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ABSTRACT

Cardiovascular diseases (CVDs) are one of the most important causes of mortality 
worldwide, therefore the need of effective preventive strategies is imperative. Aging 
is associated with significant changes in both cardiovascular structure and function 
that lower the threshold for clinical signs and symptoms, making older people more 
susceptible to CVDs morbidity and mortality. 

microRNAs (miRNAs) modulate gene expression at post-transcriptional level and 
increasing evidence has shown that miRNAs are involved in cardiovascular physiology 
and in the pathogenesis of CVDs. 

Physical activity is recommended by the medical community and the cardiovascular 
benefits of exercise are multifactorial and include important systemic effects on 
skeletal muscle, the peripheral vasculature, metabolism, and neuroendocrine systems, 
as well as beneficial modifications within the myocardium itself. 

In this review we describe the role of miRNAs and their dysregulation in several 
types of CVDs. We provide an overview of miRNAs in CVDs and of the effects of 
physical activity on miRNA regulation involved in both cardiovascular pathologies 
and age-related cardiovascular changes and diseases.

Circulating miRNAs in response to acute and chronic sport exercise appear to 
be modulated following training exercise, and may furthermore serve as potential 
biomarkers for CVDs and different age-related CVDs. 

www.oncotarget.com                               Oncotarget, 2018, Vol. 9, (No. 24), pp: 17238-17254

INTRODUCTION

According to the report of Centers for Disease 
Control and Prevention and the National Health and 
Nutrition Examination Survey III in US, about 47% 
of deaths is due to cardiovascular diseases (CVDs) [1]. 
CVDs include several diseases such as hypertension, 
hyperlipidemia, coronary artery disease (CAD), congestive 

heart failure (CHF), stroke, cardiac hypertrophy (CH) and 
arrhythmia. Inactivity or a sedentary lifestyle is associated 
with increased cardiovascular events and premature  
death [2].

The average lifespan of the human population in 
so called developed countries is increasing worldwide, 
mostly because of declining fertility and increasing 
longevity. It has been predicted that, in 2035, nearly one 
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in four individuals will be 65 years or older [3] and the 
prevalence of CVDs increases dramatically in parallel 
with age i.e. there is a clear association between aging of 
the population and increasing incidence of CVD [4]. The 
prevalence of heart failure (HF) in the adult population in 
developed countries is 1–2%, which rises to >10% among 
persons 70 years or older [5].

Regular physical activity reduces several 
cardiovascular risk such as hypertension [6, 7] and 
diabetes mellitus [8]. Increased levels of physical activity 
and exercise are not only associated with a significant 
reduction in cardiovascular mortality and morbidity in 
later life [9, 10], but also have substantial impact on the 
“rate of aging” (healthspan) in the absence of disease [11].

Aging is associated with a significant decrease in 
physical activity and an increase in sedentary behavior 
(sitting time) that taken together further increase the risk 
of cardiovascular mortality and morbidity [12].

Evidence from many scientific studies shows that 
reducing these risk factors in parallel decreases the chance 
of heart attack or another cardiovascular event, such as a 
stroke and reduces the need of a coronary revascularization 
procedure [13]. Exercise promotes weight reduction and 
help lowering blood pressure. Exercise can reduce “bad” 
cholesterol levels in the blood (the low-density lipoprotein 
[LDL] level), as well as total cholesterol and can raise the 
“good” cholesterol (the high-density lipoprotein level 
[HDL]) [14]. The effect of permanent physical exercise 
on overall cardiovascular risk, when combined with 
other lifestyle modifications (such as proper nutrition, 
smoking cessation and appropriate medication use), can be 
fundamental [15] since physical fitness and level of regular 
exercise are closely related to cardiovascular health.

Large-scale epidemiological studies performed in 
healthy subjects and in patients with CVD demonstrated 
that low aerobic exercise capacity was a stronger 
predictor of mortality than other established risk factors 
[16–18]. Conversely, high physical activity levels and 
cardiorespiratory fitness were associated with low 
risk of CVD and mortality [16, 19]. It has also been 
demonstrated that cardiorespiratory fitness, measured as 
maximal oxygen uptake (VO2 max), is a good indicator 
of cardiovascular health [20, 21]. Levels of physical 
activity capable to increase cardiorespiratory fitness may 
therefore be one of the most important modifiable life-
style interventions indicated for preventing or controlling 
cardiovascular, metabolic and skeletal muscle diseases 
[22, 23]. In the heart, a pivotal feature of regular exercise 
training is improved systolic and diastolic function and 
larger cardiac output [24, 25]. The long term effects of 
exercise training includes cardiomyocyte shortening and 
rates of contraction-relaxation improvements, providing a 
cellular basis for a better organ function [26].

In contrast, CVD in general induces cardiac 
dysfunction with reduced ejection fraction and 
lower cardiac output, associated also with impaired 

cardiomyocyte contractile function [27]. Experimental 
studies suggested restored contractility and attenuated 
pathological growth as important cellular mechanisms for 
the beneficial effects of physical activity in HF [26, 28].

The identification of specific miRNAs has opened 
up a new field of investigation to understand the 
molecular mechanisms controlling gene expression also 
in cardiovascular development and diseases [29, 30]. 

In this review, we report an overview about the role 
and involvement of miRNAs in several CVDs and their 
implications for functional capacity in age-related CVDs.

