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Abstract 

Cognitive impairment among older adults is a growing public health challenge and environmental chemicals may be modifiable risk 
factors. A wide array of chemicals has not yet been tested for association with cognition in an environment-wide association framework. 
In the US National Health and Nutrition Examination Survey (NHANES) 1999-2000 and 2011-2014 cross-sectional cycles, cognition was 
assessed using the Digit Symbol Substitution Test (DSST, scores 0-117) among participants aged 60 years and older. Concentrations of 
environmental chemicals measured in blood or urine were log2 transformed and standardized. Chemicals with at least 50% of measures 
above the lower limit of detection were included (nchemicals ¼ 147, nclasses¼14). We tested for associations between chemical concentra
tions and cognition using parallel survey-weighted multivariable linear regression models adjusted for age, sex, race/ethnicity, education, 
smoking status, fish consumption, cycle year, urinary creatinine, and cotinine. Participants with at least one chemical measurement 
(n¼ 4982) were mean age 69.8 years, 55.0% female, 78.2% non-Hispanic White, and 77.0% at least high school educated. The mean DSST 
score was 50.4 (standard deviation (SD)¼17.4). In adjusted analyses, 5 of 147 exposures were associated with DSST at P-value <.01. 
Notably, a SD increase in log2-scaled cotinine concentration was associated with 2.71 points lower DSST score (95% CI −3.69, −1.73). A SD 
increase in log2-scaled urinary tungsten concentration was associated with 1.34 points lower DSST score (95% CI −2.11, −0.56). Exposure 
to environmental chemicals, particularly metals and tobacco smoke, may be modifiable factors for cognition among older adults.

Key words: Exposome-wide association study; ExWAS; environmental chemicals; exposome; environmental epidemiology; cognition, 
mild cognitive impairment; dementia; NHANES. 

Introduction
Mild cognitive impairment is characterized by greater cognitive de

cline than expected based on age and educational attainment.1 In the 

United States, women experience a 71% lifetime risk of developing 

cognitive impairment at an average age at incidence of 73.2 Similarly, 

men experience 61% lifetime risk of cognitive impairment at an aver

age age at incidence of 70.2 When these cognitive impairments impact 

activities of daily living, their syndrome has progressed to dementia, 

and a common subtype of dementia is Alzheimer’s disease.3,4 These 

are prevalent and challenging conditions, and understanding modifi

able risk factors is key to public health prevention.
Later life environmental exposures such as air pollution and cig

arette smoking are key modifiable factors for dementia prevention 

highlighted by the 2024 Lancet Commission.5 Additional environ
mental factors are suggestive based on current evidence. For exam
ple, among 2023 older adults in the United States, a 0.51 ng/mL 
increase in urinary cadmium concentrations was associated with 
1.58 times higher hazard of Alzheimer’s disease mortality (95% CI: 
1.20, 2.09) over 7.5 years of follow up.6 In addition, among 741 older 
men in the Boston area, a 21 μg/g increase in patella bone lead was 
associated with −0.016 units of loss on the Mini Mental Status 
Exam score per year (95% CI: −0.032, −0.0004) over 15 years.7

Environmental chemical exposures are prevalent and potentially 
neurotoxic, though prior studies of environmental associations 
with cognition have been limited to few individual chemicals.

In genomic research, examining “well lit” areas of the genome 
based on prior evidence is described as the streetlight effect, and 
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which may cause investigators to miss important but currently 
“dimmer” areas.8 Similarly, in environmental chemical research 
it is important to balance hypothesis testing of well-known 
chemicals with discovery analyses to identify novel chemical 
associations. The exposome-wide association study (ExWAS) is 
an exploratory approach for the systematic and simultaneous in
vestigation of many chemicals in parallel models.9,10 Similar to 
genome-wide association studies, which test associations be
tween several genetic factors and a health outcome, the ExWAS 
approach is untargeted and seeks to discover potential associa
tions for further investigation while considering multiple hypoth
esis tests. This study sought to build on evidence on individual 
chemicals and cognitive impairment by using ExWAS to examine 
a wide variety of chemicals and chemical classes for association 
with cognitive status. We used a cross-sectional and nationally 
representative sample of older adults from the United States 
National Health and Nutrition Examination Survey (NHANES). 
Findings from this study may help generate new hypotheses for 
mechanistic, validation, and prevention research.

Methods
Study design and participants
This analysis is a cross-sectional exposome-wide association 
study (ExWAS) of data pooled across three cycles of NHANES 
(Figure 1). Since 1999-2000, NHANES is conducted biannually by 
the National Center for Health Statistics (NCHS) and is nationally 
representative of non-institutionalized civilians in the United 
States.11 Data are collected through questionnaires, clinical 
measurements, and biomarker measurements, including chemi
cal concentrations. Every two years, data on independent sam
ples of participants are released in cycles. Cognition in adults 
aged 60 years and older was assessed in four cycles: 1999-2000, 
2001-2002, 2011-2012, and 2013-2014. We included three of these 
cycles (1999-2000, 2011-2012, and 2013-2014; N¼ 29 896). We ex
cluded the 2001-2002 cycle because a key covariate, fish con
sumption, was not measured in older adults in that cycle. Raw 
data are publicly available through the NCHS (https://wwwn.cdc. 
gov/nchs/nhanes/continuousnhanes/default.aspx). Processed data 
are publicly available through Kaggle, figshare, and Hugging Face 
repositories.12-15 Participants provided informed consent at the 
time of participation in NHANES. The University of Michigan 
Institutional Review Board (IRB) approved these secondary data 
analyses (HUM00116291).

