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ABSTRACT A number of important pluripotency regulators, including the transcription factor Nanog, are observed to fluctuate
stochastically in individual embryonic stem cells. By transiently priming cells for commitment to different lineages, these fluctu-
ations are thought to be important to the maintenance of, and exit from, pluripotency. However, because temporal changes in
intracellular protein abundances cannot be measured directly in live cells, fluctuations are typically assessed using genetically
engineered reporter cell lines that produce a fluorescent signal as a proxy for protein expression. Here, using a combination of
mathematical modeling and experiment, we show that there are unforeseen ways in which widely used reporter strategies can
systematically disturb the dynamics they are intended to monitor, sometimes giving profoundly misleading results. In the case of
Nanog, we show how genetic reporters can compromise the behavior of important pluripotency-sustaining positive feedback
loops, and induce a bifurcation in the underlying dynamics that gives rise to heterogeneous Nanog expression patterns in
reporter cell lines that are not representative of the wild-type. These findings help explain the range of published observations
of Nanog variability and highlight the problem of measurement in live cells.
INTRODUCTION
Fluorescence has been used to report expression of gene
products in live cells since green fluorescent protein
(GFP) was first cloned and utilized as a tracer (1,2). Live
cell fluorescence imaging and analysis techniques allow
investigation of temporal changes in protein expression
and have consequently become an essential tool in modern
molecular biology (3). However, their proper use requires
the reporter signal to be representative of expression of
the protein of interest at the scale of interest. In particular,
if the reporter is to be used as a proxy for protein expression
within a single cell, then, to be able to draw accurate conclu-
sions, the reporter signal should be representative of protein
expression in that particular cell. This issue is particularly
relevant when functional assays are performed after cell
sorting based upon reporter signal intensity, and can pre-
sent a significant problem if the long-term outcome of any
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subsequent assays are driven by rare subpopulations of
misidentified cells. As interest in single cell biology has
increased, some generalized concerns about the fidelity of
standard live-cell reporter strategies have been raised
(4,5). However, the ways in which the genetic manipulations
involved in generating reporter cell lines affect endogenous
gene expression kinetics are not well understood.

Here, we explore how commonly used fluorescent
reporter strategies can fail to accurately represent protein
expression at the single cell level. For systems that use
nonlinear feedback control mechanisms, we find that the
introduction of reporter constructs can perturb important
endogenous regulatory kinetics and induce qualitative
changes in the protein expression patterns they are intended
to measure. Because predicting when these problems will
occur requires a priori knowledge of the underlying regula-
tory control mechanisms of the system under study—which
is typically the knowledge that the reporter was introduced
to provide—our results highlight a basic measurement prob-
lem in cell biology, reminiscent of that encountered in quan-
tum physics (6,7), in which the act of measuring disturbs the
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system being measured. To illustrate these ideas, we
consider the complications that can arise when using fluo-
rescent reporters to monitor the expression dynamics of
Nanog, a central element in the pluripotency regulatory
network in mouse embryonic stem (ES) cells.

It has been widely observed that expression of a number of
important pluripotency-associated transcription factors ap-
pears to fluctuate stochastically in individual ES cells (8–
13). Although this heterogeneity has been linked to functional
variability, its full developmental significance is still not well
understood (14–16). The most widely studied of these fluctu-
ating factors is Nanog, a core member of the regulatory
network for pluripotency that is able to maintain pluripotency
in vitro in the absence of Leukemia Inhibitory Factor (LIF), a
cytokine normally required for the maintenance of self-
renewal and prevention of differentiation (17–20).

