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A typical genome-wide association study (GWAS) analyzes millions of single-nucleotide
polymorphisms (SNPs), several of which are in a region of the same gene. To conduct
gene set analysis (GSA), information from SNPs needs to be unified at the gene level. A
widely used practice is to use only the most relevant SNP per gene; however, there are
other methods of integration that could be applied here. Also, the problem of
nonrandom association of alleles at two or more loci is often neglected. Here, we
tested the impact of incorporation of different integrations and linkage disequilibrium
(LD) correction on the performance of several GSA methods. Matched normal and
breast cancer samples from The Cancer Genome Atlas database were used to
evaluate the performance of six GSA algorithms: Coincident Extreme Ranks in
Numerical Observations (CERNO), Gene Set Enrichment Analysis (GSEA), GSEA-
SNP, improved GSEA for GWAS (i-GSEA4GWAS), Meta-Analysis Gene-set
Enrichment of variaNT Associations (MAGENTA), and Over-Representation Analysis
(ORA). Association of SNPs to phenotype was calculated using modified McNemar’s
test. Results for SNPs mapped to the same gene were integrated using Fisher and
Stouffer methods and compared with the minimum p-value method. Four common
measures were used to quantify the performance of all combinations of methods.
Results of GSA analysis on GWAS were compared to the one performed on gene
expression data. Comparing all evaluation metrics across different GSA algorithms,
integrations, and LD correction, we highlighted CERNO, and MAGENTA with Stouffer
as the most efficient. Applying LD correction increased prioritization and specificity of
enrichment outcomes for all tested algorithms. When Fisher or Stouffer were used with
LD, sensitivity and reproducibility were also better. Using any integration method was
beneficial in comparison with a minimum p-value method in specific combinations. The
correlation between GSA results from genomic and transcriptomic level was the
highest when Stouffer integration was combined with LD correction. We thoroughly
evaluated different approaches to GSA in GWAS in terms of performance to guide
others to select the most effective combinations. We showed that LD correction and
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Stouffer integration could increase the performance of enrichment analysis and
encourage the usage of these techniques.

Keywords: gene set analysis, genome-wide association study, statistical integration, single-nucleotide
polymorphism, linkage disequilibrium correction

INTRODUCTION

Genome-wide association study (GWAS) is a high-throughput
molecular biology technique, which gives insight into
understanding the relation of single-nucleotide polymorphism
(SNP) frequency and other types of genetic variations with
particular traits. In recent years, GWAS reveals plenty of
genetic locations related to common diseases, e.g., type 2
diabetes (Billings and Florez, 2010), Alzheimer disease
(Marioni et al., 2018), or many types of cancer (Sud et al.,
2017). Despite the promising outcomes, the biological
functions of many genetic variation loci remain unclear, and
the genetic mechanisms of phenotypes are not systematically
explained. Yet, the GWAS is still an important tool used to
understand the biological mechanisms of different diseases
(Wijmenga and Zhernakova, 2018). One of the bioinformatic
techniques, which can extend the amount of information from
single genetic variations and their impact on the biological
systems, is gene set analysis (GSA), and the importance of
such a solution has been recently noticed (Wang et al., 2007;
Holden et al., 2008; Hirschhorn, 2009; Zhang et al., 2010; Weng
et al., 2011; de Leeuw et al., 2015; Mei et al., 2016; Sud et al., 2017;
Yoon et al., 2018; Maleki et al., 2020).

The GSA allows summarizing the results of association with
phenotype from individual gene level to gene set level, also known
as pathway level. Using this concept, it is possible to detect the
aggregated impact of multiple genes on phenotype, even when the
individual gene has moderate or small effect on the investigated
trait. In addition, applying GSA increases understanding of
changes observed in complex biological mechanisms under
various conditions. Within the last decade of gene set analysis
method development, many algorithms were introduced [just to
mention a few: GSEA (Subramanian et al., 2005), PADOG (Tarca
et al., 2012), SPIA (Tarca et al., 2009) or LEGO (Dong et al.,
2016)] and can be classified by their generation (Khatri et al.,
2012; Zyla et al., 2017), hypothesis tested (Maciejewski, 2014), or
application for a particular omics platform (Das et al., 2020).
First, algorithms were created to analyze the gene expression data
from microarray experiments, but with rapid advancement in
molecular biology techniques, they became widely applied in
other omics, resulting in growth of bioinformatic tools, which
perform multi-omics gene set analysis (Canzler and
Hackermüller, 2020; Kaspi and Ziemann, 2020). Application of
GSA techniques to dissimilar omics data is associated with
different problems. In the analysis of GWAS results, the key
issue is how to transform the observed genetic variation into gene
level. One of the most used techniques is to choose the SNP with
the strongest association (minimum p-value) to represent a gene
(Wang et al., 2007; Zhang et al., 2010). The minimum p-value
approach may not be an optimal solution as it favors long genes