Chemical biomarker measures
NHANES participants provided urine and blood samples in the 
Mobile Examination Centers. These samples were analyzed for a 
variety of biomarkers used to indicate exposures. Information on 
the laboratory methods used for measuring chemical biomarker 
concentrations in each cycle year are available through the 
NCHS.16 The chemical biomarkers were not all measured in the 
same cycles nor in the same participants. Across the three cycles 
of interest, 395 environmental biomarkers were eligible for analy
sis. The environmental biomarker data were quality controlled 
similar to our previously described process.17,18 Urinary cad
mium measures that had interference with urinary moldybde
num were removed.19,20 All measurements below the chemical- 
specific LOD were imputed as LOD/�2 by NHANES. No outliers 
were removed from the chemical exposure biomarkers. 
Consistent with prior analyses, chemical measures were log2 

transformed for analysis.18 After transformation, the measures 
were also standardized (mean¼0, standard deviation¼ 1) within 

each chemical to enable comparisons between chemicals with 

different units and distributions.

Cognitive measures
Cognitive testing via the Digit Symbol Substitution Test (DSST) 

was performed among participants aged 60 years and older.21

The DSST consists of a set of symbols corresponding to the num

bers 1 through 9. Participants are given a paper with rows of 

numbers and are asked to draw the matching symbols beneath 

each number. The test is scored based on the number of symbols 

that were drawn correctly in the allotted 120s. In NHANES, the 

maximum possible score was 133 points.22 Our primary analysis 

used DSST as a continuous measure. As a sensitivity analysis, 

consistent with previous studies, we categorized DSST score of 

less than or equal to the survey-weighted 25th percentile 

Figure 1. Graphical overview of the exposome-wide association study 
(ExWAS) of cognition in older adults in the National Health and 
Nutrition Examination Survey (NHANES). Covariates considered are age, 
sex, race/ethnicity, education, smoking status, serum cotinine, seafood 
consumption, NHANES cycle, urinary creatinine, waist circumference, 
and alcohol consumption.
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(score ≤ 37 in our sample) as mild cognitive impairment (MCI) 
and DSST greater than the 25th percentile as normal cognition.23

Covariate measures
Covariates were selected based on prior literature and on concep
tual framing as confounders (common causes) of the relationship 
between environmental chemical exposures and cognitive sta
tus, as visualized in a directed acyclic graph (DAG, Figure 1). 
Variables collected by interview included age (years), sex (male, 
female), race/ethnicity (Mexican American, Other Hispanic, Non- 
Hispanic White, Non-Hispanic Black, Other Race/Multiracial), ed
ucation (less than 9th grade, 9-12th grade without diploma, high 
school graduate/General Education Development degree, some 
college or Associate of Arts degree, college graduate or above), 
history of tobacco use (never, ever smoked at least 100 cigarettes, 
current use), history of alcohol consumption (consumption in the 
past 12 months), fish and shellfish consumption (number of 
times eaten in the past 30 days), and the cycle year of participa
tion. We chose to adjust all models for fish consumption due to 
its association with levels of certain metals and per- and poly
fluoroalkyl substances (PFAS) as well as cognitive function.24,25

To protect participant anonymity, NHANES top-coded ages 
greater than 85 years in cycles prior to 2007 as age 85 years. 
Those who reported an age greater than 80 years in 2007 or later 
were top-coded as age 80 years. Education was recategorized as a 
binary variable: less than high school and high school/General 
Education Development (GED) or above. Never smokers were cat
egorized as smoking fewer than 100 cigarettes, former smokers 
were categorized as smoking over 100 cigarettes but not cur
rently, and current smokers were categorized as reporting cur
rent use. The units for alcohol consumption were scaled to the 
average number of drinks per month based on the past 
12 months. The number of fish and shellfish eaten over 30 days 
were combined into one value and categorized into three groups: 
0, 1-3, and 4þ. We considered the following categories as refer
ence groups: male, Non-Hispanic White, less than high school, 
no fish consumption, never smoker, and the first survey cycle 
with measurements for each chemical.