Interest in Nanog expression variability began with a 2005
study by Hatano et al. (21) in which it was observed by direct
immunostaining that mouse ES cell cultures displayed mark-
edly heterogeneous patterns of Nanog protein expression,
with a significant proportion of Oct4 positive pluripotent cells
being negative for Nanog. A corresponding bimodal expres-
sion pattern was also observed via fluorescence in the first
Nanog reporter ES cell lines (8,21). Subsequent studies indi-
cated thatNanog levels appear to fluctuate stochastically in in-
dividual cells, thus providing a putative mechanism for the
observed heterogeneity in expression (8,9,16,22). Impor-
tantly, during times of transient high Nanog expression, cells
were observed to be resistant to differentiation cues; yet dur-
ing times of transient low Nanog expression, cells became
sensitive to differentiation-inducing stimuli. These results
suggested that Nanog fluctuations are central to its role asmo-
lecular gatekeeper for pluripotency (8,9,23–26).

Many articles have followed up on this line of thought,
and fluctuations in other factors have been investigated
using similar strategies (10,11,27,28). Because these studies
have focused on nuclear factors, they have generally
employed fluorescence reporters to measure protein abun-
dances, and it is typically implicitly assumed that the
reporter signal is representative of expression of the factor
of interest within individual cells, and, furthermore, that
the observed patterns of expression in reporter cell
lines are representative of those in (genetically unperturbed)
wild-type cells. However, some concern has been raised that
commonly used reporter strategies may not be representing
Nanog expression patterns as accurately as they should.
Faddah et al. (4) observed low correlation of reporter and
Nanog mRNA levels in the original heterozygous reporter
constructs; and both Faddah et al. (4) and Filipczyk et al.
(5) have argued that observed heterogeneity of Nanog
may be, at least in part, a reporter artifact.

To gain amore nuanced understanding ofNanog dynamics,
more recent studies have employed a range of nonreporter
(29,30) and live-imaging techniques (31–33), as well as
more sophisticated protein and mRNA reporters (26,31,32).
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These methods include: construction of reporter constructs
that use self-cleaving 2A peptide linkers and do not disrupt
the Nanog coding region (4,19); fusion constructs in which
Nanog is directly fused to a fluorescent protein (5,32); and
bacterial artificial chromosome (BAC) transgenes, which
carry a plasmid with the reporter gene under the Nanog
promoter, leaving the wild-type Nanog alleles unchanged
(22,26). Dual allele reporter systems have also been used to
compare allele-specific Nanog abundances and assess total
Nanog expression (4,19). Although self-cleaving, fusion,
andBAC lines typically reportmore consistent Nanog expres-
sion patterns than the original heterozygous knock-in (21,34)
and loss-of-function (8) reporter lines, there is still no
consensus concerning the extent to which observed Nanog
expressionvariability depends upon reporter type, cellular ge-
netic background, and culture conditions.

Here, we address these issues using a combination of
mathematical modeling and experiment. In the first part of
the article we use a mathematical argument to show why
it should not generally be expected that reporters will faith-
fully reflect gene expression dynamics at the single cell
level, and why reporter accuracy depends strongly upon
regulatory context. Surprisingly, this analysis also suggests
that expression noise can improve, rather than degrade,
reporter accuracy. To illustrate these general results, we
then consider the case of Nanog, and find that a range of
commonly used reporter strategies can alter the kinetics
of endogenous Nanog regulatory control mechanisms and
can induce a bifurcation in the underlying dynamics that
gives rise to heterogeneous Nanog expression patterns in
reporter lines that are not representative of the wild-type.
We finish with a discussion of the general relevance of these
results, and some suggestions for designing more effective
reporters.
MATERIALS AND METHODS

