during bacterial propa-

gation and baculovirus generation. Here, we overcame the problem of cDNA instability, by re-

engineering the protein coding sequence via codon optimization and gene synthesis. This new

synthetic construct was stable after repeated propagation and used for baculovirus generation.

We obtained 1 mg of pure recombinant human FANCI:FANCD2 complex from 200 mL Hi5

insect cell expression culture (S1A Fig). The two human proteins are closer in size than the

corresponding X. laevis proteins, when separated on a 3–8% Tris-acetate gel (S1B Fig).

To determine if the same factors are also required to mono-ubiquitinate human and X. lae-
vis FANCI:FANCD2 complexes, we set out to purify human FANCI:FANCD2 complex for

use in ubiquitination assays (Fig 2A, lane 2, Note: human FANCI:FANCD2 runs closer to

each other on 4–12% Bis-Tris gel when run in 1X MES buffer). Both human and X. laevis
FANCI:FANCD2 complex can be mono-ubiquitinated at 25 ˚C, however the X. laevis FANCI:

FANCD2 complex was more efficiently ubiquitinated at this temperature (S1C Fig). After test-

ing at various temperatures, we found human FANCI:FANCD2 complex, is most efficiently

mono-ubiquitinated in vitro at 37 ˚C (Fig 2B).

Mono-ubiquitination of PCNA substrate by the modified E2 enzyme UBCH5C (S22R) has

been well described [18, 19]. As per the optimized in vitro ubiquitination conditions of [18] we

were able to achieve ~50% mono-ubiquitinated PCNA with Avi-ubiquitin, in a low salt and

high pH buffer (50 mM MMT pH 9.0, 25 mM NaCl, 2.5 mM MgCl2, 0.01% Triton X-100 and

1 mM DTT) (Fig 2C).

For the in vitro mono-ubiquitination of nucleosomes, we purified human BRCA1:BARD1

complex with a yield of approximately 0.5 mg pure protein per 200 mL of Sf9 insect cell

culture (Fig 2A, lane 3). The form of BRCA1 used was a splice variant which lacks exon 11

(BRCA1Δexon11). This variant of BRCA1 has the following properties: (a) it is highly expressed

in some mammary cell lines [34], (b) it contains the conserved N-terminal RING E3 ligase

domain and C-terminal BRCT repeats critical for BRCA1 function in DNA repair and breast

cancer suppression [35] and (c) is able to rescue the otherwise deleterious deletion of BRCA1

during mouse development [36]. Consistent with published reports [37], we show that

BRCA1Δexon11:BARD1 auto-ubiquitinates on multiple lysine residues in the presence of

UBCH5C E2 enzyme (Fig 2D). Mass spectrometry analysis confirmed that BRCA1 and

BARD1 were auto-ubiquitinated at multiple lysine sites (S3D Fig). Importantly, we also show

that our recombinant BRCA1Δexon11:BARD1 protein can mono-ubiquitinate histone H2A

within a nucleosome (Fig 2E). Within 30 min, ~40% mono-ubiquitination of histone H2A

occurred using BRCA1Δexon11:BARD1 (Fig 2E), and some higher products corresponding to

two or three mono-ubiquitination events were also observed. This is expected, because

BRCA1:BARD1 can ligate ubiquitin to lysine residues K125, K127 and K129 in histone H2A

[4, 38]. Western blotting of the native PAGE separated nucleosome reacted with anti-Strepta-

vidin and confirmed ubiquitination occurred in the context of a nucleosome (S2A–S2C Fig).

Purification of mono-ubiquitinated FANCI:FANCD2, PCNA and

nucleosomes

Mono-ubiquitination of the FANCI:FANCD2 complex, PCNA and histone H2A within nucle-

osomes are key regulation steps within the FA-BRCA pathway. To purify mono-ubiquitinated

FANCI:FANCD2 complex, we set up in vitro ubiquitination reactions in a total volume of

500 μl containing Avi-ubiquitin, human FANCI:FANCD2, FA core complex components

(BL100 and CEF) and plasmid DNA. Biotin affinity purification and elution of ubiquitinated
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proteins using HRV-3C protease enzyme resulted in elution of ubiquitin (Fig 3A) and dually-

mono-ubiquitinated human FANCI:FANCD2 complex (Fig 3B). Mass spectrometry analysis

confirmed that FANCI and FANCD2 were mono-ubiquitinated on their native target residues,