with many SNPs measured, where obtaining stronger association
is more likely compared with shorter ones. Thus, some
adjustments were introduced to correct this effect, e.g.,
adaptive p-value combination of p-values (Yu et al., 2009),
selecting representative SNPs for each gene (Weng et al.,
2011), or correction of smallest p-value due to some factors,
like no. of SNPs per kb, gene size, and linkage disequilibrium
units per kb (Segrè et al., 2010). Other aggregation techniques,
like Fisher integration, second minimum p-value, or application
of Simes’ p-value adjusted for the number of SNPs were also
proposed (Mei et al., 2016). However, the authors applied those
approaches only to the oldest gene set analysis method based on
hypergeometric test [over-representation analysis (ORA)]. Also,
they performed only basic evaluation, concentrating mostly on
detecting target pathways for the analyzed dataset without
looking at false positives. Recently, a new method of GSA in
GWAS was introduced and compared with other methods by
Type 1 error control and statistical power (Yoon et al., 2018; Sun
et al., 2019), but without testing different integration methods or
SNP dependency correction. Finally, there are solutions where the
problem of aggregation from genome to transcriptome level was
neglected, e.g., MAGMA (de Leeuw et al., 2015) or GSEA-SNP
(Holden et al., 2008).

Even though GSAmethods have been used for over a decade
in omics data analysis, there still exist many challenges in this
research field (Maleki et al., 2020). The knowledge about GSA
algorithm efficiency was widely updated in several
publications (Mitrea et al., 2013; Tarca et al., 2013; Maleki
et al., 2019; Nguyen et al., 2019; Zyla et al., 2019; Geistlinger
et al., 2021; Xie et al., 2021). Yet, those studies concentrated on
enrichment methods dedicated to gene expression data
measured with microarrays or RNA sequencing (RNASeq)
technologies, and the overall performance of GSA
algorithms in other omics is still not known. In this work,
we focused on two major difficulties that occur during
applying GSA in GWAS studies. The first goal of the study
was to test the impact of aggregation of phenotype association
test results from SNP to gene level, which is then transformed
to gene set level. For this purpose, three statistical integration
techniques were tested in a variety of GSA algorithms. The
second goal was to investigate the impact of linkage
disequilibrium (LD) control in the process of SNP
information aggregation. These two GSA extensions were
tested in combination with six gene set analysis methods.
Each tested combination of algorithms was evaluated in
terms of sensitivity, specificity, prioritization, and
reproducibility of gene set analysis. Furthermore, the
relation of GSA GWAS results to those obtained on gene
expression data was investigated using the same collection
of patient samples. Finally, all tested GSA algorithms,
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integration techniques, and LD correction were implemented
in R package intGSASNP (integrative GSA for SNP).

MATERIALS AND METHODS

Data
Data from Affymetrix Genome-Wide Human SNP Array 6.0
platform served for SNP genotyping. Affymetrix SNP 6.0
microarrays include over 906,600 SNPs and over 946,000
probes for copy number variation detection (Affymetrix,
2021). All files are part of The Cancer Genome Atlas (TCGA)
Breast Invasive Carcinoma collection (Berger et al., 2018) and
were downloaded in CEL format from the Genomic Data
Commons (GDC) Legacy Archive. Only white female breast
cancer patients were selected for the study. For all individuals,
data for both primary tumors and solid normal tissues were
available.

Subsequently, Illumina paired-end RNA sequencing data were
used for the same patients and the same samples (both tumor and
normal) as in the case of SNP genotyping. All data files were
downloaded from GDC Data Portal as HTSeq-counts. GDC
previously preprocessed raw sequencing data according to the
bioinformatics pipeline available from GDC Documentation
(NCI Genomic Data Commons, 2021).