Cell culture

Pluripotent mouse embryonic stem cells were cultivated in Dulbecco’s

Modified Eagle Medium with 1% Penicillin/Streptomycin, further supple-

mented with 10% fetal bovine serum, 1� Modified Eagle Medium nones-

sential amino acids, 1� GlutaMAX (GIBCO/Thermo Fisher Scientific,

Waltham, MA), and 50 mM b-Mercaptoethanol. LIF was added at a dilution

of 1:1000 (produced in-house). This is 0i culture medium. For 2i culture me-

dium, 0i medium was supplemented with 1:10,000 10 mM PD0325901

(Cat. No. 4197; Tocris Bioscience, Bristol, UK) and 1:3000 10 mM

CHIR99021 (Cat. No. 27-H76; Reagents Direct, Encinitas, CA). After trans-

fer from 0i media, cells were adapted to 2i media over six passages. Cells

were initially cultured on 0.1% gelatin-coated tissue culture plates pre-

seeded with g-irradiated mouse embryonic fibroblasts. After two passages,

cells were cultivated on 0.1% gelatin-coated tissue culture plates without

mouse embryonic fibroblasts. Cells were maintained at 37�C, 5% CO2,

routinely passaged every other day using Trypsin/EDTA detachment, and

media was replaced every day. The wild-type male embryonic stem cell

line v6.5 was purchased from Novus Biologicals (Cat. No. NBP1-41162;

Littleton, CO). Nanog reporter cell line NHETwas kindly provided by Jian-

long Wang (Icahn School of Medicine, New York, NY). In this cell line,
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originally generated by Maherali et al. (34) using the design of Hatano et al.

(21), the endogenous Nanog open reading frame has been substituted by a

gene cassette containing GFP in series with a Puromycin resistance casette,

separated by an internal ribosome entry site (IRES). For 0i and 2i cultures,

three technical replicates were assessed for Nanog and GFP distributions by

flow cytometry and image analysis at passage number 11 (v6.5s) and pas-

sage number 20 (NHETs, also day 0 in time-course experiments). For undi-

rected differentiation time-course experiments, three replicates from each

initial condition (0i and 2i) were cultured separately for seven days after

withdrawal of LIF from culture media on day 0. Cultures were passaged

every two days and assessed by flow cytometry and image analysis on

days 0, 1, 2, 3, 5, and 7.
Immunocytochemistry and flow cytometry

Cells for flow cytometry were detached using Trypsin/EDTA. Cells cultures

for imaging were briefly washed in PBS. All cells were fixed for 20 min at

room temperature (RT) in 4% Paraformaldehyde in PBS and washed three

times with PBS. Cell and nuclear membranes were permeabilized using

0.1% Triton-X-100 in PBS for 10 min at RT. Unspecific antibody binding

was blocked with 0.1% Triton-X-100 in PBS with 10% fetal bovine serum

for 45 min at RT. Blocked cells were washed three times with blocking

solution and resuspended in blocking solution containing either primary

antibodies overnight at 4�C. Cell suspensions were under continuous agita-
tion and cell plates were under continuous gentle motion. All experimental

results in the main article used directly conjugated primary antibodies:

Mouse anti-mouse Nanog (1:200, Cat. No. 560279, Alexa Fluor 647;

Thermo Fisher Scientific, Waltham, MA), mouse IgG1k isotype control

(Cat. 557732, Alexa Fluor 647; Thermo Fisher Scientific), rat anti-histone

H3 (pS28) (Cat. 560606, Alexa Fluor v450; Thermo Fisher Scientific), and

rat IgG2a k isotype control (Cat. No. 560377, Alexa Fluor v450; Thermo

Fisher Scientific). Samples were washed three times with PBS and for

cell imaging, nuclei were incubated with 20 mg/mL DAPI (Invitrogen,

Carlsbad, CA) for 15 min before imaging. The following nonconjugated

primary antibodies were also used: Mouse anti-Oct3/4 (c-10) (Cat. No.

