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Abstract
Objectives Body tissue composition is a long-known biomarker with high diagnostic and prognostic value not only in cardio-
vascular, oncological, and orthopedic diseases but also in rehabilitation medicine or drug dosage. In this study, the aim was to
develop a fully automated, reproducible, and quantitative 3D volumetry of body tissue composition from standard CT exami-
nations of the abdomen in order to be able to offer such valuable biomarkers as part of routine clinical imaging.
Methods Therefore, an in-house dataset of 40 CTs for training and 10 CTs for testing were fully annotated on every fifth axial
slice with five different semantic body regions: abdominal cavity, bones, muscle, subcutaneous tissue, and thoracic cavity. Multi-
resolution U-Net 3D neural networks were employed for segmenting these body regions, followed by subclassifying adipose
tissue and muscle using known Hounsfield unit limits.
Results The Sørensen Dice scores averaged over all semantic regions was 0.9553 and the intra-class correlation coefficients for
subclassified tissues were above 0.99.
Conclusions Our results show that fully automated body composition analysis on routine CT imaging can provide stable
biomarkers across the whole abdomen and not just on L3 slices, which is historically the reference location for analyzing body
composition in the clinical routine.
Key Points
• Our study enables fully automated body composition analysis on routine abdomen CT scans.
• The best segmentation models for semantic body region segmentation achieved an averaged Sørensen Dice score of 0.9553.
• Subclassified tissue volumes achieved intra-class correlation coefficients over 0.99.
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Abbreviations
2D Two-dimensional
3D Three-dimensional
CT Computer tomography
GPU Graphics processing unit
HU Hounsfield units

L3 Third vertebra of the lumbar spine
PDF Portable document format
SAT Subcutaneous adipose tissue
TAT Total adipose tissue
VAT Visceral adipose tissue

Introduction

Thanks to advances in computer-aided image analysis, radio-
logical image data are now increasingly considered a valuable
source of quantitative biomarkers [1–6]. Body tissue compo-
sition is a long-known biomarker with high diagnostic and
prognostic value not only in cardiovascular, oncological, and
orthopedic diseases but also in rehabilitation medicine or drug
dosage. As obvious and simple as a quantitative determination
of tissue composition based on modern radiological sectional
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imaging may seem, the actual extraction of this information in
clinical routine is not feasible, since a manual assessment re-
quires an extraordinary amount of human labor. A recent
study has shown that some anthropometric measures can
be estimated from simple and reproducible 2D measure-
ments in CT using linear regression models [7]. Another
study showed that a fully automated 2D segmentation of
CT sectional images at the level of L3 vertebra into subcu-
taneous adipose tissue, muscle, viscera, and bone was pos-
sible using a 2D U-Net architecture [8]. The determination
of the tissue composition at the level of L3 is often used as
a reference in clinical routine to limit the amount of work
required for the assessment. However, even here, this is
only a rough approximation, since the inter-individual var-
iability between patients is large and the section at the level
of L3 does not necessarily have to be representative of the
entire human anatomy. Other dedicated techniques for an-
alyzing body composition using dual-energy X-ray absorp-
tiometry or magnetic resonance imaging exist [9] but re-
quire additional potentially time-consuming or expensive
procedures to be performed.

The aim of our study was therefore to develop a fully au-
tomated, reproducible, and quantitative 3D volumetry of body
tissue composition from standard CT examinations of the ab-
domen in order to be able to offer such valuable biomarkers as
part of routine clinical imaging.

Materials and methods

Dataset

A retrospective dataset was collected, consisting of 40 ab-
dominal CTs for training and 10 abdominal CTs for testing
(Table 1). The included scans were randomly selected from
abdominal CT studies performed between 2015 and
2019 at the University Hospital Essen. The indication of
the studies was not considered. According to the distribu-
tion of clinical studies in our department, more than 50%
should have been examined for oncological indications.
Each CT volume has a slice thickness of 5 mm and was
reconstructed using a soft tissue convolutional reconstruc-
tion kernel. The data was annotated with five different
labels: background (= outside the human body), muscle,
bones, subcutaneous tissue, abdominal cavity, and thoracic
cavity. For annotation, the ITK Snap [10] software (ver-
sion 3.8.0) was used. Region segmentation was performed
manually with a polygon tool. In order to reduce the anno-
tation effort, every fifth slice was fully annotated.
Remaining slices were marked with an ignore label, as
visualized in Fig. 1. The final dataset contains 751 fully
annotated slices for training and 186 for testing.