Consequently, 83 white females were considered. For all of
them, RNASeq and SNP microarray results were available for
both tumor and normal tissue fresh frozen specimens, which
summed up to 166 samples. Hence, all individuals were matched
in terms of sample and experiment types. Specimens were
collected at five different centers (tissue source sites)
participating in TCGA Breast Invasive Carcinoma project. All
patients were labeled with a breast cancer subtype as previously
described (Marczyk et al., 2019; Marczyk et al., 2020). The
summary of breast cancer subtypes, source center, and patient
ethnicity is presented in Supplementary Table S1.

Single-Nucleotide Polymorphism Data
Analysis
For each genotyped SNP, genome location and relation to
transcriptomic function were mapped using the ENSEMBL
human genome database, v80 (May 2015; http://may2015.
archive.ensembl.org; biomaRt R package) (Cunningham et al.,
2015). During the process of quality control, multiple SNPs were
filtered out due to minor allele frequency (MAF; lower than 5%
removed) and Hardy–Weinberg equilibrium (HWE; p-value <0.
05). Next, only SNPs that are located within the range of 5 kb
upstream and 5 kb downstream of the gene were selected. The
selected boundary is much narrower in comparison with other
studies [e.g., (Segrè et al., 2010; Zhang et al., 2010)], but here, we
wanted to reflect the strongest association to possible changes in
gene expression. These steps reduced the initial number of SNPs
from 905,176 to 240,799. Finally, to compute the association
between genotypes and phenotype (breast cancer vs. healthy
tissue) under genotype genetic model (AA/AB/BB) with the
paired design, the multinomial exact test (extension of

McNemar’s test) was performed with 100,000 Monte Carlo
permutations using rcompanion R package (Mangiafico, 2016).
This method does not allow introducing additional covariates in
the analysis. As the collected samples come from white females
only, the distributions of other biases between healthy and cancer
tissue samples are the same due to the paired design of the
experiment. Thus, the calculated model was not adjusted for
other covariates.

In most cases, to perform GSA using SNP-level data, a single
value per gene is needed. Thus, association results for SNPs
within the same transcript need to be integrated into one
representative value. Three different techniques for test result
integration were applied. Currently, the most commonmethod in
GSA GWAS is to take the minimum p-value for SNP i, which falls
within the gene g boundaries:

p − valuegene � min
i∈g

{p − valueSNP} (1)

The second integration technique evaluated here was Fisher’s
probability integration (Fisher, 1925), which calculates the sum of
the natural logarithm from k SNP p-values, which fall within the
same gene g boundaries:

Fgene � −2∑k

i�1 ln(p − valuei) ∼ χ2(2k) (2)

The calculated F statistic per gene, Fgene, follows chi2

distribution with 2*k degrees of freedom.
The last statistical integration approach used was the Stouffer

method, also known as z-transformation-based integration
(Stouffer, 1949). For k SNPs, which fall within the same gene
g boundaries, Zi statistic is first calculated using inverse normal
cumulative distribution function (ϕ−1) for each i-th SNP. Then
the integrated Z statistic per gene, Zgene, which follows standard
normal distribution is calculated.

Zi � ϕ−1(p − valuei) (3)

Zgene � ∑k
i�1 Zi�
k

√ ∼ N(0, 1) (4)

Next, for the integrated p-values, the dependency correction
due to LD was applied. The commonly used approach for LD
correction requires calculations of r2 or D′ score. Here, the
modification of Dunn–Sidak correction for multiple testing
was used instead. As was shown in Saccone et al. (2006),
approximately 50% of the SNPs within chromosomes are in
high LD; thus, the exponent of Dunn–Sidak was modified as
follows:

p − valuecorr � 1 − (1 − p − valuegene)
k+1
2 (5)

where k is the number of SNPs located within gene g. This
method of introducing LD correction was proposed by Saccone
et al. (2007) and allows for running enrichment analysis even for
very limited genotyping data consisting only of two elements:
SNP rs number and the result of the association test. Moreover, it
was shown that the method is comparable, or slightly better than
the regression method of GWAS integration p-value with
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correction due to SNPs per kb, gene size, recombination hotspots,
linkage disequilibrium units per kb, or genetic distance (Segrè
et al., 2010). Each integration approach with or without
dependency correction was tested in terms of effectiveness in
GSA in GWAS.

Enrichment Algorithms for
Single-Nucleotide Polymorphism Data
Several GSA algorithms dedicated to GWAS are based on p-value
integration to move from SNP to transcriptome level (Das et al.,
2020). From this group, the algorithms based on the Gene Set
Enrichment Analysis (GSEA) method, mostly used in
transcriptomic analysis (Subramanian et al., 2005), were selected.