SC5279; Santa Cruz Biotechnology, Dallas, TX) and murine IgG2b isotype

control (Cat. No. SAB4700729; Sigma-Aldrich, St. Louis, MO). After incu-

bating with primary antibodies overnight, these samples were washed three

times with blocking solution and incubated with secondary antibodies for

1 h at RT. Secondary antibodies: goat anti-mouse (IgG H&L) (Cat. No.

abA11017, Alexa Fluor 488; Abcam, Abcam, Cambridge, UK) and goat

anti-mouse IgG (Cat. No. 405322, Alexa Fluor 647; BioLegend, San Diego,

CA). Images were recorded using an Eclipse Ti microscope (Nikon,

Melville, NY). Cell suspension samples were analyzed using a BD

FACS Aria II fluorescence activated cell sorting (FACS) device and BD

FACSDIVA software (Becton-Dickinson, Oxford, UK). Flow cytometry

analysis was performed using the softwares FlowJo (FlowJo LLC, Ashland,

OR) andMATLAB (TheMathWorks, Natick, MA), and the R programming

language (35,36). Nanog and GFP fluorescence were quantified in terms of

molecules of equivalent soluble fluorophore (MESF) units using Quantum

Alexa Fluor 488 and 647 MESF calibration beads (Bangs Laboratories,

Fishers, IN). Fluorescence probability distributions for nondirected differ-

entiation experiments were aligned at the first percentile of Nanog and

GFP observations between days.
Image analysis

Image analysis was carried out on grayscale fluorescence image sets using

the software CellProfiler (http://cellprofiler.org/) (37). Each image set con-

sisted of a 5�5 grid of adjacent images from a given cell culture. Nuclei

were identified automatically based on DAPI signal and hand curated to

exclude mitotic cells, unresolved or split nuclei, and those at the image

edge. Spatially variable background fluorescence for each fluorescence

channel was accounted for by determining the average illumination correc-
tion function per image set (38). The illumination correction function for

each image was calculated by finding the minimum value pixel within a

given block size (75 pixels) and then smoothed using a polynomial fit

smoothing function. The average illumination correction function for

each image set was subtracted from the Nanog and GFP signal images

before measurement of the mean fluorescence intensity per nuclear area.
Model fitting

Nanog expression distributions from FACS and image analysis were fitted

to a Gaussian mixture model with one or two components using expectation

maximization. Model selection was conducted using Bayes information cri-

terion. When fitting to two-component mixtures, to ensure that robustly

bimodal distributions were identified, we required both components to

have a weight >0.1 and excluded those models for which the peak proba-

bility density of one component was less than the probability density of the

other component at the same point.
Mutual information calculation

Mutual information (MI) was estimated using the James-Stein-type

shrinkage estimator (39). For MI between GFP and Nanog expression

levels, discretization of each variable at each time point was performed

separately via the Bayesian blocks method (40). Because MI is invariant

to smooth reparameterization, we worked with the aligned, rescaled, log-

transformed fluorescence values.
RESULTS

Regulatory noise and reporter accuracy

The first generation of Nanog studies used knock-in
reporters to assess Nanog dynamics (8,21). Due to their
simplicity, these and similar reporter designs are still widely
used to assess expression fluctuations of Nanog and other
key transcription factors in ES cells. In these constructs,
one of the alleles for the gene of interest (for example,
Nanog) is replaced with a reporter gene, often encoding
for a fluorescent protein, perhaps with additional features
such as an antibiotic selection cassette (3). Due to the loss
of one gene copy, these are often described as heterozygous
loss-of-function reporters. For such constructs to be effec-
tive at the single cell level, the fluorescence signal driven
from the reporter allele should accurately represent protein
expression from the wild-type allele. We therefore begin by
considering a simple model of transcriptional coactivity, to
explore the conditions under which two alleles that are sub-
ject to the same regulatory control may either synchronize
or decouple in their activity, and thereby the conditions un-
der which the output of one allele may be used to report on
the other. For simplicity, we will focus on mRNA dynamics,
but similar reasoning may also be extended to the protein
level, and the general conclusions that we draw are not
limited to heterozygous reporters (see Supporting Material
and the following section for details). We will start with a
simple model of a pair of constitutively active alleles before
moving onto more realistic models of Nanog expression in
the following sections.
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Consider the transcriptional dynamics of two alleles of
the same gene in a single cell. Let M1 and M2 denote the
mRNA products of alleles 1 and 2, respectively; let m1(t)
and m2(t) denote the number of mRNA transcripts in
the cell associated with alleles 1 and 2, respectively, at
time t; and assume that expression from both alleles is
governed by linear birth-death processes with production
rates kb

