

AMERICAN SOCIETY FOR MICROBIOLOGY

Genome Sequence of a New "Candidatus" Phylum "Dependentiae" Isolate from Chiba, Japan

Masaharu Takemura^a

^aLaboratory of Biology, Institute of Arts and Sciences, Tokyo University of Science, Shinjuku, Tokyo, Japan

ABSTRACT Little is known about the bacterial phylum "*Candidatus* Dependentiae," because only three isolates have been reported. Here, I report the isolation and genome sequencing of a new member of this phylum, strain Noda2021. This is the fourth strain isolated from the phylum "*Candidatus* Dependentiae."

Noda2021, found in a pond in Noda City (Chiba Prefecture, Japan). To isolate the new microorganisms, I screened *Vermamoeba vermiformis* that had been infected with them.

First, a 5-mL sample of mud from a pond was mixed with 45 mL distilled water and incubated for 1.5 h at room temperature (20 to 24°C) with rotation, followed by incubation at 4°C for 1 h. After filtration through filter paper with a pore size of 20 μ m (grade 43; Whatman International, Maidstone, UK), a 4.5-mL sample was mixed with 4.5 mL 2× proteose peptone-yeast extract-glucose (PYG) medium, 100 μ L vermamoebae (3.0 × 10⁵ cells), and 360 μ L antibiotic solution, which contained 100 μ g mL⁻¹ penicillin-streptomycin, 100 μ g mL⁻¹ ampicillin, and 5 μ g mL⁻¹ amphotericin B, as described previously (6). This mixture was added to a 96-well plate (100 μ L per well).

After 5 days of culture at 26°C, 10 µL supernatant from each well showing microscopic evidence of cytopathic effects (CPE; cell rounding or fusiform morphology) was serially diluted 10¹¹-fold with PYG. Then, 10 μ L each dilution was mixed with 90 μ L PYG medium containing 9.0 \times 10⁴ vermamoeba cells in a 96-well plate. After 5 days, fresh vermamoeba cells in a 12-well plate were inoculated with the highest dilution of supernatants exhibiting CPE, followed by inoculation in a 25-cm² culture flask several days later. The supernatant of the vermamoeba cell culture exhibiting CPE was then harvested. Cells of this organism, which infect and proliferate in vermamoebae, were collected by centrifugation at 8,000 \times g for 35 min at 4°C from the supernatant of the infected vermamoeba culture. The resulting pellets were resuspended and washed with 1 mL phosphate-buffered saline (PBS) prior to use for DNA extraction. For imaging, V. vermiformis cells were cultured in PYG medium in 75-cm² culture flasks and infected with strain Noda2021. Two days after infection, V. vermiformis cells were collected by centrifugation at 500 imes g for 5 min. The cells were washed with PBS, followed by fixation with 2% glutaraldehyde (GA) in PBS and staining with 2% osmium tetroxide. The cells were then dehydrated in ethanol solutions of increasing concentration and embedded in Epon 812. Ultra-thin sections were prepared and stained with 2% uranyl acetate (6). Transmission electron microscopy (TEM) was performed using a model JEM-1400 microscope (JEOL Ltd., Tokyo, Japan) at the Hanaichi UltraStructure Research Institute (Aichi, Japan) (Fig. 1A and B).

Genomic DNA (gDNA) was extracted from this organism using the NucleoSpin tissue XS kit (Macherey-Nagel GmbH & Co. KG, Duren, Germany) according to the manufacturer's

Editor Irene L. G. Newton, Indiana University, Bloomington

Copyright © 2022 Takemura. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to giantvirus@rs.tus.ac.jp. The authors declare no conflict of interest.

