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A B S T R A C T

Compartmental diffusion MRI models that account for intravoxel incoherent motion (IVIM) of blood perfusion
allow for estimation of the fractional volume of the microvascular compartment. Conventional IVIM models are
known to be biased by not accounting for partial volume effects caused by free water and cerebrospinal fluid
(CSF), or for tissue-dependent relaxation effects. In this work, a three-compartment model (tissue, free water and
blood) that includes relaxation terms is introduced. To estimate the model parameters, in vivo human data were
collected with multiple echo times (TE), inversion times (TI) and b-values, which allowed a direct relaxation
estimate alongside estimation of perfusion, diffusion and fractional volume parameters. Compared to conven-
tional two-compartment models (with and without relaxation compensation), the three-compartment model
showed less effects of CSF contamination. The proposed model yielded significantly different volume fractions of
blood and tissue compared to the non-relaxation-compensated model, as well as to the conventional two-com-
partment model, suggesting that previously reported parameter ranges, using models that do not account for
relaxation, should be reconsidered.

1. Introduction

The intravoxel incoherent motion (IVIM) imaging concept [1,2]
provides models for the estimation of diffusion and microvascular
perfusion parameters from diffusion-weighted images. In recent years,
IVIM models have gained renewed interest, with a large focus on
neuroimaging, partly because more evidence has been collected to
show that ignoring perfusion effects may result in heavily biased dif-
fusion parameters [3]. The perfusion component of IVIM aims to ac-
count for signal effects of water molecules in blood, travelling through
the capillary network. The information that can be extracted from this
microvascular perfusion component is additional and complementary
to the microstructural information provided by the diffusion parameters

[4]. In the human brain, the biological information carried by micro-
vascular parameters could have important clinical implications for
disorders involving vascular changes (e.g., traumatic injuries, tumours,
stroke and dementia), as well as for normal brain development and
aging [5].

Estimation of perfusion parameters using the IVIM approach re-
quires modified diffusion MRI acquisition protocols, as well as specia-
lized analysis methods. Specifically, the acquisition requires measuring
signal at very low b-values, and the models include two or more com-
partments, where one of the compartments is a perfusion compartment,
modelled by extremely fast so-called pseudo-diffusion. The additional
compartments correspond to diffusion of other water pools in the brain.
An important perfusion parameter is the fractional volume of the
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vascular compartment. However, it is clear that for an accurate perfu-
sion estimation, the IVIM models also have to account for other fast
diffusing water pools, such as the cerebrospinal fluid (CSF) or the free-
water pool, which otherwise would bias the perfusion estimation [6–8].
A second important consideration in these models is that the fractional
volume parameters of the different compartments are weighted by re-
laxation effects [9,10]. These relaxation effects become more sub-
stantial at higher magnetic field strengths (3–7 T), mainly due to the
shortening of venous T2 [6]. More elaborate models are required to
effectively account for relaxation effects, although they may also
complicate the parameter estimation. However, improved estimation
techniques such as Bayesian analysis approaches [6,11–14] can be
employed to stabilize the fit.

In this work, we aimed to improve the estimation of the fractional
volume of the vascular compartment by proposing a multidimensional,
high-resolution data acquisition approach that includes individual
measurement of the relaxation times T1 and T2 in addition to diffusion
and perfusion, using the same common pulse sequence as a base. We
present a mathematical model that accounts for multiple compartments
as well as for the effects of relaxation on the fractional volumes of these
compartments. A Bayesian approach is employed to estimate the model
parameters, and, finally, fitting of the model to in vivo data is de-
monstrated.

2. Methods

2.1. Data acquisition

Using a 3 T whole-body MRI scanner (MAGNETOM Prisma, Siemens
Healthcare GmbH, Erlangen, Germany) and a 20-channel head coil,
multiple b-value, inversion time (TI) and echo time (TE) data were
measured in 5 healthy subjects (age 20–35 years, 3 men, 2 women). The
study was approved by the local ethics committee, and written in-
formed consent was obtained from all subjects.

The IVIM data were collected using a spin-echo EPI sequence with
diffusion encoding in four directions, using 45 b-values ranging be-
tween 15 and 800 s/mm2. Imaging parameters for full brain coverage
were TR=4000ms, TE=57ms, FOV 240×240 mm2, matrix size
160×160, slice thickness 4mm, and 32 slices.

Multi-TE data were additionally obtained with 6 different TEs (60,
70, 80, 90, 100, 120ms) with a TR of 6000ms, using the same pulse
sequence as for the diffusion data. Finally, multi-TI data were also
collected with 8 different TIs (50, 500, 1000, 1500, 2000, 2500, 3000,
4000ms) in a sequential mode with a TE of 67ms and a minimized TR
(ranging between 4800 and 21,880ms) for each TI, using the same
sequence as for the collection of diffusion data but with an inversion
magnetization preparation activated with a 180° flip angle. The multi-
TE as well as the multi-TI data were acquired with two b-value shells of
100 and 300 s/mm2, and 4 gradient orientations in each shell. In total,
the acquisition included 180+48+64=292 volumes, which re-
quired approximately 30min to acquire. A morphological high-resolu-
tion T1-weighted image was also acquired for automatic region of in-
terest (ROI) extraction. The main features of the multi-b, multi-TE and
multi-TI data acquisitions are summarized in Table 1.