(1), kb
(2) and decay rates kd

(1), kd
(2). Thus, we are con-

cerned with the dynamics of the following system of
reactions:

B
k
ð1Þ
b

%
k
ð1Þ
d

M1 B
k
ð2Þ
b

%
k
ð2Þ
d

M2 : (1)

This is clearly a simplistic view of transcription, yet it

suffices to illustrate some of the essential issues regarding
the reliability of reporters and is analytically tractable.
Because the alleles are not coupled, they act independently
and the stationary joint probability mass function (PMF) for
this process is the product of two Poisson distributions
(Fig.1 A), as follows:

pðm1;m2Þ ¼ lm1

1

m1!
e�l1 � lm2

2

m2!
e�l2 ; (2)

where li ¼ k
ðiÞ
b =k

ðiÞ
d for i ¼ 1,2. As we have not allowed for
coregulation of expression, this model is rather artificial. In
reality, we expect that if the alleles are both under the same
promoter control then they will be regulated by the same up-
stream factors, and this coregulation may coordinate their
dynamics. To couple the alleles, we allow the transcription
A B

FIGURE 1 Reporter accuracy depends upon regulatory context. Identical allel

behave independently when there is no common upstream regulator or regulator

fluctuates. (Top panels) Shown here are fluctuations of upstream regulator conce

dispersion q ¼ 0.02 (B) and high regulator dispersion q ¼ 0.5 (C). (Bottom pane

tributions are the product of two Poisson distributions (A, Eq. 2) and bivariate neg

All distributions use l ¼ 50 for both alleles and contours show probabilities: 0.00

binomial’’. Scatter plots, histograms, andMI (in nats) are shown for a random sam

figure in color, go online.
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rates to be driven by a shared upstream regulator X. Let x
denote the concentration of X and let r(x) be the stationary
probability density function for x. Assuming that the mRNA
birth rate is now given by k

ðiÞ
b x, the stationary joint PMF is

then obtained from Bayes’ theorem, as follows:

pðm1;m2Þ ¼
Z N

0

pðm1;m2 j xÞrðxÞdx;

¼
Z N

0

ðl1xÞm1

m1!
e�l1x � ðl2xÞm2

m2!
e�l2xrðxÞdx:

(3)

Because the joint PMF p(m1,m2) depends upon the distribu-
tion of the upstream regulator, an appropriate form for
r(x) must be chosen. It is commonly observed that pro-
tein concentrations are Gamma-distributed, so this is a nat-
ural choice (41). In the case x � Gamma(r,q), and the joint
PMF is as follows:

pðm1;m2Þ ¼ Gðm1 þ m2 þ rÞ
m1! m2! GðrÞ ð1� p� qÞrpm1qm2 ; (4)

where p ¼ l1q/[1 þ q(l1 þ l2)], q ¼ ap with a ¼ l2 ¼ l1,
and G is the Gamma function. The marginal distributions for
the two allele products are then negative binomials (NB) and
the joint PMF is a bivariate negative binomial distribution
(BNB), as shown in Fig. 1, B and C. If the two alleles are
kinetically identical (l1 ¼ l2), then the marginal distribu-
tions will be identical, and the product of either allele may
be used to report on the other at the population level
assuming that the same dynamics occur within each cell
in the population. However, this does not guarantee any
C

es of the same gene produce mRNA molecules M1 and M2. Alleles 1 and 2

concentration (x) is constant, yet become coupled if the upstream regulator

ntration. Panels show constant x (A) and x � Gamma(r,q), for low regulator

ls) Shown here are joint and marginal distributions for m1 and m2. Joint dis-

ative binomials, BNB(r,p), with p ¼ q for identical alleles (B and C; Eq. 4).