Lysine 523 and Lysine 561 respectively (S3A and S3B Fig). The purified dually-mono-ubiquiti-

nated FANCI:FANCD2 eluted from the avidin resin is in a 1:1 stoichiometry. This observation

Fig 2. Reconstitution of human FANCI:FANCD2, PCNA and nucleosome in vitro ubiquitination assay using Avi-ubiquitin. (A)

Coomassie stained 4–12% Bis-Tris gel run in 1X MES buffer showing purified human FANCI:FANCD2, BRCA1Δexon11:BARD1,

reconstituted nucleosome, PCNA, UBCH5C (S22R), Avi-ubiquitin, FANCB-FANCL-FAAP100 (BL100), FANCC-FANCE-FANCF

(CEF), UBE1 and UBE2T (lanes 2–11). (B) Western blot of the time course ubiquitination reaction of human FANCI:FANCD2 at 25 ˚C,

30 ˚C and 37 ˚C. The percentage of mono-ubiquitinated FANCD2 or FANCI were calculated and showed under each western blot

panel. (C) PCNA mono-ubiquitination time course experiments using UBCH5C as an E2 enzyme. (D) Western blots of time course

experiments revealing that BRCA1Δexon11 and BARD1 were auto-ubiquitinated at multiple lysine residues in the presence of UBCH5C.

(E) Mono-ubiquitination timecourse of nucleosomes as substrates in the presence of BRCA1Δexon11:BARD1 and UBCH5C. Experiments

in (B-E) were performed in triplicate with similar results.

https://doi.org/10.1371/journal.pone.0229000.g002
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suggests that ubiquitination does not break apart the FANCI:FANCD2 complex, despite the

ubiquitination sites being buried inside the mouse structure of non-ubiquitinated FANCI:

FANCD2 [39].

PCNA mono-ubiquitination has been shown to stimulate the FA-BRCA pathway [40],

however the intersection of PCNA ubiquitination and FANCD2 ubiquitination has only

been investigated with FANCL as the E3 RING ligase for FANCD2 rather than the FA core

complex [41]. Furthermore, in the previous study, only ~20% of PCNA molecules were mono-

ubiquitinated by the cognate E3 ligase RAD18 [41]. We used Avi-ubiquitin to mono-ubiquiti-

nate PCNA using an optimized reaction with the E2 UBCH5C [18]. Using this approach, we

were able to generate and purify mono-ubiquitinated PCNA (Fig 3C), demonstrating that the

Avi-ubiquitin system is a generalizing method for the preparation of pure mono-ubiquitinated

proteins. Mass spectrometry analysis confirmed that PCNA was mono-ubiquitinated on the

native target residue, Lysine 164 (S3C Fig). Protein eluted from the resin was in a ~80%-ubi-

quitinated state, suggesting that in our system, mono-ubiquitination of the PCNA trimer

occurs essentially simultaneously on each of the 3 subunits.

Finally, mono-ubiquitination of nucleosomal histone H2A by BRCA1:BARD1, has also

been shown to regulate DNA repair in the FA:BRCA pathway [4, 16]. Using the Avi-ubiquitin

system, we were able to purify mono-ubiquitinated histone H2A within a nucleosome (Fig

3D). This result demonstrates that the Avi-ubiquitin system can be used to purify natively

mono-ubiquitinated nucleosomes. Not all of the ubiquitinated nucleosome was captured in

these experiments, perhaps because the N-terminus of ubiquitin becomes buried with the

nucleosome. Structural investigation of the pure protein may indicate if this is an intra- or

inter-molecular event.

Discussion

Here we provide a rapid and robust procedure to purify recombinant mono-ubiquitinated

proteins using the Avi-ubiquitin in a biochemical system. The single-step nature of affinity

purification followed by protease-mediated elution of the modified proteins make this tech-

nique amenable for use in the study of any ubiquitinated protein of research interest. We

focused on the FA-BRCA pathway and were able to purify mono-ubiquitinated FANCI:

FANCD2 complex, PCNA trimer and nucleosomes which can now be used as an reagent to

answer long-standing questions in the field.