2.2. Data analysis

The following relaxation compensated three-compartment IVIM
model was employed:

∑=

⋅ − − + −

= − −

+ −

+ − −

+ −

+ − −

+ −

=

− − −

−

−

− − −

−

− − −

−

− − − +

S b TI TE TR S f ρ

θ e e θe e

e

S f ρ θ e

e θe e e

S f ρ θ e

e θe e e

S f ρ θ e

e θe e e

( , , , )

[1 (1 cos ) (1 2 )cos ]

{ [1 (1 cos )

(1 2 )cos ] }

{ [1 (1 cos )

(1 2 )cos ] }

{ [1 (1 cos )

(1 2 )cos ] }

i t c b
i i

TI
T

TE
T

TR
T

TE
T

bD

t t t
TI
T

TE
T

TR
T

TE
T bD

c c c
TI

T

TE
T

TR
T

TE
T bD

b b b
TI

T

TE
T

TR
T

TE
T b D D

000
{ , , }

1 2 1 1 2

000, 1

2 1 1 2

000, 1

2 1 1 2

000, 1

2 1 1 2 ( )

i i i i

i

t

i t t t

c

c c c c

b

b b b b
*

(1)

where S000 is the non-weighted (b =0, TE=0, TR= ∞) predicted
signal value, fi are the fractional volumes, where i denotes the re-
spective compartment, i.e., i=[tissue(t),CSF(c),blood(b)], ρi is the
water content of each compartment, Di is the diffusion coefficient of
each compartment and D* is the pseudo-diffusion coefficient re-
presenting pseudo-random motion in the blood capillary network. Note
that for i=b, Di is given by Db+D*. T1i and T2i are the longitudinal and
transverse relaxation times, respectively, of each compartment, and θ is
the inversion flip angle (set to 180° in this study). The signal equation
for each compartment is based on conventional inversion recovery (IR)
and diffusion spin-echo signal equations.

Although the complete model in Eq. 1 was used in this work, a
simpler model can be considered by assuming ideal inversion
(θ=180°) and TR> >T1:

Table 1
Parameter settings for the three different data acquisitions.

Multi-b data
TR 4000ms
TE 57 ms
b-values 45 b-values between 15 and 800 s/mm2, with a

high frequency distribution of low b-values
Number of diffusion-

encoding directions
4

Multi-TE data
TR 6000ms
TE 60, 70, 80, 90, 100, 120ms
b-values 100, 300 s/mm2

Multi-TI data
TR/TI 4800/50, 4800/500, 5880/1000, 8540/1500,

11200/2000, 13880/2500, 16540/3000, 21880/
4000ms

TE 57 ms
b-values 100, 300 s/mm2

Table 2
Gaussian prior parameters.

Parameter Prior mean Prior standard deviation

T1t 1000 ms 500ms
T2t 70ms 10 ms
Dt 0.8 μm2/ms 0.1 μm2/ms
D* 50 μm2/ms 5 μm2/ms
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Two versions of two-compartment IVIM models, one with and one
without relaxation compensation, were included for comparison, and
for evaluation of the CSF contamination effects. The two-compartment
model with relaxation compensation corresponds to the full model but
without the CSF compartment (setting fc=0), and the two-compart-
ment model without relaxation compensation is given by:
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A voxel-by-voxel analysis, where the different models were fitted to
multi-b/multi-TE/multi-TI data using Bayesian inference with Gaussian
priors [15], was used to retrieve the model parameters. A simplified
Bayesian framework was employed by formulating the model fit to rely
on conventional iterative minimization. The framework aims to fit the
models to a set of measured signals

= …S b TE TI S b TE TI S b TE TIS { ( , , ), ( , , ), , ( , , ) }N1 2 for a single voxel.
Bayes’ theory implies that we can calculate the posterior probability
P θ S( | ) of a set of parameters θ, given the data, by multiplying the
likelihood function, P S θ( | ), with the prior parameter distribution P θ( ),
normalized by the evidence. In practice, we are only interested in the
maximum of P θ S( | ), and we can thus omit the normalization.