Waist circumference (cm) was measured in the Mobile 
Examination Centers by trained study staff. Urinary creatinine 
concentrations (mg/dL), serum creatinine concentrations 
(mg/dL), and serum cotinine concentrations (ng/mL) of the par
ticipants were also measured from provided samples. Similar to 
the exposure measures, urinary creatinine and serum cotinine 
were log2 transformed and standardized. For chemicals mea
sured in urine, we used urinary creatinine as a covariate to ac
count for urine dilution.26 Cotinine was included as a covariate 
for all chemicals other than smoking-related chemicals (eg, 
hydroxycotinine and total cotinine) as a biomarker of short-term 
cigarette smoke exposure to account for residual confounding 
not addressed by self-reported smoking status. Estimated glo
merular filtration rate (eGFR) was calculated from serum creati
nine measurements using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) equation, excluding the 
term for race adjustment.12,27,28 We categorized normal kidney 
function as eGFR ≥60mL/min/1.73 m2.29

Statistical analysis
All analyses were performed in R version 4.3.030 and code files 
are available (https://github.com/bakulskilab/Cognition_ExWAS). 
To account for the NHANES complex sampling design, we ap
plied survey weights to all analyses using the R package ‘survey’, 
unless otherwise noted.31

Participants were excluded from cognitive testing by NHANES 
if they were aged less than 60 years at the time of assessment or 
by our study team if they had no chemical biomarker measures. 
To focus on environmental exposures relevant to the general 
population, biomarkers were excluded if they were annotated as 
dietary components or phytoestrogens, or if they were measured 
only in smokers. Next, for any lipid-soluble biomarkers measured 
in blood, we used the lipid-adjusted measurements and excluded 
the unadjusted versions. Lastly, we excluded biomarkers if more 
than 50% of measures were below the reported lower limit of de
tection (LOD). In total, 147 chemical biomarkers were included as 
exposures to be screened for potential associations with cognitive 
function. Participant and chemical biomarker inclusion and ex
clusion were visualized using flow charts. The distributions of 
continuous covariates were described by mean and standard de
viation, while categorical covariates were described by propor
tions. We compared distributions of descriptive characteristics 
for the included and excluded participants. Within the included 
analytic sample, we compared the distributions of covariates by 
NHANES cycle and by cognitive impairment status.

We calculated summary statistics for each chemical bio
marker (participant count, minimum and maximum concentra
tions, weighted arithmetic and geometric means and standard 
deviations, weighted median, weighted 25th and 75th percen
tiles, and percentage of measurements above the LOD). We visu
alized distributions of a subset of chemical exposures, log2 

transformed and standardized, with histograms. We used a scat
terplot to compare the sample size per chemical versus the per
centage of measurements above the LOD, colored by chemical 
family. Additionally, we calculated Spearman correlations be
tween each chemical biomarker measure and used a heatmap to 
depict the correlations and missing data, grouped by chemi
cal family.

We assessed the distributions of covariates based on missing 
outcome status, and determined values were missing at random 
(MAR). We imputed missing covariate and outcome data using 
multiple imputation by chained equations (MICE) with the R 
package “mice,” creating m¼ 5 complete datasets.32 Due to the 
variation in sample sizes for the chemical exposure measures, 
we did not impute exposure data. Additionally, we did not im
pute eGFR to maintain a consistent division between normal and 
abnormal kidney function. Characteristics of the imputed varia
bles are summarized in a descriptive table (Supplementary 
Table 1).

Exposome-wide association study (ExWAS) 
models
To test the associations between individual chemical exposures 
and continuous DSST scores, for each chemical we used separate 
survey-weighted linear regression models adjusted for age (con
tinuous), sex (categorical), race/ethnicity (categorical), education 
level (categorical), urinary creatinine (continuous), serum cotin
ine (continuous), reported smoking status (categorical), seafood 
consumption (categorical), and survey cycle (categorical). 
Consistent with an ExWAS design, each chemical association 
was analyzed individually in a separate regression model and we 
did not consider hypotheses about the direction of effect.10 Of 
note, because biomarkers were measured in different subsets of 
the analytic sample, these regression models had varying sample 
sizes. Urinary creatinine was included only in models for urinary 
chemical measurements. Models for smoking-related com
pounds (serum cotinine, total cotinine, hydroxycotinine, and 
thiocyanate) were not adjusted for cotinine. To account for the 
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MICE procedure, models were run separately on each of the five 

unique imputed datasets and pooled to produce one set of coeffi

cient estimates per exposure.33 The chemical biomarker regres

sion coefficients, 95% confidence intervals (CI), and P-values for 

each exposure were compiled into a table. Because the chemical 

concentrations were log2 transformed and standardized prior to 

modeling, the regression coefficients are interpreted as the ad

justed association with DSST per standard deviation of the log2- 

scaled chemical concentration. For discovery analyses, we priori

tized chemicals with an unadjusted P-value <.01. To account for 

multiple comparisons, we controlled the false discovery rate 

(FDR) using the Benjamini-Hochberg method with the “p.adjust” 

function in the stats R package, and used a significance threshold 

of FDR <0.05.30,34 We visualized the regression coefficients and 

statistical significance for all chemicals using a volcano plot and 

a forest plot. For the exposure associations with DSST, the coeffi

cient estimates and confidence intervals for all are presented 

in tables.