We also highlight the benefits of exercise training on 
CVDs, the long-term effects of diverse exercise training 
modalities (e.g. running, cycling, resistance training) 
in the cardiac miRNA profile are properly addressed, 
including circulating miRNA profiles in aging-related 
CVDs suggesting their potential role as new therapeutic 
biomarkers in the cardiovascular field. 

miRNAs play pivotal roles in CVDs [31].
Several studies that postulate the relations between 

CH, hypertension and miRNAs have emerged. The 
miRNAs more frequently cited in cardiomyocytes studies 
are the miR-1, -133, -30, -21, -98, -378, -221, -22, -27, 
-212/132, -199 and -350 with several targets that are 
involved in the adaptive response of CH [32].

Changes in cardiac miRNA expression levels have 
been also associated with cardiac stress and development 
of cardiac hypertrophy due to pressure overload [33–35], 
myocardial infarction (MI) [36, 37] and also, in humans, 
end-stage HF [38–41]. 

We have focused on the description of main 
miRNAs involved in hypertension, hyperlipidemia, CAD, 
CHF, stroke, arrhythmias and CH.

miRNA expression in Hypertension

Several researches showed that miRNAs directly 
or indirectly influence hypertension. Sixty hypertensive 
patients and 29 healthy individuals were studied for 
assessment of miR-9 and miR-126 levels: both miRNAs 
were lowered in serum samples of hypertensive patients 
when compared to healthy control [42, 43].

Another study, found that 46 miRNAs were 
upregulated in serum samples of hypertensive 
patients compared with healthy individuals, among 
which 9 miRNAs were upregulated (i.e. human 
cytomegalovirus-miR-UL112, miR-605, miR-623, 
miR-let-7e, miR-516b, miR-600, kshv-miR-K12-6-
3p, miR-602 and miR-1252). Eighteen miRNAs were 
downregulated, such as for example miR-296-5p, miR-
133b, miR-625,miR-let-7a and miR-206 [44], miR-
1236 and miR-518b [42].

In a study it has been found that physical exercise 
may alter the expression of specific miRNAs targeting 
renin–angiotensin–aldosterone system (RAAS) genes. 
The RAAS system has a pivotal role in the pathogenesis 
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of hypertension [45, 46]. Its persistent and pathological 
activation can lead to alteration in blood pressure, 
cardiac contractility, electrolyte balance, as well as 
vascular resistance and tone [47]. Several studies indicate 
miRNAs, such as miR-206 and miR-126 (Table 1), to be 
intrinsically connected with all the components of this 
hormonal system [46]. Furthermore they demonstrated 
in the same study that decrease in miR-143 expression 
enhanced cardioprotective genes (such as NF-KB and 
apolipoprotein D (Apo D)) and decrease miR-27 which 
in heart is an inhibitor of angiotensin converting enzymes 
(ACE) [48]. The results imply that a decrease in miR-143 
could upregulate cardioprotective genes in the heart and an 
increase of miR-27 expression inhibits ACE levels. These 
results suggest that a basis for treatment to prevent the 
development of pathological left ventricular hypertrophy 
(LVH) might be the inhibition of specific miRNAs, with 
antisense miRNA or siRNA [48].

ACE catalyzes the conversion of angiotensin I (Ang 
I) in its bioactive form angiotensin II (Ang II), the main 
effector of RAAS [46]. ACE is a target of miR-143/145 
cluster (Table 1). Expression of this cluster was increased 
by shear stress in endothelial cells (ECs) via activation 
of adenosine monophosphate-activated protein kinase 
(AMPK) -p53 pathway, leading to a reduction in ACE 
gene expression [49]. Moreover, miR-143/145 expression 
was fundamental to maintain the contractile phenotype 
of vascular smooth muscle cells (VSMCs) in vitro and 
a regular blood pressure in vivo. Loss of miR-143/145 
led to an ACE enzyme overexpression and a shift from 
contractile to synthetic (i.e. synthesis of extracellular 
matrix (ECM)) phenotype of VSMCs, which increased the 
probability to develop neointimal lesions [50]. Synthetic 
VSMCs are characterized by increased proliferation 
and migration ability. These cells sustain the vascular 
remodeling occurring during hypertension [51].

Some miRNAs contribute to vascular remodeling 
which perpetuates hypertension [52], like miR-130a, 
which regulates vascular smooth muscle cells contributing 
to vascular remodeling in hypertension [53]. During 
the development of pulmonary arterial hypertension it 
has been shown that miR-22 and miR-30 levels were 
decreased whereas miR-322 and miR-451 were increased 
in hypoxic and monocrotaline model, that are rat models 
of pulmonary hypertension [31]. miR-30 is known to 
play a role in extracellular matrix remodeling in heart 
and is expressed in experimental model of other kind of 
hypertension such as pulmonary hypertension [54].

miRNA expression in Hyperlipidemia

A sedentary lifestyle, a nutrient poor diet and genetic 
predisposition often contributes to the development 
of altered lipid profile in the blood with resultant 
hyperlipidemia, an established risk factor for CVDs [55]. 
A regulation of miRNAs is critical for lipid homeostasis 

and prevention of CVDs induced by lipid overload (e.g. 
CAD) [55].