The assumption of independent Gaussian noise on the data, with
standard deviation σ , and Gaussian priors on each parameter yields
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where Sn is the nth measured signal, S θˆ ( )n is the modelled signal for the
set of parameters θ, and μX and σX represent the prior mean and stan-
dard deviation on parameter X , respectively [15]. Note that the first
factor corresponds to the likelihood and the second to the prior in-
formation. As we do not know the noise level σ beforehand, and as it
may vary over the field of view, we included it as an unknown para-
meter to estimate. Non-informative priors were used for fb and fc (prior
mean 0.05, standard deviation 106, interval [0,1]), and ft=1-fb-fc.
Fixed literature values [6] for CSF (T1c =4300ms, T2c =500ms and
Dc=3 μm2/ms), as well as for blood (T1b= 1600ms, T2b =95ms,
Db=1.7 μm2/ms). The water content parameters were approximated
by =ρc 100% and = =ρ ρt b 80%. Empirically assigned Gaussian priors
were used on the remaining parameters (see Table 2). Hence, the set of
model parameters to be estimated is

∈ =X S f T T D f f D σθ { , , , , , , , , }t t t t c b000 1 2
* (5)

All parameters were restricted to be positive, and the sum of fi was
restricted to equal 1. In practice, to find the optimal solution, we
wanted to maximize the posterior probability of the parameters given
the data, which is equivalent to minimizing the negative logarithm of
the posterior probability distribution J , which is more robust to fit [15]:
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Image data were masked and motion and artefact corrected using
ElastiX [16] prior to model fitting. ROI analysis was done by first ap-
plying Freesurfer (http://surfer.nmr.mgh.harvard.edu) on the T1 data,
and then projecting the ROIs to the diffusion MRI space by nonlinear
registration of the T1 map with the baseline diffusion image.

Fig. 1. Parameter maps obtained using the different models in one representative slice of one volunteer. The different models produced parameter maps that were
visually different.
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Parameters were averaged over the individual Freesurfer labels, and the
labels were also combined to create whole-brain grey matter (GM) and
white matter (WM) ROIs.

ANOVA tests and post-hoc t-tests were performed to compare the
values across models (MATLAB version 8.3.0.532; R2014a, The
MathWorks Inc.). The significance level was set to α=0.05 for all tests.

3. Results

3.1. Parameter maps

Fig. 1 shows examples of the parameter maps obtained with the
different models, in one slice of one subject. The different models
produced parameter maps that were clearly dissimilar by visual in-
spection.

Fig. 2 displays examples of the fractional volume of the vascular
compartment, i.e., fb maps, obtained with the three models, and the
corresponding difference maps. The difference maps highlight the
varying degrees of CSF partial volume effects (PVEs) on the fb values
estimated with the different models, with and without the relaxation
compensation.

3.2. Differences between the two-compartment models

A visual inspection of whole-brain parameter histograms (WM in

Fig. 2. Top row: Maps of fb in one of the subjects, obtained (a) using the two-compartment model, (b) using the two-compartment model with T1 and T2 com-
pensation and (c) using the comprehensive three-compartment model. Bottom row: Difference maps between (d) the two-compartment model and the three-
compartment model, and (e) the two-compartment model with relaxation compensation and the three-compartment model. The difference maps thus reflect the bias
caused by not accounting for CSF PVEs.

Fig. 3. Frequency histograms, normalized with trapezoidal numerical integra-
tion, of whole-brain GM ROIs for fb, ft, D* and Dt using the three different
models, i.e., 2-compartment model without relaxation data (2comp, in blue) 2-
compartment model with relaxation data (2comp(relax), in red), and the three-
compartment model (3comp, in green) (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article).
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Fig. 3 and GM in Fig. 4) shows that the distributions of all parameters
are narrower for the relaxation-compensated model. Especially the
blood compartment parameters fb and D*, obtained from the two-
compartment model with relaxation compensation, show a more well-
defined distribution than those obtained without relaxation compen-
sation.

3.3. Differences between the two-compartment and three-compartment
models

Changing from the two-compartment models to the three-com-
partment model made the distribution of D* narrower and shifted the Dt

distributions towards lower values. The fb distributions were also nar-
rower, and both fb and ft showed lower values with the three-com-
partment model.

3.4. Model-specific parameters

In Fig. 5, histograms over the CSF volume fraction (fc) in the whole-
brain GM and WM ROIs are displayed. A lower mean fc was obtained in
WM (6%) compared to GM (11%).

Fig. 6 shows histograms of estimated T1 and T2 values in GM and
WM, with the relaxation-compensated two-compartment and three-
compartment models. Overall, the T1 values were similar between the
two models, whereas the T2 values differed substantially.

In Tables 3 and 4, the parameter values in several GM and WM
regions, corresponding to cortical lobes and neighbouring WM tissue,
are summarized. The values represent the mean and standard deviation
of the average ROI values across all subjects. Overall, the fb values were
high with the conventional two-compartment model, intermediate with
the relaxation-compensated two-compartment model, and lowest with
the three-compartment model. The tissue fraction, ft, was lowest with
the three-compartment model and highest with the relaxation-com-
pensated two-compartment model. However, ft estimates in WM and
GM were not much affected by relaxation compensation for the two-
compartment model.