Sensitivity analyses
We developed five sensitivity analyses to further explore the 

associations between chemical biomarkers and DSST. First, de

creased kidney function is associated with both chemical bio

marker concentrations retained in the body and lower cognitive 

function.35-37 We subset the sample to participants with normal 

kidney function as indicated by eGFR ≥60 mL/min/1.73 m2 and 

re-ran the models for each chemical. Second, we ran models 

stratified by sex to explore differences between males and 

females. Third, to account for possible confounding by lifestyle 

characteristics, in the full sample, we further adjusted models 

for waist circumference (continuous) and alcohol consumption 

(categorical). These covariates were addressed in a sensitivity 

analysis rather than the main analysis to prevent potential over

adjustment in the main models. Fourth, to present a more clini

cally relevant analysis, we used MCI status categories as a binary 

outcome variable. We conducted modified Poisson regression for 

each chemical, adjusted for the same covariates as the main 

analysis and reported the relative risks (RR) and 95% CI. Lastly, 

we again restricted to participants with normal kidney function 

and re-ran the Poisson regression models. The results for all sen

sitivity analyses were visualized in volcano plots and the regres

sion output was compiled in tables.

Results
Participant characteristics and chemical 
descriptions
The analysis included N¼ ,982 participants across three NHANES 
cycles (Figure 2A). Within the included sample, the mean age 
was 69.8 years, 55% were female, and 78.2% were Non-Hispanic 
White (Table 1). On average, participants from cycle year 1999- 
2000 had lower observed DSST scores compared to participants 
from cycle years 2011-2014 (Table 1). The included participants 
were on average more likely to be Non-Hispanic White and had a 
higher DSST score compared to the excluded participants aged 
60 years and older (Supplementary Table 2). Participants with 
MCI were older, less likely to be Non-Hispanic White, and less 
likely to have completed high school compared to participants 
without impairment (Supplementary Table 3).

Our analytic sample included 147 chemicals from 14 chemical 
families (Figure 2B). Descriptive statistics including concentration 
minimums and maximums, means, standard deviations, medians, 
interquartile ranges, and the percentage of measurements above the 
LOD are available for all 147 chemicals (Supplementary Table 4). 
Serum cotinine was measured in the most participants (n¼4687), 
followed by blood cadmium and blood lead (n¼3955 each). 
Benzaldehyde had the fewest number of measurements with 
n¼ 377. Of the 147 included chemicals, 90 had detection rates of 90% 
or higher (Supplementary Figure 1). A heatmap of Spearman correla
tions is depicted in Figure 3. Polychlorinated biphenyls, polyaromatic 
hydrocarbons, and smoking-related compounds were highly corre
lated within their families. Histograms depicting the distributions of 
nine selected exposures, log2 transformed and standardized, are 
available in Supplementary Figure 2.

Associations between chemical concentrations 
and DSST scores
In our primary adjusted regression analysis, five of 147 exposures 
were associated (p< 0.01) with DSST score (Figure 4). The identified 
exposures included chemicals in the classes of metals, personal 
care compounds, smoking-related compounds, and volatile organic 
compounds. Increases in the concentrations of serum cotinine and 
urinary tungsten were associated with lower DSST scores (Table 2). 
A standard-deviation increase in the log2-transformed concentra
tion of serum cotinine was associated with 2.71 points lower DSST 
(95% CI: −3.69, −1.73). Similarly, a standard-deviation increase in 
the log2-transformed concentration of urinary tungsten was 

Figure 2. Inclusion criteria for participants (A) and chemical biomarker measures (B) in the National Health and Nutrition Examination Survey 
(NHANES). The Digit Symbol Substitution Test (DSST) was administered to participants aged 60þ years in the cycles 1999-2000, 2001-2002, 2011-2012, 
and 2013-2014. Cycle 2001-2002 was not considered because a key covariate (fish and seafood consumption) was not measured in the population 
of interest.
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associated with 1.34 points lower DSST (95% CI: −2.11, −0.56). An 

increase in three identified exposures (urinary benzophenone-3, 

blood m-/p-xylene, and urinary 2-methylhippuric acid) were associ

ated with higher DSST scores (Table 2). Two exposures, serum co

tinine and blood m-/p-xylene, had FDR-adjusted P-values <.05. 

Results for all screened exposures, regardless of statistical signifi

cance, are available in Supplementary Table 5 and as a forest plot 

(Supplementary Figure 3).

Sensitivity analyses
When restricting the analytic group to participants with normal 

kidney function (N¼ 3593), three chemical biomarkers were asso

ciated (P< .01) with DSST score (Supplementary Figure 4 and 

Supplementary Table 6). All identified associations were consis

tent with the results of the main analysis.
In sex-stratified models, associations differed between males and 

females. Of the five exposures associated (P< .01) with cognition in 

the primary analysis, four were also associated in at least one sex 

group, with serum cotinine being the only shared exposure across 

groups at P< .01 (Supplementary Figure 5 and Supplementary 

Table 7).

When adjusting further for waist circumference and alcohol 
consumption in the full analytic sample, the previously identified 
associations between blood mercury and 2-methylhippuric acid 
and DSST were no longer significant (Supplementary Figure 6 
and Supplementary Table 8). Notably, an increase in urinary cad
mium concentration was associated with a decrease in DSST 
score by 2.72 points (95% CI: −4.27, −1.18).