The basic concept of GSEA is to estimate the enrichment score
(ES) by calculating maximum absolute deviation between Phit
(normalized metric of genes within gene set S) and Pmiss

(normalized metric for genes outside gene set S). The ES
distribution is calculated for j-th gene g in gene set S at the
i-th position by modified Smirnov–Kolmogorov statistic using
the following formulas:

Phit(S, i) � ∑ gj∈S
j≤ i

∣∣∣∣rj
∣∣∣∣

NR
(6)

NR � ∑ gj∈S

∣∣∣∣rj
∣∣∣∣ (7)

Pmiss(S, i) � ∑ gj ∉ S
j≤ i

1

(N −NH) (8)

Here, as a rank r, the negative value of base 10 logarithm of
p-value was taken [−log10(p-valuegene)]. N is the total
number of genes, and NH represents the number of genes
in the gene set S, and NR is the sum of ranks of genes within
gene set S.

The next algorithm used was GSEA-SNP (Holden et al., 2008),
which is a simple modification of the standard GSEA approach.
In this method, instead of integrating SNP association to
transcriptomic level, the p-values of all SNPs are taken to
calculate rank r parameter [−log10(p-valueSNP)]. Moreover,
in GSEA-SNP, the SNP label permutation test is performed to
assess significance of each gene set, while for GSEA, the gene
label permutation is applied. In both GSEA and GSEA-SNP,
the ES metric is adjusted for variation in gene set size by
dividing the observed ES by the mean of permutated ES with
the same direction giving normalized enrichment
score (NES).

The third algorithm was i-GSEA4GWAS (improved GSEA for
GWAS) (Zhang et al., 2010). This method has two main
modifications compared with the standard GSEA: 1) Instead
of gene label permutation, the SNP label permutation is
performed, and then integration of p-values from SNP
association test is executed. 2) The NES is substituted by
significance proportion-based enrichment score (SPES). The
SPES is multiplication of ES by ratio k/K, where k is the
proportion of significant genes (mapped to 5% of the top
SNPs) of the gene set S, and K is the proportion of significant

genes (mapped to 5% of the top SNPs) of the total genes in the
study (Zhang et al., 2010). According to the authors, SPES
emphasizes the total significance coming from a high
proportion of significant genes.

The fourth algorithm was MAGENTA (Meta-Analysis Gene-
set Enrichment of variaNT Associations) (Segrè et al., 2010),
where gene set significance is estimated as follows: 1) p-Values
from SNP to gene level were integrated. 2) For each gene set, the
number of gene p-values within a gene set lower than the cut-off
(leading edge fraction) was calculated. The cutoff is a p-value of a
specific percentile of all gene p-values (here set to the 75th
percentile and marked as MAGENTA75), 3) to calculate the
distribution of leading edge fraction with the permutation
approach. In each permutation, the mock gene set is drawn as
its leading edge fraction is collected. Finally, to assess the gene set
significance, the number of permutation leading edge fractions
equal or larger than the observed one for a particular gene set is
estimated and divided by the number of permutations. All
algorithms described above are modifications of GSEA
approach and test competitive null hypothesis.

Two other algorithms were added to this list: ORA (over-
representation analysis) (Tavazoie et al., 1999) and CERNO
(Coincident Extreme Ranks in Numerical Observations)
algorithm (Zyla et al., 2019). Both are designed for
transcriptome data analysis but can be easily used in GWAS
problems. ORA is the first-generation method, which estimates
gene set significance via hypergeometric test using information
about the number of differentially expressed genes (DEGs) and
background genes within and outside the gene set. The CERNO
method ranks genes from 1 to N (total analyzed genes), where
rank 1 is given to the gene with the lowest p-value (here p-value
from integration of SNP association). Next, the given ranks are
divided by N, and the Fisher probability integration is performed
for all genes within the gene set.

RNASeq Data Analysis
Genes that were not represented in SNP data or with no counts
within all samples were removed prior to analysis (15,924 genes
left). DESeq2 R package (Love et al., 2014) was used to find genes
with different expressions between normal and cancer samples,
including the paired nature of the data. Pathway enrichment
analysis with the GSEA method was performed using the fgsea
package in R (Korotkevich et al., 2019) on the same set of
pathways used in SNP data analysis. Test statistic from the
DESEq2 package was used as a gene rank value r in GSEA to
retain information about directionality of expression change on
pathway level.