Network architectures

Many different architectural designs exist implementing se-
mantic segmentation, some utilizing pre-trained classification
networks trained on ImageNet; others are designed to be
trained from scratch. For this study, two different network
architectures were chosen for training, namely the commonly
used U-Net 3D [11] and a more recent variant multi-resolution
U-Net 3D [12]. The latter is shown in Fig. 2; however, U-Net
3D is very similar to residual path blocks replaced by identity
operations and multi-resolution blocks replaced by two suc-
cessive convolutions. In this case, volumetric data limits the
batch size to a single example per batch due to a large memory
footprint. Therefore, instance normalization [13] layers were
utilized in favor of batch normalization layers [14]. In the
original architectures, transposed convolutions were
employed to upsample feature maps back to the original im-
age size. However, transposed convolutions tend to generate
checkerboard artifacts [15]. This is why trilinear upsampling
followed by a 3 × 3 × 3 convolution was used instead, which is
computationally more expensive, but more stable during op-
timization. Additionally, different choices for the initial num-
ber of feature maps nf are evaluated: 16, 32, and 64. After each
pooling step, the number gets doubled, resulting in 256, 512,
and 1024 feature maps in the lowest resolution, respectively.

Training details

The implementation of network architectures and training was
done in Python using Tensorflow 2.0 [16] and the Keras API.
Nvidia Titan RTX GPUs with 24-GB VRAM were used,
which enable the training of more complex network architec-
tures when using large volumetric data.

Adam [17] with decoupled weight decay regularization
[18] was utilized, configured with beta_1 = 0.9, beta_2 =
0.999, eps = 1e-7, and weight decay of 1e-4. An exponentially
decaying learning rate with an initial value of 1e-4, multiplied
by 0.95 every 50 epochs, helped to stabilize the optimization
process at the end of the training. For selecting the best model
weights during training, fivefold cross-validation was used on
the training set and the average dice score was monitored on
the respective validation splits. Since the training dataset con-
sists of 40 abdominal CTs, each training run was performed
using 32 CTs for training and 8 CTs for validation.

During training, several data augmentations were applied in
order to virtually increase the unique sample size for training a
generalizable network. For example, in [11, 12, 19], it has been
shown that aggressive data augmentation strategies can prevent
overfitting on small sample sizes by capturing expectable vari-
ations in the data. First, random scale augmentation was applied
with a scaling factor sampled uniformly between 0.8 and 1.2.
Since this factor was sampled independently for both x- and y-
axis, it also acts as an aspect ratio augmentation. Second,
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random flipping was utilized to mirror volumes on the x-axis.
Third, subvolumes of size 32 × 256 × 256 were randomly
cropped from the full volume with size n × 512 × 512. During
inference, the same number of slices was used, but with x- and
y-dimension kept unchanged, and the whole volume was proc-
essed using a sliding window approach with a 75% overlap. To
improve segmentation accuracy, predictions for overlapping
subvolumes were aggregated in a weighted fashion, giving the
central slices more weight than the outermost.

Besides random data augmentations, additional pre-
processing steps were performed before feeding the image

data into the neural networks. Volumes were downscaled by
factor 2 to 128 × 128 on the x-/y-axes, retaining a slice thick-
ness of 5 mm on the z-axis. CT images are captured as
Hounsfield units (HU), which capture fine details and allow
for different interpretations depending on which transfer func-
tion is used to map HUs to a color (e.g., black/white).
Normally, when using floating-point values, the typical scan-
ner quantization of 12 bits can be stored lossless and a network
should be able to process all information without any prob-
lems. In this work, multiple HU windows [− 1024, 3071],
[− 150, 250], and [− 95, 155] were applied to the 16-bit integer