After MICE, the weighted 25th percentile of DSST score defined 
37 as the cutoff for MCI. A total of five biomarkers were associated 
(P< .01) with MCI in modified Poisson regression models (Figure 5 
and Table 3). Consistent with the continuous results, serum cotin
ine was associated with higher prevalence of MCI (RR 1.23, 95% CI: 
1.14, 1.33). Four biomarkers were associated with lower prevalence 
of mild cognitive impairment: 2-methylhippuric acid (RR 0.81, 95% 
CI: 0.71, 0.93), m-/p-xylene (RR 0.80, 95% CI: 0.71, 0.90), perfluorooc
tanoic acid (PFOA) (RR 0.83, 95% CI: 0.73, 0.94), and zinc (RR 0.84, 
95% CI: 0.75, 0.94). Poisson regression results for all exposures are 
available in Supplementary Table 9.

When restricted to participants with normal kidney function, 
serum cotinine continued to be associated (P< .01) with MCI 
(RR 1.24, 95% CI: 1.10, 1.39). Full results are available in 
Supplementary Figure 7 and Supplementary Table 10.

Table 1. Weighted descriptive statistics of included participants in the National Health and Nutrition Examination Survey (NHANES), 
overall and stratified by earlier (1999-2000) versus later (2011-2014) cycles of participation (N¼ 4982).

Variable Overall (N¼4982)a 1999-2000 (N¼1562)a 2011-2014 (N¼3420)a P-valueb

Digit Symbol Substitution Test (DSST) 50.42 (17.38) 45.94 (17.92) 51.89 (16.95) <.001
Missing 721 291 430

Age (years) 69.79 (6.98) 70.28 (7.40) 69.62 (6.82) .12
Sex .6

Male 44.98% 44.46% 45.16%
Female 55.02% 55.54% 54.84%

Race/ethnicity .2
Mexican American 3.61% 2.94% 3.85%
Other Hispanic 4.59% 6.62% 3.88%
Non-Hispanic White 78.23% 80.26% 77.53%
Non-Hispanic Black 8.52% 7.53% 8.86%
Other Race 5.05% 2.64% 5.88%

Education <.001
Did not complete high school 23.00% 35.01% 18.87%
Completed high school or above 77.00% 64.99% 81.13%
Missing 15 9 6

Smoking status .3
Never smoker 49.06% 47.13% 49.73%
Former smoker 39.16% 39.58% 39.02%
Current smoker 11.78% 13.28% 11.26%
Missing 7 4 3

Serum cotinine (ng/mL) 35.94 (104.97) 36.06 (99.61) 35.90 (106.71) >.9
Missing 295 119 176

Alcohol consumption .066
0-4 drinks per month 70.56% 74.48% 69.20%
>4 drinks per month 29.44% 25.52% 30.80%
Missing 280 74 206

Waist circumference (cm) 101.52 (14.66) 99.38 (13.97) 102.30 (14.83) <.001
Missing 370 69 301

Urinary creatinine (mg/dL) 104.80 (67.91) 107.46 (71.20) 103.88 (66.72) .4
Missing 139 44 95

Fish and seafood consumption in past 30 days .13
0 times 14.38% 15.61% 13.93%
1-3 times 33.68% 36.64% 32.61%
4þ times 51.94% 47.75% 53.46%
Missing 444 53 391

Estimated glomerular filtration rate (eGFR; ml/min/1.73 m2) <.001
eGFR< 60 21.33% 11.96% 24.52%
eGFR >¼ 60 78.67% 88.04% 75.48%
Missing 288 92 196

Missing data for education, DSST, smoking status, cotinine, alcohol consumption, waist circumference, and creatinine imputed prior to analyses.
aMean (SD); %; unweighted N.
bt-test adapted to complex survey samples; Chi-squared test with Rao & Scott's second-order correction.
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Discussion
In a large, diverse, and nationally representative sample of older 
adults (ages 60þ) in the United States, we investigated the cross- 
sectional relationship between chemical exposure biomarkers 
and cognition. We used an ExWAS framework to separately and 
systematically examine 147 chemicals. We observed that ele
vated levels of cotinine and tungsten were associated with lower 
cognitive measures and greater risk of cognitive impairment. On 
the other hand, we observed that higher biomarker concentra
tions of benzophenone-3, m-/p-xylene, and 2-methylhippuric 
acid were associated with higher cognitive scores. Similarly, 
PFOA and zinc were associated with lower risk of cognitive im
pairment. These hypothesis-generating findings broaden the 
landscape of chemicals for testing with neurodegenerative out
comes, and these chemicals may be modifiable preven
tion factors.