One of the challenges of researching ubiquitination is the low abundance of ubiquitinated

proteins due to rapid turnover in cells. Previous protocols for purifying ubiquitinated proteins

involve engineering a tandem ubiquitin-binding domain of interest [42] or immunoprecipita-

tion of ubiquitinated peptides using anti-ubiquitin [43], however these methods often contain

a mixture of poly- and mono-ubiquitination proteins. Moreover, enrichment of ubiquitinated

peptides and mass spectrometry-based approach are required for protein identification, thus

hindering identification of low abundance ubiquitinated protein complexes. Using our Avi-

ubiquitin system, it may be possible to complement mass spectrometry-based approach and

identify rare and mono-ubiquitinated proteins that are low abundance in cells, or identify

new ubiquitin binding partners that could not be detected previously. A similar approach

to Avi-ubiquitin utilized a GST-ubiquitin construct to purify ubiquitinated FANCI and

FANCD2 monomeric proteins in vitro [24], however GST (26 kDa) [44] is a magnitude larger

than ubiquitin (8 kDa) [45] and may not be suitable to purify smaller ubiquitinable proteins

such as nucleosomes. To the best of our knowledge, this is the first study to purify natively

mono-ubiquitinated nucleosome that was ubiquitinated by BRCA1:BARD1. This method
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provides a rapid and novel approach to purify mono-ubiquitinated proteins, and could poten-

tially be applied to other poly-ubiquitination proteins.

The advantage of our protocol is that it is entirely reconstituted from purified components

(ubiquitin, E3 ligase and DNA), which greatly simplifies data interpretation and allows more

detailed investigation of the stepwise molecular events. Previous methods of purifying ubiquiti-

nated PCNA utilized gel filtration to isolate ubiquitinated PCNA from the reconstituted reac-

tions [18, 19], however this approach requires laborious optimization of the PCNA

ubiquitination reaction and large amounts of ubiquitination reagents. Using our system, we

were able to purify ubiquitinated PCNA away from unmodified substrates via a simple affinity

chromatography step. Using Avi-ubiquitin, we were able to generate native dually-monoubiqui-

tinated FANCI:FANCD2, which has been used as a reagent to study the FA-BRCA pathway [46].

One limitation of the system we describe is the need to extensively understand the bio-

chemical mechanism of substrate monoubiquitination. For example, the generation of ubiqui-

tinated FANCI-FANCD2 requires the reconstitution of a 6-protein E3 ligase complex.

Fig 3. Purification of mono-ubiquitinated proteins using the 3C protease enzyme. (A) Coomassie of 4–12% Bis-Tris gel run in 1X

MES buffer showing the purification Avi-ubiquitin. (B) Coomassie of 3–8% Tris-acetate gel showing the purification of mono-

ubiquitinated FANCI:FANCD2 complex. (C) Coomassie stained SDS-PAGE gel showing purification of mono-ubiquitinated PCNA.

(D) Silver stained SDS-PAGE gel showing purification of mono-ubiquitinated nucleosomes. Experiments in (A-D) were performed in

triplicate with similar results.

https://doi.org/10.1371/journal.pone.0229000.g003
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Engineering of the UBE2T enzyme to increase its specificity has recently been demonstrated as

a way to overcome this requirement [47] however this requires a tailored approach for each

target. We observed very little non-specific monoubiquitination in our reactions, however for

some E2:E3 pairs this may be an issue to be overcome. In all our experiments, Avi-ubiquitin

has behaved identically to unlabeled ubiquitin, however this may also be different if alternative

E2:E3 pairs and substrates are used. A further limitation, related to purification of the ubiquiti-

nated proteins, is the requirement that the N-terminus of ubiquitin be solvent exposed in the

monoubiquitinated substrate. Ubiquitin that is protected by binding to an additional factor

or protein domain will not be accessible to Streptavidin for capture. Importantly, the Avi-

ubiquitin is biotinylated in vivo in E.coli and then purified via a HIS-tag. As such, so no other

biotin-modified proteins should participate in the reaction. This limits the contaminant issues

that come from in vitro biotinylation of ubiquitin or ubiquitinated proteins for Streptavidin

purification.