Evaluation of Enrichment Algorithms
The brief evaluation pipeline is presented in Figure 1. All
described gene set enrichment algorithms were run with three
different integration approaches (minimum, Fisher, and Stouffer)
and with and without dependency correction for LD. Four
metrics were calculated to evaluate the algorithms: sensitivity,
specificity, prioritization, and reproducibility (Zyla et al., 2019).
Sensitivity represents detection of target gene sets for a particular
phenotype. Specifically, gene set p-values are collected, and the
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proportion of truly alternative hypotheses (1 − π̂) is calculated
with Storey’s method (Storey, 2002). Prioritization represents
median ranks of target pathways in all analyzed gene sets.
Specificity represents deviation of mean false-positive rate
(FPR, observed level) from 5% (expected level). Specifically,
FPR is the proportion of significant gene sets (p < 5%) among
50 permutations of the original phenotype. Reproducibility is the
area under the curve (AUC) from the function of common
detected gene sets across five or six data sets of the same
phenotype at different cutoffs (Zyla et al., 2019). All used
metrics were previously applied in transcriptomic data GSA
(Tarca et al., 2013; Zyla et al., 2017; Zyla et al., 2019) and are
one of the gold standards in enrichment algorithm evaluation
(Geistlinger et al., 2021; Xie et al., 2021).

To test the impact of LD dependency correction, the
differences between each metric separately within one
enrichment method and integration approach were calculated
(e.g., sensitivity of ORAminimum integration with LD correction
minus ORA minimum integration without LD correction). Next,
the impact of integration was assessed. As the minimum
approach is mostly used, we referred its results to the Fisher
and Stouffer methods. Again, the difference between performance
metrics were calculated, but for different integrations (e.g.,
sensitivity of ORA Fisher integration with or without LD
minus ORA minimum integration with or without LD).

Finally, we investigated similarities and information transition
of gene set analysis performed on SNP and RNASeq data. For this
purpose, we selected SNPs located at the “5′ UTR and upstream
region” (beginning of transcript), as well as the “3′ UTR and
downstream” coding region (end of transcript). The results of
association test for those SNPs were extracted and aggregated
using different integration methods with and without LD
correction (the same as previously). Next, only the GSEA
algorithm was run, as it has a direct equivalent in
transcriptome analysis. The GSEA algorithm for RNASeq can
distinguish up- and downregulated pathways; thus, the Spearman
rank correlation was calculated for target pathways between
GWAS (different SNP locations in transcript) and RNASeq
(up-/downregulation). For the results from “5′UTR and
upstream” GWAS location and gene set downregulation on
RNASeq, the positive correlation is expected as SNPs in this
region should block further transcription and translation.
Opposite results are expected for “3′ UTR and downstream”
where only isoforms of transcript products should be observed
(Robert and Pelletier, 2018).

At each step of the evaluation process, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (Kanehisa et al., 2017)
was used as a gene set collection (accessed January 15, 2021). In
total, 341 gene sets were analyzed. The 54 target gene sets for
breast cancer were selected through the literature search, and

FIGURE 1 | Pipeline of data analysis and gene set analysis (GSA) method evaluation.
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their detailed description is presented in Supplementary
Table S2.

Implementation of Gene Set Analysis
Algorithms for Single-Nucleotide
Polymorphism Data Analysis
The implementation of all evaluated algorithms is provided in the
R package intGSASNP (integrative GSA for SNP), created for the
purpose of this study. This package includes R functions to run
selected gene set algorithms (ORA, CERNO, MAGENTA, GSEA,
i-GSEA4GWAS, and GSEA-SNP) on SNP data. All algorithms
were implemented according to the description included in the
original manuscripts. intGSASNP allows the user to adjust various
function parameters depending on the experiment, such as type
of integration method (minimum, Fisher, and Stouffer), multiple
testing correction method, permutation method (by gene entrez
or SNP), number of permutations, incorporation of LD
correction, or the number of processing cores required for
parallel computing. In addition, an example of a dataset with
sample refSNP IDs, entrez IDs, and p-values has been provided.
Source code and the package documentation are available freely
to download on GitHub (https://github.com/ZAEDPolSl/
intGSASNP).