For example, miR-122 accounts for 70% of 
miRNAs in the liver, serves as a primary regulator of lipid 
biosynthesis and aberrant levels have been implicated 
in hyperlipidemia of patients with CAD [56, 57]. 
Pharmacological inhibition of miR-122 in mice and non-
human primates [58, 59] and genetic knockout of miR-122 
in mouse [60, 61], lead to a decrease in plasma cholesterol 
levels [62]. miR-122 plays an important role in the fatty 
acid metabolism: treatment with antisense oligonucleotides 
(ASOs) against miR-122 has been shown to prevent hepatic 
steatosis [59]. However, both whole body or liver specific 
miR-122 knockout mice were found to have enhanced 
susceptibility to hepatic steatosis [62]. The ability of 
miR-122 inhibition to lower cholesterol and reduce lipid 
accumulation in the liver suggests that anti-miR-122 
therapy may be a promising approach for the treatment of 
cardiovascular and other metabolic diseases [62]. 

Increased levels of miR-30c have been shown 
to reduce plasma lipids, due to decreased cholesterol 
secretion by targeting microsomal triglyceride transfer 
protein (MTP) [62]. Overexpression of miR-30c was 
found to reduce plaque formation in the atherosclerosis 
prone apolipoprotein E (Apo E) deficient mouse model, 
while inhibition of miR-30c caused severe hyperlipidemia 
and atherosclerotic plaque formation, thus suggesting that 
also miR-30c mimetics may be a promising therapeutic 
approach in patients at risk of CVDs [63]. 

miR-33 embedded in the sterol regulatory 
element binding protein 1/2 (SREBP1/2) genes, is a 
regulator of cholesterol homeostasis. Several studies 
have demonstrated that genetic ablation of miR-33 
enhances plasma HDL levels [64, 65] and promotes 
accumulation of atheroprotective M2 macrophages. 
Additional studies revealed that in non-human primates, 
pharmaceutical antagonism of miR-33 reduced very low 
density lipoprotein (VLDL) triglycerides by 50%, while 
plasma HDL levels increased by 40% at 12 weeks. The 
differential effects of miR-33 on HDL and VLDL are 
due to active depletion of the hepatocyte cholesterol 
pool by the ATP-binding cassette transporter (ABCA1) 
that export phospholipids and cholesterol outside cells to 
apolipoprotein A1 (Apo A1) yielding high levels of HDL. 
Therefore, cholesterol depletion resulted in attenuated 
VLDL secretion [66].

Overall these studies reveal that miRNAs are 
integrated in the complex genetic networks that regulate 
cholesterol homeostasis [62].

miRNA expression in CAD

Changes in cardiac miRNA expression levels 
have also been described in CVD patients. A few years 
ago, a randomized clinical trial study was conducted by 
Slagvold et al. (2014) demonstrating that remote ischemic 
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preconditioning (RIPC) preserves mitochondrial function 
and influences miRNA expression in atrial myocardium 
during coronary bypass surgery [67].

Several studies demonstrated that reduction 
of endothelial expressed miRNAs may be linked to 
atherosclerotic lesions within the vasculature of CAD 
patients [31, 54, 68, 69]. Smooth muscle-enriched miR-
145 are reduced in patients with CAD whereas cardiac 
muscle-enriched miRNAs, miR-133 and miR-208a, are 
further increased in patients with CAD [69]. Patients with 
CAD showed increased levels of miR-221 (Table 1) and 
miR-222 in endothelial progenitor cells (EPCs), and these 
miRNAs lead to mobilization of EPCs [31, 54, 68, 69]. 
Apart from direct regulating condition of CAD, miRNAs 
are involved indirectly as well, since it has been shown 
that oxidative stress defences in human EPCs are regulated 
by miR-21 (Table 1) [70].

miRNA expression in CHF

Goren et al. (2012) screened 186 miRNAs in 
serum of CHF patients. Four of them i.e. miR-423-
5p, miR-320a, miR-22 and miR-92b, were found to 
be increased in serum of HF patients and a significant 
association was revealed between the same miRNAs 
and prognostic parameters like elevated serum brain 
natriuretic peptide level and dilatation of the left 
ventricle and atrium [71]. 

Plasma from 12 CHF patients were compared with 
12 healthy subjects by using microarray method, which 
revealed expression of 108 miRNAs in CHF patients. 
Among these 108 miRNAs, miR-423-5p and miR-126 

were highly expressed in CHF. Decreased levels of miR-
107, miR-139 and miR-142-5p were also displayed in 
HF conditions. Cakmak et al. [72] have demonstrated 
the relationship between expression of miRNAs and 
electrocardiogram parameters related to left ventricular 
mass index (LVMI) in patients with CHF [43]. Results 
in this study demonstrated that 29 miRNAs were altered 
in CHF patients. Among these 29 miRNAs,miR-182, 
miR-200a-star and miR-568, were found to have inverse 
correlation with LVMI, whereas two miRNAs i.e. miR-
155 and miR-595 were found to have direct correlation 
with LVMI [43, 73].

By using microarray profiling method in CHF 
patients it has been shown upregulation of 18 miRNAs: 
i.e. miR-21, miR-4278, miR-650, miR744star and miR-
516-5p, and downregulation of 11 miRNAs: i.e. miR-129-
3p, miR-3155, miR-3175 and miR-583 [43, 73].

Identify these miRNAs was very significant in terms 
of clinical diagnosis suggesting that they could be used as 
potential biomarkers in CHF [74].