3.5. Statistical analysis

Generally, ANOVA tests and paired t-tests returned low p-values,
suggesting that the differences in results among the three models were
statistically significant (Table 5).

4. Discussion

In this study, we demonstrated estimation of the pseudo-diffusion
coefficient (assumed to be related to perfusion), the diffusion coefficient
and volume fractions, using a relaxation-compensated three-compart-
ment IVIM model. The three-compartment model reduced the CSF
contamination, and inclusion of relaxation information modified the
obtained results. The inclusion of relaxation information is important in
order for the partial volume estimates to be independent of the imaging
protocol.

The difference between the two-compartment models with and
without relaxation compensation was small, and these differences ap-
peared to be driven mainly by inhomogeneous T2 across brain areas.
The increase in model complexity when going to the three-compart-
ment model makes the relaxation data important for stabilizing the
results. Including relaxation in the model means that data are acquired
in three dimensions (b, TE, TI) instead of in one (b only) as in con-
ventional IVIM applications. While the added dimensions increase the
model complexity, they also improve the estimated parameters, since
tissue, blood and CSF have distinctively different relaxation properties.
To address the increased complexity, we used a Bayesian inference
method to stabilize the estimation, and similar approaches have pre-
viously been shown to work well for IVIM imaging [6,11–14,17,18].
The narrower parameter distributions found for the three-compartment
model might suggest that this model yielded more stable parameter
estimates.

The absolute and difference fb-maps in Fig. 2 also show that fb values
decreased when changing from the two-compartment models to the
three-compartment model. This is in line with previous findings sug-
gesting that CSF often contaminates the estimation of fb [6]. Fig. 2 also
indicates that the three-compartment model is able to remove some of
the blood fraction contributions assigned to the ventricles, which sup-
ports its ability to separate out the CSF.

The histograms in Fig. 3 show that the fb distribution was narrower
for the three-compartment model than for the two-compartment model,
and the fb distribution was also shifted towards lower values, which
means that some of the PVEs from the CSF have been accounted for.
The observed amount of intracranial CSF (fc=6% and 11% in WM and
GM, respectively), estimated with the thee-compartment model, is in
good agreement with the literature value of fc=9.1 ± 2.4% in whole
brain [19].

PVEs from CSF is a well-known issue, which also depends on the
spatial resolution used [20,21]. The effect is especially cumbersome in
the vicinity of the ventricles and in peripheral GM. The highest CSF
PVEs are expected in cortical GM due to the thin cortical layers, and this
was corroborated by the present results (Fig. 2). It should be noted,
however, that while the model seemed to correct for CSF PVEs, it ap-
peared not to provide particularly good estimates in pure CSF voxels, or

Fig. 4. Frequency histograms, normalized with trapezoidal numerical integra-
tion, of the whole-brain WM ROIs for the estimated parameters fb, ft, D* and Dt

using the three different models, i.e., 2-compartment model without relaxation
data (2comp, in blue) 2-compartment model with relaxation data (2comp
(relax), in red), and the three-compartment model (3comp, in green) (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article).

Fig. 5. Frequency histograms, normalized with trapezoidal numerical integra-
tion, of the estimated parameter fc in whole-brain GM and WM ROIs using the
three-compartment model.
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in voxels with extreme PVEs. In such voxels, most of the signal con-
tribution was assigned to fb, and many of the parameters reached their
upper limit. This might be caused by pulsations and other effects not
accounted for by the model.

The peaks at the extreme values, seen in Figs. 3, 4 and 6, are con-
sequences from the fit when restricting the upper limit of the values.
They represent regions where the fit failed, most likely in cases when
CSF entered into the ROI, due to misregistration, or they might be a
result of pulsation or other artifacts causing high CSF PVEs.

The T1 values were similar for the relaxation-compensated models,
but the T2 values differed substantially. This is likely to be related to
CSF PVEs, since the T2 in CSF differs significantly from that in tissue
(T2CSF ≥ 500ms, T2tissue ≈ 70ms), but it could also be attributed to
inhomogeneous T2 in specific brain areas. This would explain the sys-
tematically higher tissue T2 values in the two-compartment model,
since CSF is not included as a compartment in that model.

Partial volumes of blood (fb) and tissue (ft) were different for the

two-compartment models with and without relaxation. This is in
agreement with the study by Lemke et al., which showed that fb values
were overestimated and dependent on TE unless relaxation compen-
sation was included [9]. Lemke et al. used literature values of T1 and T2
in blood and tissue, whereas we included the tissue values as free
parameters in the model fitting. For standard IVIM acquisition at 3 T,
TE will probably play a more important role than TR. Hence, a simpler
implementation of the current work could be to omit the inversion
recovery acquisition, and only acquire multi-b and multi-TE data [23].