RESULTS

At first, results of SNP association tests were transformed to gene
level by using minimum, Fisher, and Stouffer methods with and
without LD correction. Then these results were used in
combination with different GSA algorithms, i.e., GSEA,
i-GSEA4GWAS, GSEA-SNP, MAGENTA75, ORA, and
CERNO, and the four evaluation metrics were established,
i.e., sensitivity, specificity, prioritization, and reproducibility
(Figure 1). Based on those metrics, the impact of integration
and correction for LD and the overall performance of tested
methods were examined. Detailed results are presented in
Supplementary Figures S1 and Supplementary Table S3. The
total number of significant pathways is presented in
Supplementary Table S4.

Single-Nucleotide Integration Results
The number of significant genes (p < 0.05) for each method is
presented in Table 1, while the coverage between approaches is
presented in Supplementary Figure S2. It can be observed that
application of LD correction decreased the number of significant
transcripts and more likely reduced false-positive outcomes. Over
50% of genes were common to all integration techniques (54.98%

and 55.03% with and without LD correction, respectively). Fisher
and minimum approach shared around 30% (32.23% and 29.83%
with and without LD correction, respectively) significant genes,
which may lead to further similar results of GSA. The association
between minimum and Fisher methods is characterized by large
correlations (Supplementary Table S5). This effect is expected as
Fisher integration method is not robust to asymmetrical p-values,
which result in stronger association assigned to genes, similar to
that of the minimum method. Stouffer’s technique showed
weaker correlation to the minimum and Fisher methods. Also,
after using Stouffer, there are not many unique significant genes
or genes shared with only one of the other integration methods
(Supplementary Figure S2). Over 90% of genes (96.56 and
91.81% with and without LD correction, respectively)
indicated by the Stouffer method were also significant for the
minimum and Fisher methods.

Overall Performance of Gene Set Analysis
Methods
Within each evaluation metric, values were first normalized
giving the lowest value for the best outcome and the highest
for the worst. Next, the sum of all metrics was calculated, and
algorithms were ranked from the best to the worst within the
study. At last, results were clustered using the k-means
approach, where the number of clusters were set by the
Silhouette metric (optimal k equals 5). The best
performance was obtained for CERNO and MAGENTA75
methods with Stouffer integration regardless of LD
correction (Figure 2A, cluster 1). The worst outcomes
were achieved for i-GSEA4GWAS and ORA with Fisher
integration (regardless of LD correction) as well as for
ORA and MAGENTA75 with minimum integration and
LD correction and GSEA-SNP (cluster 5). Original GSEA
gave moderate results in comparison with others (cluster 2 or
3). Overall, the results for CERNO and MAGENTA75 were
the best (mostly in clusters 1 and 2), while i-GSEA4GWAS
and ORA were the worst (mostly in clusters 4 and 5).

Next, global similarities of results were investigated by
using the UMAP dimensionality reduction technique
(McInnes et al., 2018; McInnes and Healy, 2018) on the
GSA results for all 341 KEGG pathways (Figure 2B). Four
major clusters could be distinguished on two first instances
of UMAP (Figure 2B). i-GSEA4GWAS gave similar results
regardless of the integration technique as well as
incorporation of LD correction. GSEA-SNP, CERNO,
MAGENTA75, and GSEA performed on minimum
integration and correction for LD are clustered together
with i-GSEA4GWAS. The middle right cluster includes
ORA with Fisher and minimum integration methods
regardless of LD correction (color coding of UMAP
projection due to integration used is presented in
Supplementary Figure S3). Moreover, ORA with Stouffer
integration gave similar results across all tested pathways to
CERNO and MAGENTA75 (with the same integration
method; bottom cluster).

TABLE 1 | Number of significant genes after integration of single-nucleotide
polymorphism (SNP) association test results to gene level.

Integration Minimum Fisher Stouffer

LD correction No Yes No Yes No Yes
# of genes 12,759 10,810 11,401 10,456 7,382 6,948
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Impact of Linkage Disequilibrium
Dependency Correction
To investigate the impact of LD dependency correction, the
difference of each evaluation metric within a particular
algorithm performed with a specific integration method was
calculated (e.g., sensitivity difference between ORA with
minimum integration and LD correction, and ORA with
minimum integration and without LD correction). Values of
these differences are presented in Supplementary Table S6.
ORA, CERNO, and GSEA showed decreased sensitivity
(Figure 3A) when LD correction was applied, but the
specificity was increased greatly (Figure 3C). The LD
correction has a positive impact also on prioritization for
MAGENTA75 (Figure 3B). i-GSEA4GWAS with Stouffer
and Fisher integration gave similar performance regardless
of LD correction usage. However, for minimum integration
(default option in original implementation of the algorithm),
the LD correction increases the sensitivity of the observed
results with only a slight drop of specificity. For the remaining
algorithms, when the Stouffer or Fisher integration method is
used, the LD correction gave similar or better performance.
When minimum integration is applied, the reproducibility
decreases with LD correction (Figure 3D).