To explore the role of miRNAs in pathological 
cardiac growth and in HF, three miRNAs were studied 
by using transgenic mice. These studies have shown that 
miR-195 and miR-100 were upregulated whereas miR-92 
was downregulated [75] suggesting that different level of 
miRNAs can play a role in HF. 

miRNA expression in stroke

Stroke is responsible for 10% of deaths worldwide 
and is one of the leading causes of disability and miRNAs 
have to be included among stroke risk factors including 

Table 1: Summarized list of the most studied miRNAs in the described CVDs 

miRNA MAIN 
TARGET

GENOMIC 
LOCALIZATION CVDs MECHANISM 

OF ACTION REFERENCES

miR-21 EPCs, ERK/
MAP

chr17:59,841,266-
59,841,337

CAD, 
CHF, Stroke

Cardiac 
remodelling

Fleissner F et al., 2010;
Ali SS. et al., 2015

miR-27a ACE, CDK5 chr19:13,836,440-
13,836,517

Hypertension, 
Stroke,

Prediction of LV 
remodelling

Sepramaniam S et al., 
2014; 

Ali SS. et al., 2015
miR-126 RAAS, 

VCAM-1
chr9:136,670,602-

136,670,686
Hypertension, 
CHF, Stroke

Regulation 
vascular integrity 
and angiogenesis

Kontaraki JE et al., 
2014; 

Ali SS. et al., 2015;
miR-133a/133b Calcineurin, 

SGK1, IGFR1
chr18:21,825,698-

21,825,785
chr6:52,148,923-

52,149,041

Hypertension,
 CAD, CH

Cardiac 
development

Lew JK et al.,2017;
Ali SS. et al., 2015

miR-143/145 NF-KB, Apo 
D,

ACE

chr5:149,428,918-
149,429,023;

chr5:149,430,646-
149,430,733

Hypertension, 
CAD, Stroke

Macrophage 
differentiation and 

polarized activation 
processes

Fernandes T et al., 2011; 
Ali SS. et al., 2015

miR-221 EPCs chrX:45,746,157-
45,746,266

CAD, 
Stroke

Mobilization of 
ECs

Jamaluddin MS et al., 
2011; 

Ali SS. et al., 2015
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also hypertension, atherosclerosis, atrial fibrillation, 
diabetes and dyslipidemia [43, 76].

miRNAs like miR-21, miR-221 and miR-145 are 
known to be associated with the cardiovascular system 
(Table 1). On this basis, their levels were evaluated in 
serum samples of patients with stroke. Results in this 
study demonstrated that miR-21 and miR-222 were novel 
biomarkers of stroke but miR-145 were not [77]. 

By real-time PCR technique, levels of miRNAs 
were quantified in serum samples of 197 patients with 
ischemic stroke at interval of 24 h, of 1, 4 and 48 weeks. 
Fifty healthy volunteers were selected as control. Results 
showed that circulating levels of miR-301 and miR-126 
were downregulated whereas let-7b was upregulated in 
ischemic stroke patients up to 24 weeks. However, levels 
of these miRNAs were normalized 48 weeks after the 
symptom onset. The researchers concluded that miR-30a, 
miR-126 and let-7b can be employed as biomarkers of 
ischemic stroke [78].

Atherosclerosis is the major cause of ischemic 
stroke, either in carotid or intracranial artery [79]. The 
foam cells in the plaque are derived from the macrophages 
absorbing the oxidized LDL in which miRNAs play a 
role. In particular miR-126 could target the 3′ untranslated 
region (UTR) of vascular cell adhesion molecule 1 
(VCAM-1) and modulate its expression (Table 1) [80]. 
The VCAM-1 is expressed in the activated endothelial 
cells to promote the adhesion of macrophages to vascular 
endothelium which plays a role in the development of 
atherosclerosis [81].

Sepramaniam et al. [82] studied a panel of 32 
miRNAs blood miRNAs, among which a consistent 
upregulation of miR-125b-2, miR-27a, miR-422a, miR-
488 and miR-627 was found during ischemic stroke. 
Thus, it was concluded that these miRNAs possess 
a diagnostic value and reflects the onset of ischemic 
stroke. miR-27a is a direct target of cyclin-dependent 
kinase 5 (CDK5), which is predominantly expressed 
in the central nervous system (Table 1) [83]. CDK5 
protein is upregulated in acute ischemia in various 
stroke models [84] and plays crucial roles in neuronal 
survival and death. Thus upregulation of miR-27a 
expression upon acute ischemia could be a defense 
mechanism by the cells to control the translation of 
CDK5 molecules [82].

In a study, plasma levels of miR-107 and glutamate 
were elevated proportionally in patients with ischemic 
stroke. Hence, also miR-107 plasma level may act as a 
biomarker for monitoring citotoxicity in ischemic stroke 
patients [85].

miRNAs expression in Arrhythmias

Atrial fibrillation (AF) is the most common 
arrhythmia [86], especially among elderly populations, 

and is the end-stage manifestation of multiple pathological 
changes, including both structural and electrical 
remodeling [87]. A study demonstrated that miR-1 levels 
were markedly reduced (≈86%) in atrial tissue of patients 
with AF and a possible effect of miR-1 on in ward-rectifier 
K+ currents (IK1) was postulated [88]. Lu et al. [89] 
reported a 3.5-fold elevation of miR-328 levels in atrial 
samples of AF patients and furthermore demonstrated that 
the overexpression of miR-328 enhanced AF vulnerability 
and on the contrary knockdown of miR-328 reduced AF 
vulnerability in mouse models. miR-223 and miR-664 
were also elevated, miR-1 was unaltered. Despite this, 
miR-1 has also been implicated in the modulation of a 
wide variety of Ca2+ handling proteins [87] and has been 
linked to ventricular arrhythmias [65].

miRNAs expression in Cardiac Hypertrophy

Cardiac Hypertrophy (CH) is an important 
compensatory mechanism of the heart in response to diverse 
pathophysiological stimuli and the involvement of miRNAs 
in this pathological process is now recognized [90].