The estimated fractional volumes of blood (fb) and tissue (ft) were
much more affected by the inclusion of the CSF compartment than by
the inclusion of the relaxation parameters. This might suggest that PVEs
affect the IVIM parameters even more than relaxation effects, i.e., the
inclusion of a CSF compartment might be more crucial for accurate
fractional volume estimates than appropriate relaxation compensation.
Hence, for brain IVIM applications, one should pay special attention to
PVEs from CSF, and carefully consider the inclusion of CSF as a separate
compartment in the model.

Our combined acquisition of the multi-b, multi-TE and multi-TR
data was based on the same sequence, which means that the different
data sets were spatially similar which simplifies image matching or
motion correction. The two relaxation-compensated models had more
data points than the conventional model in this work. Therefore, we did
not compare the goodness-of-fit or repeatability between the models. In
this current application, we acquired an excessive amount of data
points, which resulted in a long acquisition time. Future work on op-
timization of the selection of data points to shorten the acquisition
towards a clinical application is thus warranted [24].

Other methods for excluding PVEs from CSF on the estimation of the
vascular fraction have been suggested, such as using a T2-prepared
inversion recovery [8] or IR sequence [7]. However, for the SNR-sen-
sitive IVIM analysis [6,12], this is not an optimal solution since the
overall SNR is reduced in such approaches. Another suggested method
to remove CSF in IVIM imaging, without extensive loss of SNR, is to use
IR only for b=0 and 1000s/mm2 [25].

CSF contamination in the estimation of fb may also be eliminated by
removing voxels showing heavy TE-dependence, as they can be

Fig. 6. Frequency histograms, normalized with
trapezoidal numerical integration, of the esti-
mated parameters T1 and T2 in whole brain
GM and WM ROIs, using the two-compartment
model with relaxation compensation and the
comprehensive three-compartment model. The
T1 values were similar between the two
models, whereas the T2 values differed mark-
edly.

Table 3
Estimates of fb obtained using all three models. Mean and standard deviation of
average ROI values across the five subjects included in the study are shown.

2-comp 2-comp(relax) 3-comp

ROI mean std mean std mean std

GM 0.083 0.008 0.062 0.006 0.033 0.002
frontal 0.091 0.013 0.075 0.013 0.038 0.004
parietal 0.059 0.006 0.055 0.005 0.028 0.004
temporal 0.105 0.012 0.052 0.003 0.029 0.003
occipital 0.070 0.006 0.051 0.006 0.030 0.007
insula 0.088 0.010 0.079 0.011 0.051 0.009
cingulate 0.078 0.009 0.058 0.008 0.031 0.005

WM 0.058 0.010 0.024 0.002 0.011 0.003
frontal 0.047 0.007 0.024 0.004 0.011 0.002
parietal 0.028 0.004 0.019 0.002 0.008 0.002
temporal 0.117 0.030 0.025 0.006 0.013 0.005
occipital 0.046 0.007 0.028 0.009 0.014 0.008
insula 0.080 0.030 0.020 0.002 0.007 0.001
cingulate 0.095 0.023 0.032 0.006 0.014 0.003

CSF 0.413 0.046 0.395 0.028 0.267 0.034
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assumed to contain CSF [26]. However, this method removes most of
the GM voxels. Masking the fb-images by only accepting values between
0 and 0.3 has also been proposed, in order to avoid physiologically
irrelevant data [27].

Three-compartment models to describe the IVIM signal have pre-
viously been applied to brain [3,28,29], and prostate cancer [30]. The
main difference between the previous models and the one used in the
present study is the addition of relaxation compensation. The pre-
viously suggested models did not account for a CSF compartment, but
included an additional compartment modelling restricted diffusion,
measured at high b-values. In a study on liver [31], one- two- and three-
exponential models were compared. The three-exponential model
showed the best fit to the IVIM signal data, but the model lacked re-
laxation compensation.

Although the three-compartment model provided superior specifi-
city compared with a two-compartment model, it should be kept in
mind that it does not constitute a complete description of the under-
lying tissue and heterogeneous signal attenuation patterns. More so-
phisticated methods where, for example, the number of components is
determined from the data instead of by model assumptions could be an
alternative approach [32,33]. Diffusion spectra obtained by non-nega-
tive least squares (NNLS) curve fitting may become useful for assess-
ment of the diffusion components present in heterogeneous tissue [34].
It has also been suggested that biological compartments are not well
described by compartmental models [35], which may favour other
analysis approaches [35–38].

5. Conclusions

Conventional IVIM modelling is based on a two-compartment model
of blood and tissue. In this work, diffusion data with variable diffusion
weighting in three different dimensions (b, TE, TI) were acquired using
a spin-echo-EPI sequence, and the signal was modelled as the sum of

three compartments, accounting for compartment-specific diffusion and
relaxation properties. Compared to more conventional two-compart-
ment models, the proposed three-compartment model yielded lower
fractional volumes of blood, suggesting a successful reduction of CSF
PVEs. Although inclusion of additional compartments increases the
complexity, the additional data that were acquired and the constraints
enforced by the Bayesian inference technique contributed to improved
reliability of the estimated parameters.