Table 1 Patient characteristics
and acquisition parameters of the
collected cohort

Training Test

Gender M(24), F (16) M (5), F (5)

Age (years) 62.6 ± 9.5 65.6 ± 11.4

Contrast Agent

i.v. Venoues Phase

oral Yes (28), No (12) Yes (9), No (1)

Convolution Kernel I30f (24) I31f (16) I30f (8), I31f (2)

CT Model

Siemens SIOMATOM Definition

AS 6 2

AS+ 2 1

Edge 31 1

Flash 1 1

CTDI Phanyom Type IEC Body Dosimentry Phantom

CTDI Volume (mGy) 7.27 ± 3.0 8.9 ± 3.5

Data Collection Diameter (mm) 500

Exposure (mAs) 167.2 ± 61.0 200.1 ± 65.1

Exposure Modulation Type XYZ_EC

Exposure Time (ms) 500

Reconstruction Diameter (mm) 389.0 ± 33.1 402.7 ± 24.0

Revolution Time (ms) 806.2 ± 88.5 831.8 ± 1.4

Single Collimation Width (mm) 0.6 (38), 1.2 (2) 0.6 (10)

Slice Thickness (mm) 5.0

Spiral Pitch Factor 0.6 (37), 1.2 (3) 0.6 (10)

Total Collimation Width (mm) 19.2 (6,) 38.4 (34) 19.2 (2), 38.4 (8)

Tube Current (mA) 211.4 ± 95.0 240.5 ± 78.0

Tube Voltage (kV) 100 (36), 120 (3), 140 (1) 100 (9), 120 (1)

Fig. 1 Exemplary annotation of
an abdominal CT, with
subcutaneous tissue (red), muscle
(yellow), bones (blue), abdominal
cavity (green), thoracic cavity
(purple), and ignore regions
(white)
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data in order to map to [0, 1] with clipping outliers to the
respective minimum and maximum values and stacked as
channels. Lastly, the network inputs were centered around
zero with a minimum value at − 1 and maximum value at + 1.

For supervision, a combination of softmax cross-entropy
loss and generalized Sørensen Dice loss [20] was chosen, sim-
ilar to [19]. Voxels marked with an ignore label do not contrib-
ute to the loss computation. Both losses are defined as below:

LXCE ¼ −
1

N
� ∑

N

n−1
∑
C

c¼1
yc;n � log byc;n

� �

LDice ¼ 1:0−
1

C−1
� ∑
c¼2

∑
N

n¼1
2 �byc;n � yc;n þ ϵ

∑
N

n¼1
byc;n þ yc;n þ ϵ

C stands for the total number of classes, which equals six for
the problem at hand. byc;n and yc,n represent the prediction
respectively groundtruth label for class c at voxel location n.

The background class is in this work explicitly not covered by
the dice loss in order to give the foreground classes more
weight in the optimization process. This choice is well known
for class imbalanced problems where the foreground class
only covers little areas compared with the background class.

The final loss is an equally weighted combination of both
losses:

LSV ¼ 0:5 � LXCE þ 0:5 � LDice

Tissue quantification

Various materials can be extracted from a CT by thresholding
the HU to a specific intensity range. For quantifying tissues,
the reporting system uses a mixture of classical thresholding
and modern semantic segmentation neural networks for build-
ing semantic relationships. During training, fivefold cross-
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Fig. 2 Schematic overview of the multi-resolution U-Net 3D architecture (red box: multi-resolution block; orange box: residual path block; green box:
upsampling block; blue arrow: max-pooling layer; black arrow: identity data flow)
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validation [21] was employed to measure the generalization
performance of the selected model configuration, which in the
end produced five trained model weights per configuration.
For inference, those five models were used to build an ensem-
ble system [21] by averaging the probabilities of all individual
predictions, which a common method for increasing the sta-
bility and accuracy of a machine learning model. The final
output of the quantification system is a report about subcuta-
neous adipose tissue (SAT), visceral adipose tissue (VAT),
and muscle volume. Muscular tissue is identified by
thresholding the HU between − 29 and 150 [22]. Adipose
tissue is identified by thresholding the HU between − 190
and − 30 [22]. If an adipose voxel is within the abdominal
cavity region, it is counted as VAT. If it is within the subcu-
taneous tissue region, it is counted as SAT. Automatically
subclassified tissue volumes were validated against the tissue
volumes derived from groundtruth annotations using the intra-
class correlation method on a slice by slice basis.