01 inner, 0.0003 middle, and 0.0005 outer. NB(r,p/(1�p)) denotes ‘‘negative

ple of 1000 draws. The same scales apply to all comparable plots. To see this
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association between the allelic outputs at the individual cell
level. To measure the degree of association between alleles
within an individual cell, we must consider the covariance
between their outputs, which is easily calculated in this
case (see Supporting Material) and has a particularly simple
form, given as follows:

Covðm1;m2Þ ¼ l1l2 VarðxÞ: (5)

Thus, the covariance between the two allele products is pro-

portional to the variance of the upstream regulator and the
sensitivities of the two alleles to the upstream regulator.
Whereas the form of joint PMF given in Eq. 4 depends
upon the upstream regulator being Gamma-distributed,
Eq. 5 holds for any upstream probability distribution r(x),
including, for example, the Gumbel distribution, which
has been used to characterize extrinsic noise (42) (see Sup-
porting Material). A comparable result may be obtained
when transcription from each allele occurs at rate kb

(i)f(x),
for any smooth function f(x) (see Supporting Material).
Similarly, it may also be shown that the correlation between
the two alleles depends in a monotonic positive way on the
Fano factor (or index of dispersion) of the upstream regu-
lator (see Supporting Material).

Because the covariance between the two alleles is propor-
tional to the variance of the upstream regulator, these results
indicate that regulatory noise upstream can increase the
coordination of alleles downstream and therefore improve re-
porter accuracy. Thus, although this model is the simplest
possible to account for stochastic transcription from two
alleles, it nevertheless provides insight into the effect of
extrinsic fluctuations in a common upstream regulator on
the coordination of two alleles. However, this model does
not account for the fact that transcription from each allele
typically occurs in bursts (43–46), and therefore cannot
account for the effects of intrinsic noise on reporter accuracy.

A simplemodel of bursty transcription from a pair of alleles
may be obtained by modifying this basic model to allow each
allele to have two transcriptional states—one with a high rate
of transcription, the other with a low rate of transcription—
that they switch between stochastically at constant rates
(45). In this case, the effective rates of transcription from
each allele are now themselves stochastic processes and the
mRNA coexpression dynamics are therefore described by a
doubly stochastic process, which has accordingly more com-
plex solutions (47). However, if the rate of switching between
transcriptional states is slow with respect to mRNA degrada-
tion rate, then approximate solutions to this systemmay be ob-
tained, and the covariance between allelesmay again be found
analytically (see Fig. S1 and Supporting Material for details).
In particular, assuming that transcription from both alleles is
driven by the same upstream regulator X and both alleles
are kinetically identical, the covariance is as follows:

Covðm1;m2Þ ¼ ðwlþ þ ð1� wÞl�Þ2 VarðxÞ; (6)
where w is the proportion time each allele spends in the
active state, and lþ þ l� are the effective transcription rates
from the active and inactive states, respectively. If w ¼ 1,
then then both alleles are constitutively active, and Eq. 6 re-
duces to Eq. 5 with lþ ¼ l1 ¼ l2. However, for w < 1 this
equation highlights the different effects that intrinsic and
extrinsic noise can have on allelic coordination. Because
the covariance between alleles is again proportional to the
variance of the upstream regulator, extrinsic fluctuations
upstream always increase the covariance between alleles
downstream and thereby improve reporter accuracy, as
before. By contrast, because wlþ þ (1 – w) l� < lþ,
intrinsic noise due to transcriptional bursting always de-
creases the covariance between alleles and so always com-
promises reporter accuracy. These observations are in
accordance with previous work in which dual and single
allele reporters were used to assess the relative effects of
intrinsic and extrinsic noise on gene expression (48–53).