Competing interests

The authors have no competing interests to declare.

Funding information

This work was supported by the National Institutes of Health [grant
numbers R01MH108574, P41EB015902]; the Swedish Research
Council [grant numbers2011–2971, 2017-00995]; and Hjärnfonden
[grant no.FO2018-0145].

Acknowledgements

We acknowledge Siemens Healthcare for granting access to product
sequence source code.

References

[1] D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, M. Laval-Jeantet, MR
imaging of intravoxel incoherent motions: application to diffusion and perfusion in
neurologic disorders, Radiology 161 (2) (1986) 401–407.

[2] D. Le Bihan, E. Breton, D. Lallemand, M.L. Aubin, J. Vignaud, M. Laval-Jeantet,
Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging,
Radiology 168 (1988) 497–505.

[3] A.S. Rydhög, F. Szczepankiewicz, R. Wirestam, A. Ahlgren, C.-F. Westin,
L. Knutsson, O. Pasternak, Separating blood and water: perfusion and free water
elimination from diffusion MRI in the human brain, NeuroImage 156 (2017)
423–434.

[4] C. Federau, K. O’Brien, R. Meuli, P. Hagmann, P. Maeder, Measuring brain perfu-
sion with intravoxel incoherent motion (IVIM): initial clinical experience, J. Magn.
Reson. Imaging 39 (3) (2014) 624–632.

[5] C. Federau, Intravoxel incoherent motion MRI as a means to measure in vivo per-
fusion: a review of the evidence, NMR Biomed. 30 (11) (2017) e3780.

[6] A.S. Rydhög, M.J. van Osch, E. Lindgren, M. Nilsson, J. Lätt, F. Ståhlberg,
R. Wirestam, L. Knutsson, Intravoxel incoherent motion (IVIM) imaging at different
magnetic field strengths: what is feasible? Magn. Reson. Imaging 32 (10) (2014)
1247–1258.

[7] K. Kwong, R. McKinstry, D. Chien, A. Crawley, J. Pearlman, B. Rosen,
CSF‐suppressed quantitative single‐shot diffusion imaging, Magn. Reson. Med. 21
(1) (1991) 157–163.

[8] C. Federau, K. O’Brien, Increased brain perfusion contrast with T2-prepared in-
travoxel incoherent motion (T2prep IVIM) MRI, NMR Biomed. 28 (1) (2015) 9–16.

[9] A. Lemke, F.B. Laun, D. Simon, B. Stieltjes, L.R. Schad, An in vivo verification of the
intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen,
Magn. Reson. Med. 64 (6) (2010) 1580–1585.

[10] Z. Wang, M.Y. Su, O. Nalcioglu, Measurement of tumor vascular volume and mean
microvascular random flow velocity magnitude by dynamic GD‐DTPA‐albumin
enhanced and diffusion‐weighted MRI, Magn. Reson. Med. 40 (3) (1998) 397–404.

[11] M.R. Orton, D.J. Collins, D.-M. Koh, M.O. Leach, Improved intravoxel incoherent
motion analysis of diffusion weighted imaging by data driven Bayesian modeling,
Magn. Reson. Med. 71 (1) (2014) 411–420.

[12] J.J. Neil, G.L. Bretthorst, On the use of Bayesian probability theory for analysis of
exponential decay data: an example taken from intravoxel incoherent motion ex-
periments, Magn. Reson. Med. 29 (1993) 642–647.

[13] O. Gustafsson, M. Montelius, G. Starck, M. Ljungberg, Impact of prior distributions
and central tendency measures on Bayesian intravoxel incoherent motion model
fitting, Magn. Reson. Med. 79 (3) (2018) 1674–1683.

[14] P.T. While, A comparative simulation study of bayesian fitting approaches to in-
travoxel incoherent motion modeling in diffusion-weighted MRI, Magn. Reson.
Med. 78 (6) (2017) 2373–2387.

[15] T.W. Okell, M.A. Chappell, U.G. Schulz, P. Jezzard, A kinetic model for vessel-en-
coded dynamic angiography with arterial spin labeling, Magn. Reson. Med. 68 (3)
(2012) 969–979.

[16] S. Klein, M. Staring, K. Murphy, M.A. Viergever, J.P.W. Pluim, Elastix: a toolbox for
intensity-based medical image registration, IEEE Trans. Med. Imaging 29 (1) (2010)
196–205.

[17] D.-M. Koh, D.J. Collins, M.R. Orton, Intravoxel incoherent motion in body diffusion-
weighted MRI: reality and challenges, Am. J. Roentgenol. 196 (6) (2011)

Table 4
Estimates of ft obtained using all three models. Mean and standard deviation of
average ROI values across the five subjects included in the study are shown.