Received 15 November 2021 Accepted 9 January 2022 Published 3 February 2022

FIG 1 (A and B) Transmission electron microscopy (TEM) images of strain Noda2021 of the phylum "*Candidatus* Dependentiae." Bar: 400 nm. Panel A indicates individual cells of Noda2021, surrounded by metamorphosed mitochondria (mito). Panel B indicates connected cells, probably before individualization, as previously reported in other isolates of the phylum "*Candidatus* Dependentiae" (4). (C) Phylogenetic tree of the 16S rRNA sequences. The analysis was performed using the maximum likelihood method with 1,000 replicates using MEGA X software (7). The red box indicates the new isolate in this study. The green boxes indicate previously isolated strains.

instructions. Sequencing was performed using an RS II device (PacBio, Menlo Park, CA, USA). For PacBio RS II sequencing, 8 g genomic DNA was used for preparation of a 20-kb library. For gDNA where the size range was less than 17 kb, I used the Bioanalyzer 2100 (Agilent) to determine the actual size distribution. The gDNA was sheared using a g-TUBE device (Covaris Inc., Woburn, MA, USA) and purified using AMPure PB magnetic beads (Beckman Coulter Inc., Brea, CA, USA) if the apparent size was greater than 40 kb. A library with a total size of 10 μ L was prepared using the PacBio DNA template prep kit v1.0 (for 3 to 10 kb). The PacBio DNA sequencing kit v4.0 and 8 single-molecule real-time (SMRT) cells were used for sequencing using the PacBio RS II sequencing platform. HGAP v3.0 software was used to assemble 131,940 subreads (1,251,501,591 subread bases) into one contig with a length of 1,222,284 nucleotides (N_{s0} value, 13,552 bp). The GC content of the genome was 38.30%. Gene annotation was performed using the DFAST annotation tool on DDBJ (DNA Data Bank of Japan) sites. I identified 1,287 open reading frames (ORFs), 38 tRNAs, and 3 rRNAs (Fig. 1C).

Data availability. The sequence data are available at GenBank (accession number AP025250) under BioProject accession number PRJDB12443 and BioSample accession number SAMD00414974, and the raw reads can be found in the Sequence Read Archive (accession number DRR327641).

I thank Macrogen Japan (Koto-ku, Tokyo, Japan) for genome sequencing and Hanaichi UltraStructure Research Institute (Okazaki, Aichi, Japan) for TEM analyses.

This work was supported by JSPS/KAKENHI (grant number 20H03078 to M.T.).

REFERENCES

- McLean JS, Lombardo MJ, Badger JH, Edlund A, Novotny M, Yee-Greenbaum J, Vyahhi N, Hall AP, Yang Y, Dupont CL, Ziegler MG, Chitsaz H, Allen AE, Yooseph S, Tesler G, Pevzner PA, Friedman RM, Nealson KH, Venter JC, Lasken RS. 2013. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci U S A 110:E2390–E2399. https://doi.org/ 10.1073/pnas.1219809110.
- Pagnier I, Yutin N, Croce O, Makarova KS, Wolf YI, Benamar S, Raoult D, Koonin EV, La Scola B. 2015. *Babela massiliensis*, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae. Biol Direct 10:13. https://doi.org/10.1186/s13062-015-0043-z.
- Delafont V, Samba-Louaka A, Bouchon D, Moulin L, Héchard Y. 2015. Shedding light on microbial dark matter: a TM6 bacterium as natural endosymbiont of a free-living amoeba. Environ Microbiol Rep 7:970–978. https:// doi.org/10.1111/1758-2229.12343.
- Deeg CM, Zimmer MM, George EE, Husnik F, Keeling PJ, Suttle CA. 2019. *Chromulinavorax destructans*, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLoS Pathog 15:e1007801. https://doi.org/10.1371/journal.ppat.1007801.
- Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Wilkins MJ, Wrighton KC, Williams KH, Banfield JF. 2015. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523:208–211. https:// doi.org/10.1038/nature14486.
- Takemura M. 2016. Morphological and taxonomic properties of tokyovirus, the first *Marseilleviridae* member isolated from Japan. Microbes Environ 31: 442–448. https://doi.org/10.1264/jsme2.ME16107.
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547–1549. https://doi.org/10.1093/molbev/msy096.