A number of miRNAs are found to be involved 
in CH in particular miR-1 and miR-133. Embryonic 
overexpression of miR-1 in vivo results in thin-walled 
ventricles, whereas miR-1 knockout mice display 
chambers with thickened walls [91]. miR-1 is down-
regulated at the onset of pressure overload on the heart 
at the beginning and progression of CH [92]. The 
cytoskeleton regulatory protein, twinfilin-1, is a target of 
miR-1 and reduction of miR-1 by hypertrophic stimuli up-
regulates twinfilin-1 which evokes hypertrophy through 
regulation of the cardiac cytoskeleton [44].

miR-133 has a critical role in determining 
cardiomyocyte hypertrophy since its overexpression 
inhibits hypertrophy whereas its suppression induces 
hypertrophy both in vitro and in vivo [93]. In both in 
vivo and in vitro models of CH miR-133 expression is 
down-regulated whereas calcineurin activity is enhanced 
[94]. In addition, these authors found that inhibition 
of calcineurin by cyclosporine A prevented the down-
regulation of miR-133 in CH. These results indicate that 
miR-133 and calcineurin are reciprocally repressed in CH. 
Moreover, another study indicated that miR-133a plays a 
role in diabetes-induced cardiomyocyte hypertrophy; miR-
133a down-regulation alters gene expression and mediates 
glucose-induced cardiomyocyte hypertrophy through 
Serine/threonine-protein kinase 1 (SGK1) and the insulin-
like growth factor 1 (IGFR1) (Table 1).

Care and colleagues assessed the role of cardiac 
miRNAs in the three murine models of CH: in all 
three models (pathological or physiological cardiac 
hypertrophy) both human miR-133 and miR-1 resulted in 
a reduced expression [95].
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SENESCENCE OF HEART AND 
VASCULAR TISSUE

Aging is associated with a progressive decline in 
several physiological processes, leading to an increased 
risk of health complications and diseases. Aging has a 
remarkable effect on heart and arterial system, increases 
CVDs including atherosclerosis, hypertension, MI and 
stroke [4].

Aging of cardiovascular tissues are exemplified by 
pathological alterations including hypertrophy, altered 
left ventricular (LV) diastolic function and diminished LV 
systolic reverse capacity, increased arterial stiffness and 
impaired endothelial function [3]. However, the health of 
the arterial and cardiac systems is not mutually exclusive, 
as each system greatly affects the other [4].

Heart rate is influenced not only by the loss of cells 
in the sinoatrial node (responsible for controlling heart 
rate) but also by structural changes in the heart, including 
fibrosis and hypertrophy, which slow the propagation of 
electric impulse throughout the heart [96].

A reduction in cardiac output due to functional 
decline with age stimulates the myocardium to activate 
compensation mechanisms by increasing muscle mass 
undergoing cardiac hypertrophy; however this may 
provide short-term enhancement of cardiac output, 
whereas the long-term effect of hypertrophy diminishes 
cardiac function [97].

Aging of the vasculature results in increased 
arterial thickening and stiffness as well as dysfunctional 
endothelium. Clinically, these changes result in increased 
systolic pressure and display major risk factors for 
development of atherosclerosis, hypertension, stroke and 
arterial fibrillation [97]. Vascular dysfunction associated 
with aging leads to a variety of age-related pathologies, 
including loss of adequate tissue perfusion (resulting in 
ischemia), insufficient vascular growth or regression 
(resulting in hypertension).

The heart undergoes complex changes during aging 
that result in affecting the cellular composition, marked 
by a decrease in absolute number of cardiomyocytes that 
is due to increased apoptosis and necrosis and a decrease 
in repopulation of cardiomyocytes from cardiac stem cell 
reserves [98].With age, cardiomyocytes become more 
susceptible to oxidative stress [99]. Measuring cardiac-
specific senescence, DNA damage, as well as levels of 
apoptosis, necrosis, and fibrosis in animal models of aging, 
will lead to a better understanding of the link between 
aging and CVD. 

miRNA in cardiovascular aging and age-
related CVDs

A number of miRNAs have been described to be 
differently expressed and to regulate different cell types 
and pathways during cardiac aging [100, 101]. It has 

been showed that cardiac miR-21 is upregulated with age 
and induces a profibrotic effect via ERK–microtubule-
associated protein (MAP) kinase pathway activation in 
cardiac fibroblasts (CFs) during aging (Table 1) [102].

Another miRNA involved in cardiac aging is 
miR-22. Age-related miR-22 upregulation contributed 
to accelerate CFs senescence and increased migration 
[103]. The effects of miR-22 in CFs were mediated by the 
proteoglycan mimecan/osteoglycin [103]. Interestingly, 
Mimecan/osteoglycin has been shown to regulate 
arteriogenesis, collagen fibrillogenesis in the ECM and 
cardiac hypertrophy [104]. Moreover, Gupta et al. [105] 
have recently suggested a role for miR-22 as an abundant 
and strong inhibitor of the cardiac autophagy process in 
aged cardiomyocytes. The inhibition of miR-22 stimulated 
cardiac autophagy, maladaptive remodeling and enhanced 
cardiac function post-MI in older mice, but not in younger 
ones [106]. miR-17-92 cluster has been widely shown 
to be involved in cardiac aging and recruits six mature 
miRNAs: miR-17, miR-18a, miR-19a, miR-19b, miR-20a, 
and miR-92a. It has been found that miR-18 and miR-19 
levels were decreased in an aged HF-prone mouse strain. 
These findings were also confirmed in human samples, 
and this is crucial since HF is a frequent comorbidity in 
elderly patients. Indeed these authors have shown that 
expression of miR-17–92 cluster changes with cardiac 
aging and associates with decreased miR-18a, miR-19a, 
and miR-19b expression in age-related remodeling in the 
heart [46]. 

miR-34a expression was significantly augmented 
in aged human hearts, in a mouse model of accelerated 
aging or post-MI [107]. The inhibition of miR-34a through 
gene deletion or antagomiR was able to reverse both 
postischemic and age-related cardiac dysfunction.