Our findings are consistent with the literature in several 
respects. We observed cotinine levels were associated with lower 
cognition. Cotinine itself is a nicotine metabolite that weakly 
activates nicotinic acetylcholine receptors.38 More broadly, cotin
ine is a biomarker with high sensitivity and specificity for recent 
(3-4 days) cigarette smoke exposure.39 Cigarette smoke exposure 
is well recognized as a risk factor for cognitive impairment and 
dementia, and cessation even in later life is preventative.5

Smoking in later life is estimated to account for 5% of dementia 
cases.5 In epidemiologic studies, it can be challenging to study 

the relationship between cigarette smoke exposure and dementia 
due to mortality from competing risks of other health effects 
such as lung cancer and cardiovascular disease that may occur 
at younger ages.40 Cigarette smoke is a complex exposure mix
ture of over 9500 compounds, including metals, gases, and par
ticulate matter.41 Particulate matter is well-replicated as a 
dementia risk factor.42,43 Inhalation of smoking-related com
pounds results in absorption and toxicity in the lungs. The lungs 
are also highly vascularized, and these compounds can have sys
temic vascular impacts, which can impact cognition.44 These 
compounds can also circulate in the bloodstream and cross the 
blood-brain-barrier for direct neurotoxic effects.45 Our findings 
related to cotinine and cognition align with the current toxico
logic and epidemiologic literature.

One of the new findings in our study is that elevated tungsten 
levels were associated with lower cognition. Tungsten is a dense 
metal that is widely used in industrial applications due to its 
thermal, electrical, and anti-corrosive properties.46 It replaced 
lead in bullets and is detected in environmental samples near 
military and mining sites.47 A primary occupational route of ex
posure is inhalation.47 Lung cell models have demonstrated 
tungsten toxicity with implications for tumorigenesis.48,49

Pulmonary, cardiometabolic, bone, and immune toxicity have 
also been noted with tungsten exposure.50 To date, little research 
has been conducted on tungsten neurotoxicity. A previous 
NHANES analysis (2011-2014, n¼888) of multiple metals and 
cognition observed log-transformed urinary tungsten levels were 

Figure 3. Heatmap of Spearman correlations between included chemical exposure measurements. Rows and columns indicate chemical exposures, 
grouped by families. The color of the cell indicates the Spearman correlation coefficient between the given pair of exposures, with red indicating a 
correlation closer to 1 and blue indicating a correlation closer to −1. A gray cell indicates no overlap between the participant samples for each 
exposure, meaning no correlation coefficient can be calculated.
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Figure 4. Volcano plot of associations between chemical exposures and Digit Symbol Substitution Test (DSST) scores among participants aged 60þ in 
the National Health and Nutrition Examination Survey (NHANES) cycles 1999-2000, 2011-2012, and 2013-2014. Beta coefficients of the chemical 
exposure are plotted on the x-axis and represent the difference in DSST score per 1-standard deviation increase of the log2-transformed exposure 
measure. The black vertical line indicates a beta coefficient of 0, representing no difference in DSST score. P-values are plotted on the y-axis on a −log10 

scale, so that P-values closer to 1 are at the bottom of the plot. The red horizontal line indicates the threshold of P¼ .05 and the blue horizontal line 
indicates the threshold of P¼ .01.

Table 2. Summary of survey-weighted linear regression models evaluating the association between chemical exposure biomarkers and 
digit symbol substitution test (DSST) scores, NHANES 1999-2000 and 2011-2014 (overall N¼4982), with P-values <.05.

Factor n β (95% CI) P-value (unadj) P-value (adj)

Metals
Methylmercury (ug/L) 2431 1.12 (0.21, 2.02) .03 .30
Blood mercury, total (ug/L) 2439 1.20 (0.39, 2.01) .01 .28
Antimony, urine (ng/mL) 1560 −1.54 (−2.85, −0.23) .03 .30
Cadmium, urine (ng/mL) 1549 −1.99 (−3.53, −0.46) .02 .29
Molybdenum, urine (ng/mL) 1549 −1.21 (−2.22, −0.21) .03 .30
Tungsten, urine (ng/mL) 1573 −1.34 (−2.11, −0.56) .002 .08

Per- and polyfluoroalkyl substances (PFAS)
Perfluorooctanoic acid, blood (ng/mL) 1384 1.56 (0.23, 2.89) .03 .30

Personal care and consumer product compounds
Benzophenone-3, urine (ng/mL) 1134 2.03 (0.96, 3.09) .002 .08
Methyl paraben (ng/mL) 1134 1.52 (0.22, 2.82) .04 .35

Pesticides
3-phenoxybenzoic acid (ug/L) 1047 1.42 (0.26, 2.58) .03 .30

Phosphate flame retardants (PFR)
Bis(1,3-dichloro-2-propyl) phosphate (ug/L) 957 1.31 (0.40, 2.23) .01 .28
Diphenyl phosphate (ug/L) 967 1.67 (0.43, 2.92) .02 .29

Smoking related compounds
Serum cotinine (ng/mL) 4687 −2.71 (−3.69, −1.73) 8.9 × 10−6 .001