The Avi-ubiquitin purification protocol presented here is widely applicable and represents

an immediate step towards direct purification of native protein complexes in vitro or in cells.

Our approach takes advantage of the strong affinity between avidin and biotin, which opens

the door for purifying endogeneous ubiquitinated protein complexes from a number of organ-

isms that have not yet been explored, enabling capturing of multiple natively ubiquitinated

proteins or binding partners (for example different ubiquitinated substrates in the Proteasome

degradation system [48] or ubiquitinated proteins in different cell cycle stages) [49, 50], and

during various stages of diseases (cancer, autoimmune or cardiovascular diseases).

Supporting information

S1 Fig. Purification and mono-ubiquitination of human FANCI:FANCD2 complex. (A)

Coomassie stained 3–8% Tris-acetate gel of Flag- and Talon-affinity purification of human

FANCI:FANCD2 complex, and Western blot of Talon-purified FANCI:FANCD2 complex.

(B) Coomassie stained SDS-PAGE gel revealing that human FANCI runs higher than Xenopus
FANCI in the FANCI:FANCD2 complex. (C) Mono-ubiquitination of human and Xenopus
FANCI:FANCD2 complex in a reaction containing recombinant FA core complex proteins at

25˚C for 90 min.

(PDF)

S2 Fig. Biochemical reconstitution of mono-ubiquitinated nucleosomes. (A) Coomassie

stained SDS-PAGE showing reconstitution of mono-ubiquitinated nucleosomes. Lane 1

shows 147 bp dsDNA based on Widom 601 sequence in the absence of nucleosome (Widom

147), lane 2 shows mono-ubiquitination reaction containing nucleosomes without ATP

(nucleosomes) and lane 3 shows mono-ubiquitination reaction containing nucleosomes,

BRCA1Δexon11:BARD1 complex, Avi-biotin-ubiquitin, UBE1, UBCH5C and ATP (ubiquiti-

nated nucleosomes). (B) 6% native PAGE gel containing the same reactions in (A) stained

with SYBR gold nucleic acid stain showing reconstitution of nucleosomes (lanes 2–3). (C)

Western blot of the 6% P AGE from (B) probed against Streptavidin antibody showing that

the reconstituted nucleosomes were ubiquitinated (lane 3).

(PDF)

S3 Fig. Mass spectrometry results of mono-ubiquitinated FANCI, FANCD2,PCNA,

BRCA1 and BARD1. (A-C) A gel band containing ubiquitinated FANCI, FANCD2 and

PCNA were processed and in-gel digested with trypsin and analyzed by mass spectrometry.

The tandem mass (M S/M S) spectrum of mono-ubiquitinated peptides were derived by colli-

sion-induced dissociation of the (M+H)+ precursor, m/z as indicated. Fragment ions in the
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spectrum represent mainly single-event preferential cleavage of the peptide bonds resulting in

the sequence information recorded simultaneously from both the N- and C-termini (b- and y-

type ions, respectively) of the peptide. Data analysis was performed using M ascot (35) and the

data was searched against the Uniprot database (downloaded 0606/2013). Searches were con-

ducted with trypsin, the precursor ion tolerance was set to 10 ppm and the fragment ion toler-

ance was set to 0.2 Da. Variable modifications include oxidation on methionine (+15.995 Da),

carbamidomethyl (+57.021 Da) on cysteine, and ubiquitination on glycine/glycine (+114.043

Da). The maximum missed cleavages were set to 2. All search results were evaluated by Mud-

PIT scoring for false discovery rate (FDR) evaluation of the identified peptides (36) and pep-

tides identifications were filtered to a FDR of 5%. Mass spectra verified that the purified

FANCI is mono-ubiquitinated at lysine 523 (A), FANCD2 is mono-ubiquitinated at lysine 561

(B), and PCNA is mono-ubiquitinated at lysine 167 (C). (D) Summary of mass spectrometry

results of mono-ubiquitinated BRCA1:BARD1.

(PDF)

S4 Fig. Source data gels. Original source images for all data obtained by electrophoretic sepa-

ration: Coomassie stained SDS-PAGE and western blots.

(PDF)
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