Circulating miRNAs in CVDs during aging

miRNAs are secreted in the extracellular space and 
are emerging as important molecules for paracrine and 
systemic communication between different cells, organs 
and systems. 

Thus, a combination of specific circulating miRNAs 
would be a valuable tool to estimate the age-related 
deterioration of different organs. Currently, geriatricians 
are using numerous clinical multidimensional indexes 
to identify frail elderly patients and to predict the risk 
of mortality [108]. Therefore, adding new circulating 
biomarkers like circulating miRNAs to the current 
geriatric ones would be definitely valuable. Circulating 
miRNAs have potential uses for the diagnosis and 
prognosis of many age-related CVDs; their levels have 
been related with different ages and some of them have 
been associated with the so called successful aging. 
At this regard, it has been shown that aging influences 
circulating levels of some miRNAs in animal models of 
physiological aging as well as in human elderly subjects 
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when compared to younger [109]. Analysis of circulating 
miRNAs found that miR-34b/c and miR-449 expression 
levels correlates with age [109].This finding is not 
surprising since miR-34 family members (miR-34a,-
34b, and -34c) have already been associated with cardiac 
dysfunction as well as Alzheimer’s disease both in animal 
models and humans [110]. Moreover, it has been shown 
that plasma levels of miR-146a, already associated with 
endothelial senescence, rise in aged normal mice, but are 
unchanged in dwarf mice that have increased life span 
[109, 111]. Interestingly, cardiac miR-21 has been also 
shown to be increased in a mouse model of aging [100]. 
However, increased levels of circulating miR-21 in aged 
patients would be almost partially due to its connection 
with MI/age-related cardiac dysfunction and cancer, 
frequent comorbidities in elderly [100, 112]. Remarkably, 
miR-181 was downregulated in peripheral blood of older 
subject and further reduced in age-matched patients with 
HF [46].

DOES PHYSICAL ACTIVITY MODIFY 
THE LEVELS OF CIRCULATING miRNA 
DETECTED IN CVDS?

Aerobic exercise training leads to a physiological, 
non-pathological LVH. However, in order to study the 
beneficial effects of exercise training (ET), a number 
of experimental strategies have been established, such 

as treadmill [26] and voluntary wheel running [113], 
swimming [113, 114] and resistance training (RT) (Figure 1)  
[115, 116].

These approaches have been applied to numerous 
animal models with various backgrounds. Most of the 
studies performed in rats and mice have been applied to 
continuous treadmill running, characterized by fixed or 
progressively increasing speed, inclination and duration 
during the session. 

Additionally, swimming is recognized for its 
efficiency in inducing myocardial hypertrophy and 
a significant increase in LV end-diastolic volume in 
rats [114]. Furthermore it has been demonstrated that 
swimming exercise-induces physiological cardiac 
hypertrophy related with the modulation of some 
miRNAs (rno-miR-21, rno-miR-124, rno-miR-144, and 
rno-miR-145) that target components of the PI3K/AKT/
mTOR signaling pathway (Pik3a, Pten and Tsc2) [117]. 
The studies described above collectively suggest that 
swimming ET in experimental animal models changes the 
cardiac levels of several miRNAs (miR-27a, -27b, -143, 
-29ac, and -126) (Figure 1) influencing a broad spectrum 
of targets, that are components of the RAS and Raf-1/
Erk1/2 pathways and associates with different phenotypes, 
tissue remodeling and angiogenesis. 

During the last few years a number of studies on 
circulating miRNAs in the bloodstream induced by 
both acute and chronic exercise have rised (Table 2)  
[118, 119]. Release of miRNAs into the circulation after 

Figure 1: Exercise training regulation on animal model cardiac miRNAs. Different training modalities (swimming exercise,  
resistance training, aerobic exercise training on motorized treadmill and voluntary running wheel) performed in animal models (mice and 
rats) up-or down regulate miRNAs expression in the blood stream.
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acute exercise is likely to be a result of exercise-induced 
tissue stress and/or damage. For instance, Baggish and 
colleagues [120] reported that vascular endothelial 
cells are capable of releasing high levels of both miR-21 
and miR-222 into the circulation immediately after acute 
exhaustive cycling exercise [121] (Table 2). As reported 
above, it has been demonstrated that miR-21 [112] and 
miR-222 are modified in MI and CAD pathological 
conditions [31].

These authors highlighted the rapid mobilization of 
circulating miRNAs in response to a cardiopulmonary 
exercise test, as they reported in the setting of acute 
exercise a rapid upregulation of miR-146a, miR-222, 
miR-21 and miR-221, followed by a return to the initial 
plasma levels after 1 h of rest in three of these circulating 
miRNAs (miR-146a, miR-222 and miR-21). As reported 
by Caruso et al. [54], miR-221 is modified in CAD.