Results

Model evaluation

As described in the “Network architecture” and “Training
details” sections, two different network architectures with
the varying initial number of feature maps were systematically
evaluated using a fivefold cross-validation scheme on the
training dataset. The results are stated in Table 2 (additional
complementary evaluation metrics are available for the inter-
ested reader in Table A.1, A.2, and A.3). First of all, all net-
works delivered promising results with average dice scores
over 0.93. Second, multi-resolution U-Net variants achieved
constantly higher scores compared with their respective U-Net

counterparts. It is interesting to note that the improvements in
scores were small compared with the increase in trainable
parameters and thus required time to train and test the net-
works. A single optimization step took 294 ms, 500 ms, and
1043 ms on a NVIDIA Titan RTX for the initial feature map
count of 16, 32, and 64, respectively.

For visual inspection of the ensemble segmentations, a few
exemplary slices are shown in Fig. 3. Most slices show almost
perfect segmentation boundaries; however, especially the ribs
are problematic due to the partial volume effect. In 5-mmCTs,
it is even sometimes hard for human readers to correctly as-
sign one or the other region.

Ablation study

During model development, it was observed that the choice of
HU window has an impact on optimization stability and final
achieved scores. Therefore, a small ablation study was con-
ducted in order to systematically evaluate the influence of
different HU limits. Additional models were trained using
the same training parameters, but only with changed input
pre-processing. The results are stated in Table 3.

Increasing the HU intensity range consistently improves
dice scores. By combining multiple HU windows as separate
input channels, the dice scores can be even more improved to
over 0.95 dice score on average on both cross-validation and
test set. The lowest scores of 0.829 dice on average for cross-
validation and 0.875 for the test set were achieved by an ab-
dominal HU window ranging from − 150 to 250.

Tissue quantification report

As described in the “Tissue quantification” section, the seg-
mentation models are intended to be used for assigning

Table 2 Evaluation for the fivefold cross-validation runs (stated as mean overall runs) and ensemble predictions on the test set. AC, abdominal cavity;
B, bones; M, muscle; ST, subcutaneous tissue; TC, thoracic cavity

Dice score

Fivefold CV Model nf nparam AC B M ST TC Average

U-Net 3D 16 5.34 M 0.9509 0.9462 0.9266 0.9432 0.8823 0.9299

32 21.36 M 0.9669 0.9540 0.9379 0.9574 0.9336 0.9500

64 85.43 M 0.9682 0.9561 0.9403 0.9582 0.9481 0.9542

Multi-res U-Net 3D 16 5.82 M 0.9589 0.9484 0.9328 0.9531 0.9211 0.9429

42 21.24 M 0.9680 0.9554 0.9399 0.9596 0.9414 0.9529

64 85.10 M 0.9692 0.9564 0.9414 0.9605 0.9452 0.9545

Test set U-Net 3D 16 5.34 M 0.9609 0.9340 0.9229 0.9553 0.9172 0.9381

32 21.36 M 0.9731 0.9390 0.9309 0.9610 0.9598 0.9528

64 85.43 M 0.9739 0.9406 0.9316 0.9623 0.9641 0.9545

Multi-res U-Net 3D 16 5.82 M 0.9667 0.9355 0.9272 0.9593 0.9518 0.9481

32 21.24 M 0.9736 0.9409 0.9328 0.9627 0.9629 0.9546

64 85.10 M 0.973 0.9423 0.9334 0.9623 0.9652 0.9553
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thresholded tissues to different regions, which is technically a
logical conjunction. The achieved intra-class correlation coef-
ficients for the derived SAT, VAT, and muscle volumes mea-
sured per slice on the test set are 0.999, 0.998, and 0.991,
respectively (p < 0.001), and corresponding Bland-Altman
plots are shown in Fig. 4. In order to visually inspect the
quality of the tissue segmentation, a PDF report with sagittal
and coronal slices is generated, in conjunction with a stacked
bar plot showing the volumes of segmented muscle, SAT, and
VAT per axial slice (see Fig. 5). This is only intended to give
the human reader a first visual impression on the system out-
put. For analysis, an additional table with all numeric values
per slice is generated. The PDF file is encapsulated into
DICOM and automatically sent back to the PACS, in order
to make use of existing DICOM infrastructure.