2-comp 2-comp(relax) 3-comp

ROI mean std mean std mean std

GM 0.917 0.008 0.938 0.006 0.853 0.013
frontal 0.909 0.013 0.925 0.013 0.828 0.028
parietal 0.942 0.006 0.945 0.005 0.858 0.013
temporal 0.895 0.012 0.948 0.003 0.879 0.003
occipital 0.931 0.006 0.949 0.006 0.883 0.005
insula 0.913 0.010 0.921 0.011 0.844 0.013
cingulate 0.923 0.009 0.942 0.008 0.862 0.012

WM 0.942 0.010 0.976 0.002 0.928 0.002
frontal 0.954 0.007 0.976 0.004 0.928 0.007
parietal 0.972 0.004 0.981 0.002 0.933 0.002
temporal 0.884 0.030 0.975 0.006 0.930 0.008
occipital 0.955 0.007 0.972 0.009 0.924 0.011
insula 0.920 0.030 0.980 0.001 0.933 0.003
cingulate 0.906 0.023 0.968 0.006 0.913 0.009

CSF 0.587 0.046 0.605 0.028 0.429 0.054

Table 5
Results from ANOVA and paired t-test on the parameters fb and ft in GM and
WM.

ROI All 3 models
p (ANOVA)

2-comp – 2-comp
(relax)
p (paired t-test)

2-comp(relax) –
3-comp
p (paired t-test)

2-comp – 3-comp
p (paired t-test)

GM fb 5.5189⋅10−08 8.7196⋅10−05 3.9498⋅10−04 1.9878⋅10−04

WM fb 1.3880⋅10−07 0.0021 4.5463⋅10−05 9.2429⋅10−04

GM ft 2.7829⋅10−08 1.0765⋅10−04 1.9253⋅10−05 1.0953⋅10−05

WM ft 1.1799⋅10−07 0.0023 1.4088⋅10−06 0.0243

A. Rydhög, et al. European Journal of Radiology Open 6 (2019) 198–205

204

http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0005
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0005
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0005
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0010
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0010
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0010
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0015
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0015
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0015
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0015
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0020
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0020
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0020
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0025
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0025
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0030
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0030
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0030
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0030
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0035
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0035
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0035
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0040
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0040
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0045
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0045
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0045
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0050
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0050
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0050
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0055
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0055
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0055
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0060
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0060
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0060
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0065
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0065
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0065
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0070
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0070
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0070
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0075
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0075
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0075
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0080
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0080
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0080
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0085
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0085


1351–1361.
[18] N.P. Jerome, M.R. Orton, J.A. d’Arcy, D.J. Collins, D.-M. Koh, M.O. Leach,

Comparison of free-breathing with navigator-controlled acquisition regimes in ab-
dominal diffusion-weighted magnetic resonance images: effect on ADC and IVIM
statistics, J. Magn. Reson. Imaging 39 (1) (2014) 235–240.

[19] M. Quarantelli, A. Ciarmiello, V.B. Morra, G. Orefice, M. Larobina, R. Lanzillo,
V. Schiavone, E. Salvatore, B. Alfano, A. Brunetti, Brain tissue volume changes in
relapsing-remitting multiple sclerosis: correlation with lesion load, NeuroImage 18
(2) (2003) 360–366.

[20] A.L. Alexander, K.M. Hasan, M. Lazar, J.S. Tsuruda, D.L. Parker, Analysis of partial
volume effects in diffusion-tensor MRI, Magn. Reson. Med. 45 (5) (2001) 770–780.

[21] F. Szczepankiewicz, J. Lätt, R. Wirestam, A. Leemans, P. Sundgren, D. van Westen,
F. Ståhlberg, M. Nilsson, Variability in diffusion kurtosis imaging: impact on study
design, statistical power and interpretation, NeuroImage 76 (2013) 145–154.

[23] N.P. Jerome, J.A. d’Arcy, T. Feiweier, D.M. Koh, M.O. Leach, D.J. Collins,
M.R. Orton, Extended T2-IVIM model for correction of TE dependence of pseudo-
diffusion volume fraction in clinical diffusion-weighted magnetic resonance ima-
ging, Phys. Med. Biol. 61 (24) (2016) N667–N680.

[24] A. Lemke, B. Stieltjes, L.R. Schad, F.B. Laun, Toward an optimal distribution of b
values for intravoxel incoherent motion imaging, Magn. Reson. Imaging 29 (6)
(2011) 766–776.

[25] H. Tamura, S. Mugikura, Y. Komori, K. Yamanaka, H. Ota2, Estimation and removal
of partial volume effects of cerebrospinal fluid in intravoxel incoherent motion
(IVIM) imaging, Proceedings of the 23rd ISMRM Meeting, (2015), p. 2990.

[26] S. Bisdas, U. Klose, IVIM analysis of brain tumors: an investigation of the relaxation
effects of CSF, blood, and tumor tissue on the estimated perfusion fraction, MAGMA
28 (4) (2015) 377–383.