Impact of p-Value Integration
As the minimum integration is the most preferred approach,
the results of this aggregation technique were compared to

those of the Fisher and Stouffer methods separately. For this
purpose, the difference between performance metrics was
calculated (e.g., sensitivity of ORA minimum integration
with LD minus ORA Fisher integration with LD). In the
previous paragraph, it was shown that LD correction has a
beneficial impact in most of the cases, and it preserves
biological insights, so further description will concentrate
only on outcomes when dependency correction is applied.
CERNO and MAGENTA75 had better results in terms of
prioritization, specificity, and reproducibility when the
Fisher or Stouffer method was used (Figure 4).
i-GSEA4GWAS showed similar results regardless of the
integration method used, with slightly better performance
for minimum integration. The ORA algorithm gave
similar performance when the minimum or Fisher
method was applied, while Stouffer gave better
specificity and reproducibility, but decreased sensitivity.
Finally, GSEA showed better specificity when both Fisher
and Stouffer were used, whereas other evaluation metrics
were similar despite the integration techniques used
(Figure 4).

Within each evaluation metric and obtained differences,
the equivalence of mean to zero was tested by one-sample
t-test. The Stouffer integration method gave significantly
better results (p-value � 0.0163) in terms of specificity
compared with minimum integration for all tested
algorithms (Figure 4C). There was no statistically

FIGURE 2 | Overall evaluation of GSA algorithms. (A) Normalized evaluation metrics together with clustering results. The red color represents poor performance,
while the blue color represents good performance. The number in the brackets, next to the algorithm name, illustrates the place in global ranking including all evaluation
metrics. (B) UMAP projection for results of each algorithm and all 341 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Marked ellipses represent
clustering within UMAP projection.
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FIGURE 3 | Impact of linkage disequilibrium (LD) correction on evaluation metrics. Each panel shows different metrics, i.e., sensitivity (A), prioritization (B),
specificity (C), and reproducibility (D). Each dot represents the difference of metric when LD adjustment is used within a particular algorithm and integrationmethod. Dots
above the solid, black line represent better performance when LD correction is applied, while dots below the line represent the opposite. Colors show different integration
techniques.

FIGURE 4 | Impact of the Fisher and Stouffer integration technique compared with the minimum approach. (A–D)Differences between outcomes for the sensitivity,
prioritization, specificity, and reproducibility, respectively. Colors represent different algorithms, and point shape represents whether correction for LD was applied. Dots
above the solid, black line represent better performance for the minimum integration approach, while dots below the line represent the opposite.
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significant difference in other comparisons; however, the
variety of effects can be observed for individual algorithms.

Comparison of Gene Set Analysis on
Single-Nucleotide and Gene Expression
Level
As the enrichment methods were initially designed for
transcriptome data analysis, target pathway similarities of
outcomes observed for genome and transcriptome were
investigated (Supplementary Figure S4). The same samples
were taken for both omics, and the GSEA algorithm was
applied (In RNASeq, it can distinguish up- and downregulated
pathways). Moreover, for genomic data, only SNPs from the
beginning and the end of transcriptomic regions were selected to
catch the regulation directionality. Finally, the Spearman rank
correlation coefficient was calculated between
−log10(p-valueGeneSet) from RNASeq and genomic data within
pathways up- and downregulated separately.

For Stouffer integration, the highest correlation of
downregulated pathways and “5′ UTR and upstream” SNPs is
observed, and it increases when LD correction is applied (from
0.33 to 0.42; both medium effect size) (Figure 5). Similar results
can be observed for the minimum approach, where correlation
changes from small effect size when no LD correction is applied to
medium effect size with LD correction (from 0.18 to 0.35). For
Fisher integration, the small effect size was observed only when

LD adjustment was applied (Figure 5). When SNPs from “3′
UTR and downstream” (end of transcriptomic region) were
analyzed, positive correlation with upregulated pathways was
expected, but none of the tested methods showed statistically
significant association. Nevertheless, for downregulated
pathways, the expected negative correlation is observed for all
integration techniques regardless of LD correction.