Discussion

Our study aimed to develop a fully automated, reproducible,
and quantitative 3D volumetry of body tissue composition

from standard abdominal CT examinations in order to provide
valuable biomarkers as part of routine clinical imaging.

Our best approach using a multi-resolution U-Net 3D with
an initial feature map count of 64 was able to fully automati-
cally segment abdominal cavity, bones, muscle, subcutaneous
tissue, and thoracic cavity with a mean Sørensen Dice coeffi-
cient of 0.9553 and thus yielded excellent results. The derived
tissue volumetry had intra-class correlation coefficients of
over 0.99. Further experiments showed a high performance
with heavily reduced parameter counts which enables consid-
ering speed/accuracy trade-offs depending on the type of ap-
plication. Choosing the transfer function to map from HU to a
normalized value range for feeding images into neural net-
works was found to have a huge impact on segmentation
performance.

In a recent study, manual single-slice CT measurements
were used to build linear regression models for predicting
stable anthropometric measures [7]. As the authors suggest,
these measures may be important as biomarkers for several
diseases like e.g. sarcopenia, but could also be used where the
real measurements are not available. However, manual single-
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Fig. 3 Comparison of different
slices, their respective
groundtruth annotation, and
predictions of the ensemble
formed from five trained models
on cross-validation splits

Table 3 Evaluation of multi-
resolution U-Nets with nf = 32
trained on different mappings
from Hounsfield units to the
target intensity value range of [−
1, 1]. Multi-window stands for a
combination of theoretical value
range of 12-bit CT scans,
abdomen window, and liver
window. AC, abdominal cavity;
B, bones; M, muscle; ST,
subcutaneous tissue; TC, thoracic
cavity

Dice score

HU window AC B M ST TC Average

Fivefold CV Multi-window 0.9680 0.9554 0.9399 0.9596 0.9414 0.9529

[− 1024, 3071] 0.9561 0.9403 0.9217 0.9494 0.9254 0.9386

[− 1024, 2047] 0.9533 0.9410 0.9144 0.9412 0.9303 0.9360

[− 1024, 1023] 0.8731 0. 8778 0.7875 0.6959 0.8696 0.8208

[− 150, 250] 0.8598 0.8687 0.7632 0.7772 0.8759 0.8289

Test set Multi-window 0.9736 0.9409 0.9328 0.9627 0.9629 0.9546

[− 1024, 3071] 0.9682 0.9392 0.9261 0.9606 0.9532 0.9495

[− 1024, 2047] 0.9644 0.9331 0.9174 0.9560 0.9569 0.9455

[−1024, 1023] 0.9329 0.9002 0.8412 0.8879 0.9066 0.8938

[− 150, 250] 0.8950 0.8997 0.8004 0.8482 0.9311 0.8749
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slice CT measurements are still prone to intra-patient variabil-
ity and inter- and intra-rater variability. By using a fully auto-
mated approach, derived anthropometric measures from more
than a single CT slice should in theory be more stable.

Fully automated analysis of body composition has been
attempted many times in the past. Older methods utilize clas-
sical image processing and binary morphological operations
[23–25] in order to isolate the SAT and VAT from total adi-
pose tissue (TAT). Other studies use prior knowledge about
contours and shapes and actively fit a contour or template to a
given CT image [26–30]. Those methods are prone to varia-
tions in intensity values and assume certain body structures for
algorithmic separation between SAT and VAT. Apart from
purely CT imaging–based studies, there have been efforts to
apply similar techniques to magnetic resonance imaging
(MRI) [31–33]. However, MRI procedures are more cost
and time expensive than CT imaging in the clinical routine.
Specific MRI procedures exist for body fat assessment, but
have to be performed explicitly. Our approach can be used on
routine CT imaging and may be used as supplementary mate-
rial for diagnosis or screening purposes.