Nielsen et al. [118] performed a screening for 
circulating miRNAs in young healthy men before and 
after an acute endurance exercise bout (60 min cycle 
ergometer exercise bout at 65% of maximal power (Pmax)) 
or following endurance exercise training (60–120 min/
section on cycle ergometer, 5 times/wk, 12 wks). These 
authors demonstrated that exercise training bout induces 
a dynamic regulation of miRNAs in the circulation. 
For instance, immediately after the acute exercise bout, 
miR-106a, miR-221, miR-30b, miR-151-5p, let-7i, 
miR-146, miR-652 and miR-151-3p were significantly 
downregulated in the circulation. They also have  
showed that chronic exercise training induces changes 
in a completely different set of miRNAs (such as miR-
139, miR-143, miR-223 and miR-330) in the circulation 
compared to an acute bout. It has been shown that miR-
30 level was modified in hypertension [31]. One hour 

after the acute bout, 5 miRNAs (miR-338-3p, miR-330-
3p, miR-223, miR-139-5p and miR-143) were found 
upregulated and after three hours only miR-1 remained 
increased. Likewise miR-139-5p was downregulated in 
HF, as well miR-143 levels in CH and also miR-223 levels 
were found in AF. 

A few studies have also reported changes in 
circulating miRNAs after long-term exercise training 
protocols. Baggish et al. [120] studied subjects that 
performed moderate-intensity endurance exercise training 
(rowing) for 3 months and reported the increase of basal 
levels of miR-21, miR-146a, miR-221 and miR-222. 
These results suggest that this increase reflects a training 
response to exercise. 

Uhlemann et al. [122] showed that the manner of 
exercise training is important for the miRNA-signature 
in the bloodstream. Whereas different protocols of 
endurance exercise training led to an acute increase in the 
endothelial-specific miR-126, resistance training caused 
an increase in the skeletal muscle-specific miR-133. About 
miR-133, it has been found modified in cardiovascular 
pathologies such as CAD and MI and miR-126 was found 
downregulated in stroke and hypertension and modified 
in MI and CHF. In another study, miRNAs levels were 
measured in serum samples from twelve healthy males 
performing a single resistance exercise session (bench 
press and leg press), consisting of five sets of 10 
repetitions at 70% of maximum strength, with a 1 min rest 
between each set. Three days after the exercise session the 
authors found increased levels of miR-149 and decreased 
levels of miR-146a and miR-221, suggesting that miRNA 
levels change in response to acute resistance exercise, 
and miRNAs may play important roles in resistance-
exercise-induced adaptation (Table 2). At variance, Aoi 

Table 2: Circulating miRNA expression changes induced by acute and chronic exercise 

Circulating miRNA (plasma)  
upregulated

Circulating  
miRNA (plasma) 
downregulated

Type  
of exercise References

miR-9, miR-133a, miR-133b, 
miR-139, miR-143, miR-
181b, miR-206, miR-208b, 
miR-214, miR-223, miR-330, 
miR-338, miR-485, miR-509, 
miR-517a, miR-518f, miR-
520f, miR-522, miR-553, 
miR-888

Let-7i, miR-30b, miR-106a, 
miR-146a, miR-151, miR-221, 

miR-652

Acute exercise Bye et al., 2013; Baggish et al., 
2011;

Nielsen et al. 2014;

miR-21, miR-146a, miR-221, 
miR-222

Acute and 
Chronic exercise

Aoi et al., 2013; Baggish et al., 
2014; Bye et al., 2013; Nielsen et 

al., 2014; Taurino et al., 2010
miR-20a, miR-103, miR-107, 
miR-126, miR-376a

let-7d, miR-16, miR-21, miR-25, 
miR-27a, miR-28, miR-148a, 
miR-185, miR-342, miR-766

Chronic exercise Nielsen et al. 2014; 
Aoi et al., 2013; 

The table summarize circulating miRNA (plasma) up-or down-regulated after acute or chronic exercise.
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and colleagues [123] found that miR-486 levels were 
significantly decreased following both acute and chronic 
exercise (Table 2).

Circulating miRNAs have also been the subject 
of study in marathon athletes [119, 124]. Fourteen male 
marathon runners were investigated for myomiRNAs 
and inflammation related miRNAs in the plasma before, 
immediately after and 24h after a marathon run [124]. It 
was found that miR-1, miR-133a, and miR-206 correlated 
to aerobic performance parameters, such as maximal 
oxygen uptake (VO2 max). Interestingly, miR-1 showed a 
moderate negative correlation with fractional shortening 
(the fraction of any diastolic dimension that is lost in 
systole) (whereas miR-133a was positively correlated 
with the thickness of intraventricular septum). Baggish 
and colleagues [119] evaluated the levels of miRNA in 
muscle (miR-1, miR-133a, miR-499–5p), cardiac tissue 
(miR-208a) and the vascular endothelium (miR-126), as 
well as those related to inflammation (miR-146a) in male 
marathon runners at rest, immediately after and 24 h after 
the race. All the measured miRNAs were found modified 
after the marathon, in particular miR-1, miR-133a, miR-
208a and miR-146a. 

More recently, it has been reported from the Munich 
Marathon Study that both elite and non-elite runners 
exhibited increased plasma levels of miR-30a immediately 
after a marathon. Interestingly, miR-1 and miR-133a 
plasma levels also increased but showed significant 
changes only in elite runners [77]. Plasma levels in elite 
runner correlate with left atrial diameter suggesting that 
circulating miRNAs could potentially serve as biomarkers 
of atrial remodeling in athletes [77].