[27] C. Federau, S. Sumer, F. Becce, P. Maeder, K. O’Brien, R. Meuli, M. Wintermark,
Intravoxel incoherent motion perfusion imaging in acute stroke: initial clinical
experience, Neuroradiology 56 (8) (2014) 629–635.

[28] R. Nicolas, I. Sibon, B. Hiba, Accuracies and contrasts of models of the diffusion-
weighted-dependent attenuation of the MRI signal at intermediate b-values, Magn.
Reson. Insights 8 (2015) 11–21.

[29] N. Ohno, T. Miyati, S. Kobayashi, T. Gabata, Modified triexponential analysis of
intravoxel incoherent motion for brain perfusion and diffusion, J. Magn. Reson.
Imaging 43 (4) (2016) 818–823.

[30] Y. Ueda, S. Takahashi, N. Ohno, K. Kyotani, H. Kawamitu, T. Miyati, N. Aoyama,
Y. Ueno, K. Kitajima, F. Kawakami, T. Okuaki, R. Tsukamoto, E. Yanagita,
K. Sugimura, Triexponential function analysis of diffusion-weighted MRI for diag-
nosing prostate cancer, J. Magn. Reson. Imaging 43 (1) (2016) 138–148.

[31] J.-P. Cercueil, J.-M. Petit, S. Nougaret, P. Soyer, A. Fohlen, M.-A. Pierredon-
Foulongne, V. Schembri, E. Delhom, S. Schmidt, A. Denys, S. Aho, B. Guiu,
Intravoxel incoherent motion diffusion-weighted imaging in the liver: comparison
of mono-, bi- and tri-exponential modelling at 3.0-T, Eur. Radiol. 25 (6) (2015)
1541–1550.

[32] D.M. Koh, D.J. Collins, Diffusion-weighted MRI in the body: applications and
challenges in oncology, AJR 188 (2007) 1622–1635.

[33] S.W. Provencher, A Fourier method for the analysis of exponential decay curves,
Biophys. J. 16 (1976) 27–41.

[34] V.C. Keil, B. Madler, G.H. Gielen, B. Pintea, K. Hiththetiya, A.R. Gaspranova,
J. Gieseke, M. Simon, H.H. Schild, D.R. Hadizadeh, Intravoxel incoherent motion
MRI in the brain: impact of the fitting model on perfusion fraction and lesion dif-
ferentiability, J. Magn. Reson. Imaging 46 (4) (2017) 1187–1199.

[35] D.S. Novikov, V.G. Kiselev, Effective medium theory of a diffusion-weighted signal,
NMR Biomed. 23 (7) (2010) 682–697.

[36] C.-F. Westin, H. Knutsson, O. Pasternak, F. Szczepankiewicz, E. Özarslan, D. van
Westen, C. Mattisson, M. Bogren, L.J. O’donnell, M. Kubicki, Q-space trajectory
imaging for multidimensional diffusion MRI of the human brain, NeuroImage 135
(2016) 345–362.

[37] F. Szczepankiewicz, D. van Westen, E. Englund, C.-F. Westin, F. Ståhlberg, J. Lätt,
P.C. Sundgren, M. Nilsson, The link between diffusion MRI and tumor hetero-
geneity: mapping cell eccentricity and density by diffusional variance decomposi-
tion (DIVIDE), NeuroImage 142 (2016) 522–532.

[38] I. Seroussi, D.S. Grebenkov, O. Pasternak, N. Sochen, Microscopic interpretation
and generalization of the Bloch-Torrey equation for diffusion magnetic resonance,
J. Magn. Reson. 277 (2017) 95–103.

A. Rydhög, et al. European Journal of Radiology Open 6 (2019) 198–205

205

http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0085
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0090
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0090
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0090
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0090
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0095
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0095
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0095
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0095
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0100
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0100
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0105
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0105
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0105
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0110
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0110
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0110
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0110
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0115
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0115
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0115
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0120
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0120
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0120
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0125
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0125
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0125
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0130
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0130
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0130
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0135
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0135
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0135
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0140
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0140
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0140
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0145
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0145
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0145
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0145
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0150
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0150
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0150
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0150
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0150
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0155
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0155
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0160
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0160
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0165
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0165
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0165
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0165
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0170
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0170
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0175
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0175
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0175
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0175
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0180
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0180
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0180
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0180
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0185
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0185
http://refhub.elsevier.com/S2352-0477(19)30028-0/sbref0185

	Estimation of diffusion, perfusion and fractional volumes using a multi-compartment relaxation-compensated intravoxel incoherent motion (IVIM) signal model
	Introduction
	Methods
	Data acquisition
	Data analysis

	Results
	Parameter maps
	Differences between the two-compartment models
	Differences between the two-compartment and three-compartment models
	Model-specific parameters
	Statistical analysis

	Discussion
	Conclusions
	Competing interests
	Funding information
	Acknowledgements
	References