Volatile organic compounds (VOC)
Blood 1,4-Dichlorobenzene (ng/mL) 1475 −1.48 (−2.77, −0.19) .04 .35
Blood m-/p-Xylene (ng/mL) 1442 1.68 (0.92, 2.43) 4.8 × 10−4 .03
2-Methylhippuric acid, urine (ng/mL) 1022 2.27 (1.00, 3.55) .003 .10
N-acetyl-s-(3-hydroxypropyl-1-methyl)-L-cysteine (ng/mL) 1068 1.94 (0.51, 3.37) .02 .29

Models adjusted for: age, sex, race/ethnicity, education, smoking status, serum cotinine, seafood consumption, NHANES cycle, and urinary creatinine (urinary 
measures only).
Chemical exposure, serum cotinine, and urinary creatinine were log2 transformed and z-score standardized.
P-values adjusted by controlling for the False Discovery Rate (FDR).
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associated with lower cognition on the Consortium to Establish a 
Registry for Alzheimer’s Disease (CERAD) immediate (−0.38 
points, 95% CI: −0.75, −0.01) and delayed (−0.19 points, 95% CI: 
−0.38, −0.004) recall tests.51 Because the CERAD test was only 
available in two NHANES waves, we elected to focus on the DSST 

measures. Nonetheless, the direction of tungsten association in 
this previous study is consistent with our findings.

The present ExWAS approach also discovered that higher con
centrations of certain biomarkers were associated with better cog
nition scores or lower prevalences of cognitive impairment. Some 

Figure 5. Volcano plot of associations between chemical exposures and mild cognitive impairment (MCI) among participants aged 60þ in the National 
Health and Nutrition Examination Survey (NHANES) cycles 1999-2000, 2011-2012, and 2013-2014. Relative risks (prevalence ratios) derived from 
modified Poisson regression models are plotted on the x-axis and represent a 1-standard deviation increase of the log2-transformed exposure measure. 
The black vertical line indicates a relative risk of 1, representing no association with MCI. P-values are plotted on the y-axis on a −log10 scale, so that P- 
values closer to 1 are at the bottom of the plot. The red horizontal line indicates the threshold of P¼ .05 and the blue horizontal line indicates the 
threshold of P¼ .01.

Table 3. Summary of survey-weighted modified Poisson regression models evaluating the association between chemical exposure 
biomarkers and binary mild cognitive impairment status, NHANES 1999-2000 and 2011-2014 (overall N¼4982), with P-values <.05.

Factor n Prevalence ratio (95% CI) P-value (unadj) P-value (adj)

Metals
Serum zinc (µg/dL) 1065 0.84 (0.75, 0.94) .007 .23
Urinary cadmium (ng/mL) 1549 1.15 (1.02, 1.29) .03 .54

Per- and polyfluoroalkyl substances
Perfluorooctanoic acid, blood (ng/mL) 1384 0.83 (0.73, 0.94) .006 .23

Phosphate flame retardants (PFR)
Bis(1,3-dichloro-2-propyl) phosphate, urine (ug/L) 957 0.82 (0.71, 0.96) .02 .48
Diphenyl phosphate, urine (ug/L) 967 0.82 (0.71, 0.95) .02 .42

Phthalates and plasticizers
Mono-benzyl phthalate, urine (ng/mL) 1647 1.15 (1.02, 1.29) .03 .51

Smoking related compounds
Serum cotinine (ng/mL) 4687 1.23 (1.14, 1.33) 1.5 × 10−5 .002

Volatile organic compounds (VOC)
Blood m-/p-Xylene (ng/mL) 1442 0.80 (0.71, 0.90) .002 .18
2-Methylhippuric acid, urine (ng/mL) 1022 0.81 (0.71, 0.93) .008 .23

Models adjusted for: age, sex, race/ethnicity, education, smoking status, serum cotinine, seafood consumption, NHANES cycle, urinary creatinine (urinary 
measures only).
Chemical exposure, serum cotinine, and urinary creatinine were log2 transformed and z-score standardized.
P-values adjusted by controlling for the False Discovery Rate (FDR).
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of these findings were unexpected, and we cannot rule out the pos
sibility that they occurred by chance. The findings for mercury and 
PFOA were not surprising as similar associations have been 
reported.52-56 One potential explanation is the presence of negative 
confounding. Fish consumption, a major source of methylmercury 
and PFAS,57,58 is also known to protect against memory loss and 
neurodegeneration.25 Kidney function is another critical factor as 
poor kidney function can influence biomarker concentrations.36

Poor kidney function has also been associated with worse cognitive 
function.37 To address the potential impact of these factors, we ad
justed for fish consumption and conducted a sensitivity analysis re
stricted to normal kidney function,24,57 but the associations 
remained unchanged. We were also surprised that well docu
mented neurotoxicants, such as lead,7 were not associated with 
cognition in our study. Perhaps the exposure timing in our study 
did not align with the window of susceptibility of lead exposure’s 
impacts on cognition, or the exposure distribution was too narrow 
to be adequately powered to detect an association. These findings 
require further investigation through a targeted approach using a 
carefully designed study.