A recent study by Bye et al. [125] reported 
that circulating levels of miR-210 and miR-222 were 
significantly higher in individuals with low VO2 max when 
compared to individuals with high VO2 max during exercise. 
Another study Baggish and colleagues [120] reported a 
positive correlation between the circulating levels of miR-
146a and VO2 max in 10 male athletic subjects.

Studies performed showed that ET decreases cardiac 
miR-208a expression in both healthy Wistar and obese 
Zucker rats, induces upregulation of targets as thyroid 
hormone receptor associated protein 1 (THRAP-1), Purβ 
and Sox6 and improves the balance between the cardiac 
α and β myosin heavy chain  (α-βMHC) gene expression 
[126]. miRNA-208a downregulation is involved in the 
increase in several targets that constitute a gene program 
to improve the contractile efficiency of the heart [127].

On the contrary miR-208 expression levels, they 
were found upregulated in CAD [128].

Another study by Taurino and colleagues [129] 
reported that long-term endurance exercise training 
(10 weeks) caused an increase in both miR-92a and miR-
92b circulating levels in patients with CAD and a decrease 
in hypertension suggesting that miRNA expression 
profiling in whole blood is a promising tool.

THE POTENTIAL ROLE OF miRNAs AS 
BIOMARKERS FOR CVDs

Single miRNAs have multiple targets and the 
modulation of single miRNA can influence an entire 
gene network [127]. In 2008 for the first time it was 
independently demonstrated by different groups [130, 
131] that miRNAs could be detected in blood and are 
also remarkably present in other body fluids like urine, 
cerebrospinal fluid, and saliva [132].

Several studies have since then shown that miRNAs 
can be secreted into the bloodstream by different organs 
including heart, vascular endothelial cells, skeletal muscle, 
liver and brain [123]. Evidence suggested that miRNAs 
are packaged in microparticles (exosomes, microvesicles, 
and apoptotic bodies) [133] or associated with RNA-
binding proteins (e.g., Argonaute 2) [134] or lipoprotein 
complexes (high-density lipoprotein) [135]. Some 
circulating miRNAs might just be products of ongoing 
physiological or pathological processes in tissue. 

Furthermore there is evidence indicating that specific 
circulating miRNAs may have important functions as 
intercellular communicators [136]. For instance, miRNA 
communication has been demonstrated between endothelial 
cells and endothelial apoptotic bodies, as well as between 
smooth muscle cells and cardiomyocytes [137, 138].

The discovery of miRNAs as promising new 
biomarkers in the field of CVD and CAD in particular has 
ignited great expectations. Interestingly, several studies 
have reported the association of changes in circulating 
miRNAs levels with particular physiological states such 
as with aging, physical activity, and pregnancy [139, 140]. 
miRNAs have emerged as promising clinical biomarkers 
of diseases [141]. It has been performed a prospective 
nested case-control study, in a 10-year observation 
period, and identified many circulating miRNAs (let-7d-
5p, let-7g-5p, miR-26a-5p, miR-29c-3p, miR-103a-3p, 
miR-106a-5p, miR-148b-3p, miR-151a-5p, miR-424-5p, 
miR-660-5p) that predict future fatal acute MI in healthy 
participants to the Nord-Trøndelag Health (HUNT) Study 
[77, 142].

miRNA quantification showed organ- and cell-
specific expression patterns of certain miRNAs in health 
condition [143] and in vitro findings suggest groups 
of miRNAs being specifically up or down regulated in 
different CVDs (CAD and MI) such as miR-1, miR-122, 
miR-126, miR-133a, miR-133b, miR-208a and miR-499 
[128]. In hearts of patients who died by MI, miR-1 was 
upregulated in myocardium as compared to infarcted 
tissue or healthy adult hearts [144]. miR-21 is upregulated 
in cardiomyocytes shortly after initiation of ischemia 
whereas before cell death its concentration decreases 
[145]. Levels of miR-126 were up regulated in the non-
infarcted areas after induced MI in rat hearts [146]. miR-
208 and miR-133 levels are upregulated in CAD.
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Stability in the circulation, tissue- and pathology-
specific regulation as well as high sensitivity and 
specificity suggest that miRNAs’ applicability as 
biomarkers for cardiovascular disease might even 
overcome protein-based biomarkers [147, 148].

The assessment of CVD risk supported by novel 
circulating biomarkers, such as miRNAs, is important 
to stratify individuals at high-risk, to optimize treatment 
strategies and to enhance our understanding of the 
underlying biology.

CONCLUSIONS

Emerging evidence suggests that miRNAs are 
likely to be important in the heart’s response to the 
physiological stress of exercise. Given the well-recognized 
cardiovascular benefits of exercise, elucidating the 
contribution of miRNAs to this response has the potential 
not only to reveal novel aspects of cardiovascular biology 
but also to identify new targets for therapeutic intervention 
that may complement those discovered through studies of 
cardiovascular diseases.

Aging is a complex phenomenon involving 
different systems and usually associated with several 
comorbidities. Indeed, we have described and summarized 
the main and specific miRNAs involved or altered in both 
cardiovascular and age-related pathologies.

The summarized results demonstrate that numerous 
miRNAs are released into circulation during and after the 
exercise and reflect the acute response to physiological 
stimuli. Moreover, the circulating miRNA expression 
pattern seems to be sensitive and specific for the type and 
intensity of exercise. 

The application of circulating miRNAs as 
biomarkers represents a potential additional scheme 
in disease diagnosis and prognosis complementary to 
established protein-based biomarkers.
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