Comparison of Gene Set Enrichment
Analysis and Other Algorithms on
Single-Nucleotide Polymorphism Level
Most of the tested algorithms were created by modification of
the original GSEA method. Also, we found a correlation
between GSEA results on genomic and transcriptomic level.
Thus, we wanted to check how the results of GSA for target
pathways are correlated between GSEA and other tested
enrichment algorithms in GWAS (Supplementary Figure
S5). The GSEA-SNP does not use integration in the process
of enrichment analysis; nevertheless, it showed a small
correlation with GSEA only when the Stouffer method is
applied. On the other hand, the results of i-GSEA4GWAS
had negative correlation with GSEA when the Fisher and
Stouffer methods were applied. All other methods mostly
showed positive correlation with GSEA. The highest
correlation was observed for the CERNO and MAGENTA75
algorithms.

FIGURE 5 |Correlation of the Gene Set Enrichment Analysis (GSEA) algorithm results performed on RNASeq and genomic data. The color of the boxes represents
the value of Spearman rank correlation coefficient. The x-axis corresponds to the results from the GSEA algorithm performed on RNASeq data with distinction of pathway
regulation direction. The y-axis corresponds to the results from the GSEA algorithm performed on genomic data with distinction of location of single-nucleotide
polymorphisms (SNPs) taken to the aggregation process. All results are grouped by integration technique and LD correction used.
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DISCUSSION

Incorporation of specific integration methods and LD
correction can have significant impact on the performance
of gene set analysis in GWAS. Usage of LD correction was
beneficial for i-GSEA4GWAS, especially when the default
minimum integration method was used. Thus, the
incorporation of basic SNP dependency correction method,
like we did here, or more complex solutions (de Leeuw et al.,
2015) is recommended. When Fisher and Stouffer integration
were used in the CERNO, ORA, MAGENTA75, and GSEA
algorithms, the LD correction was always beneficial, so it
should be applied in any case there. Observed decrease in
reproducibility after applying LD could be the effect of
decreasing the number of significant findings (genes with
p-values lower than a threshold), which is usual after using
correction for multiple testing (like LD correction here).
Moreover, the reproducibility experiment was performed on
much smaller subsets (n � 14 paired samples), which also
decreased the power of GSA (Maleki et al., 2019). In
i-GSEA4GWAS, this effect was not observed due to
corrections given by SPES statistic.

Comparing p-value integration methods, Stouffer gave the
best results in terms of specificity for all tested enrichment
methods. Moreover, it gave better or similar results in terms
of prioritization and reproducibility for CERNO, MAGENTA,
GSEA, and ORA. The Stouffer integration decreases only
sensitivity, which is an effect of preserving robustness to
asymmetrical p-value distribution during the process of
integration. Thus, the integrated p-value is higher, and some
target pathways could not be detected. However, this mechanism
prevents p-value overestimation that was observed for some GSA
methods (Zyla et al., 2019). Also, Stouffer integration gave the
highest correlation between GSA analysis results on SNP level
and transcriptome level. Thus, this is the method that we
recommend most.

SNPs located at the beginning of the gene region have the
biggest ability to silence gene expression (Robert and Pelletier,
2018). The GSA outcomes compared between genomic and
transcriptomic levels confirmed this effect. Furthermore,
results for 5′ UTR and upstream SNPs were negatively
correlated with upregulated pathways on the gene level. GSA
results for SNPs located at the end of genes were positively
correlated with upregulated pathways on the gene level, as it
was expected, but the effect was smaller.

All gene set analysis methods, integration approaches, and
LD correction method that were tested within the study were
implemented in the intGSASNP R package and are freely
available on GitHub. Therefore, different combinations of
methods could be easily tested on any dataset by other

researchers. We hope that collecting multiple methods in a
single package will help to promote the application of GSA
methods in SNP analysis.

In summary, we thoroughly analyzed different methods of
gene set analysis in GWAS in terms of performance and its
applicability. We showed that LD correction and Stouffer
integration could increase the performance of enrichment
analysis and encourage the introduction of these techniques
into common practice. We believe that this work will guide
others to select the most effective combinations of methods.
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