Limitations of this study point to potential future directions. 
Most notably, the design was cross-sectional, meaning that the 
exposure and outcome were measured at the same time point. 
This limits our ability to understand the temporal sequence be
tween exposure and outcome and findings may be subject to re
verse causation. For example, while elevated chemical exposure 
levels may be risk factors for cognitive impairment, it is also pos
sible that prevalent cognitive impairment alters participant 
behaviors, which in turn alters chemical exposure levels. 
Findings from this cross-sectional discovery analysis will allow 
for future studies to examine a more targeted list of chemicals in 
a longitudinal or prospective design. In the ExWAS framework, 
chemicals are analyzed with the same structure in the parallel 
regression models. In our case, we elected to use a log-linear 
model, which is a common dose response curve in cognitive stud
ies. However, for a given chemical the true dose-response curve 
may differ (linear, exponential, etc.). Follow up studies of individ
ual chemicals may be able to explore additional model forms, 
which may better fit the specific data. Another potential limita
tion relates to the specificity of the DSST, which requires partici
pant vision, physical mobility, and coordination for completion. 
Lower scores on this DSST may not purely reflect cognitive func
tion but also other impairments. Further, though we accounted 
for several common confounders of exposures and cognition 
(smoking status, cotinine levels, fish consumption, kidney func
tion, alcohol consumption, waist circumference), it is still possi
ble that we have unmeasured confounding between exposures 
and cognition. We think this is particularly likely for chemicals 
whose exposure levels are associated with increased cognition, 
and for chemicals which these relationships do not have a bio
logic plausibility. Future studies of individual chemicals may be 
able to explore additional confounders, investigate mediators, or 
consider more in-depth stratified analyses.

In this study, we evaluated chemicals individually, though their 
exposure levels may be correlated, and they may occur in complex 
mixtures.59 Future analyses may consider mixtures analyses.60

Mixtures analyses were not implemented in the current paper be
cause the research question related to chemical discovery, which is 
more appropriately addressed in the ExWAS framework. Logistical 
considerations in this study also impeded the implementation of 
potential mixtures analyses, including minimal overlap of partici
pants across exposure measures (see grey regions in Figure 3). In 
the NHANES design, chemical measures are not measured on all 

participants. While our analyses captured all available participants 
with measures, for some chemicals, the analytic sample size was 
quite limited. It will be important to test for replication and meta- 
analyze with additional studies. Like many previous ExWAS analy
ses,17,61-64 an important limitation of our study is that the sample 
sizes for different biomarkers varied (377 for benzaldehyde to 4687 
for cotinine). This is because NHANES measured biomarkers using 
different techniques in different biospecimens. We may have had 
greater statistical power to detect associations for biomarkers with 
larger sample sizes than biomarkers with smaller sample sizes. We 
also note that statistical power in environmental epidemiology 
studies depends on several other factors beyond sample size, in
cluding the distribution (variability or prevalence) of exposure, the 
measurement error of the chemical, the half-life of the chemical, 
the magnitude of the association, and the diversity of the study 
sample.65 Thus, while we screened for associations using all avail
able current data, future studies may seek to further investigate 
even those chemicals which were not associated in the cur
rent study.

This study had key strengths. First, the study population was di
verse and nationally representative to the United States. This is im
portant for generalizability of findings. Analytically, we accounted 
for sample weights and clustering strategies. Second, the analysis in
cluded assessment of many chemicals from several chemical clas
ses. Examining a wide array of chemicals is important for hypothesis 
generation. These chemicals were all measured in either blood or 
urine using rigorous standards. Third, the cognition measure used in 
this study is broadly applicable and has been implemented in other 
settings, enabling comparability across studies. For greatest statisti
cal power we examined continuous cognition and for clinical transla
tion we examined cognition dichotomized by impairment status. 
Fourth, we used current ExWAS analytic standards to test and visu
alize associations and account for multiple comparisons.10 We also 
used multiple imputation approaches to account for missing data in 
covariate and outcome measures, so that we retained the largest 
possible sample size. Fifth, we performed several sensitivity analyses 
which improved the robustness of our findings, including restricting 
on kidney function status, as some chemicals are metabolized by re
nal tissues, influencing measured biomarker concentration levels. 
Together, this study advances the field of environmental epidemiol
ogy of cognition among older adults.

In summary, this study examined the independent relation
ships between 147 chemicals with cross-sectional cognition in a 
large and nationally representative sample of 4982 adults over 
age 60 in the United States. We confirmed previous observations 
that elevated levels of cotinine and cadmium are associated with 
lower cognition. Using this discovery approach, we also identified 
novel associations between tungsten and mono-benzyl phthalate 
and cognition. These findings can inspire new laboratory toxico
logic investigations as well as longitudinal epidemiologic studies 
to examine the windows of chemical susceptibility. This paper 
adds to a building scholarship on environmental risk factors for 
impaired cognition among older adults. Identifying environmen
tal contributors to Alzheimer’s disease and related dementias is 
part of the 2023 updated National Plan to Address Alzheimer’s 
Disease.66 Together, these studies offer opportunities for public 
health prevention through policy and practice to reduce chemi
cal exposures and disparities.
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