Recently, deep learning–based methods have been pro-
posed [8, 34]. In both studies, models were trained solely on
single L3 CT slices. However, Weston et al [8] visually
showed that their model was able to generalize for other ab-
dominal slices well without being trained on such data.
Nonetheless, they mentioned that extending the training and
evaluation data to the whole abdomen would be beneficial for
stability but also analysis capabilities. Our study uses annotat-
ed data for training and evaluation across the whole abdomen
and thus is a true volumetric approach to body composition
analysis. In addition, they segmented SAT and VAT directly,
whereas in our study, the semantic body region was segment-
ed and adipose tissue was subclassified using known HU
thresholds.

One major disadvantage of the collected dataset is the slice
thickness of 5 mm. Several tissues, materials, and potentially
air can be contained within a distance of 5 mm; the resulting
HU at a specific location is an average of all components. This
is also known as partial volume effect and can be counteracted
by using a smaller slice thickness, ideally with isometric voxel
sizes. However, a reconstructed slice thickness of 5 mm is
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Fig. 5 Final visual report of the tissue quantification system output. SAT is shown in red, VAT is shown in green, and muscle tissue is shown yellow

Fig. 4 Bland-Altman plot of SAT, VAT, and muscle volumetry with data points for every annotated slice in the test set
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common in clinical routine CT and it is questionable whether
the increased precision of calculating the tissue composition
on 1-mm slices would have clinical relevance. Nevertheless,
we plan to investigate the influence of thinner slices in further
studies, as the reading on thin slices is becoming routine in
more and more institutions.

Another limitation is the differentiation between visceral
fat and fat contained within organs. Currently, every voxel
with HU in the fat intensity value range, which is contained
within the abdominal cavity region, is counted as VAT.
However, per definition, fat cells within organs do not count
as VAT and thus should be excluded from the final statistics.
Public datasets like [35, 36] already exist for multi-organ se-
mantic segmentation and could be utilized to postprocess the
segmentation results from this study by masking organs in the
abdominal cavity.

It is quite common to find metal foreign objects like im-
plants in abdominal CTs and thus to encounter beam harden-
ing artifacts. Those artifacts, depending on how strong they
are, may affect the segmentation quality, as shown in Fig. 6.
Even if the segmentation model is able to predict the precise
boundary of the individual semantic regions, streaking and
cupping artifacts make it impossible to threshold fatty or mus-
cular tissue based on HU intensities potentially invalidating
quantification reports. In a future version of our tool, we are
therefore planning functionality for automatic detection and
handling of image artifacts.

In future works, we plan to extend the body composition
analysis system to incorporate other regions of the body as
well. For example, [24] already showed an analysis of adipose
tissue and muscle for thighs. Ideally, the system should be
capable of analyzing the whole body in order to derive stable

biomarkers. Furthermore, an external validation is required in
order to prove the stability and generalizability of the devel-
oped system. This includes data from different scanners as
well as a large variety of body composition cases.

Conclusion

In the present study, we presented a deep learning–based, fully
automated volumetric tissue classification system for the ex-
traction of robust biomarkers from clinical CT examinations
of the abdomen. In the future, we plan to extend the system to
thoracic examinations and to add important tissue classes such
as pericardial adipose tissue and myocardium.
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Fig. 6 Beam hardening artifacts
may not only harm segmentation
quality (top) but also prevent
accurate identification of tissues
(bottom). Strong beam hardening
artifacts with faults in the
segmentation output (left). Beam
hardening artifacts with mostly
accurate segmentation, but
streaking artifacts prevent
accurate muscle and SAT
identification (middle). No beam
hardening artifacts at all, but
metal foreign object
detected (right)
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Methodology
• retrospective
• diagnostic or prognostic study
• performed at one institution
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