Taken together, these results indicate that a reporter’s
accuracy depends on the regulatory context in which it is
placed, here represented by the dynamics of the upstream
regulator X, which are external to its design. In a complex
regulatory environment, these external factors may not be
fully (or even partially) known, and their effect on the re-
porter may be correspondingly hard to predict or control.
Furthermore, because extrinsic regulatory factors are not
usually constitutively expressed (as assumed in this basic
model) but rather are themselves regulated by complex
mechanisms—often involving feedback with the product
of the gene being monitored—the dynamics of the regula-
tory environment may be intrinsically coupled to that of
the target gene and its reporter(s). In this case, the insertion
of a reporter construct may have unforeseen effects on
endogenous regulatory kinetics, and change the dynamics
of the system being studied in unpredictable ways. Because
the ways in which such perturbations may arise will depend
upon the particular details of system under study, it is help-
ful to consider a specific example. Here we examine the case
of Nanog, an important transcriptional regulator of pluripo-
tency in ES cells, which is known to be regulated by a com-
plex network of direct and indirect feedback loops and for
which different reporters have given different assessments
of Nanog dynamics.
Reporter perturbation of Nanog dynamics

It has been widely observed that Nanog expression fluctuates
stochastically in individual ES cells (8,9,11,26,29,32,33).
However, different reporter constructs have given different as-
sessments of the strength and developmental significance of
these fluctuations (4,8,14–16,19,22,25) and some concerns
have been raised that the use of reporters may be introducing
artifacts that are confounding, rather than clarifying, our un-
derstanding of pluripotency (4,5). To address this issue, we
Biophysical Journal 112, 2641–2652, June 20, 2017 2645
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will consider a simple mathematical model of Nanog dy-
namics inEScells in the presenceof different kinds of reporter
constructs. Nanog levels are regulated in pluripotent cells by a
complex network of molecular interactions that involve both
protein-protein and protein-DNA interactions (54–57). Given
the complexity of this regulation, the fully stochastic frame-
work used in the section above is not practical because all
but the simplest stochastic processes are analytically intrac-
table (58). Sowe instead use an ordinary differential equation
approach. A number of groups have adopted a similar strategy
when modeling these dynamics mathematically (9,59,60).
At the core of this extended regulatory network is a series
of nonlinear positive feedback loops that are dependent on
Nanog for their function (24,61). Because these feedback
loops are central to Nanog regulation, and to maintain a trac-
table mathematical model of general relevance, wewill focus
on this aspect of Nanog regulation here. Such positive feed-
back mechanisms naturally give rise to switchlike dynamics;
they are correspondingly central tomany kinds of cell fate de-
cisions (62–64). Therefore, the model of positive feedback
that we outline below is of general relevance to the design
of reporters for other similarly regulated lineages specifying
master transcription factors.
Mathematical model

We consider the following set of ordinary differential equa-
tions as a simple model of Nanog protein dynamics in wild-
type cells:

dn1
dt

¼ cb þ cf n
H

KH þ nH
� cdn1; (7)

dn2 cf n
H

dt
¼ cb þ

KH þ nH
� cdn2; (8)

where ni denotes the concentration of the Nanog protein
output of allele i ¼ 1,2. The first terms on the right-hand
sides of these equations account for baseline production at
a constant rate cb; the second terms are Hill functions that
account for feedback-enhanced production at a rate depen-
dent on total Nanog concentration n ¼ n1 þ n2, up to a
maximum rate cf; and the third terms account for Nanog pro-
tein decay at constant rate cd. Hill functions are commonly
used to model feedback processes, and may be derived as
the effective production rate from a directly autoregulated
two-state gene with stochastic transcriptional bursting
(65), or as the result of more complex indirect feedback
mechanisms (66). These equations therefore implicitly ac-
count for both direct Nanog autoregulation (61) and indirect
feedback mechanisms in the core ES cell circuit (24,67)
and thereby the effects of auxiliary factors such as other
transcriptional regulators via their effect on the model rate
constants, but for mathematical simplicity, the expression
of these factors is not modeled explicitly. Adding these
2646 Biophysical Journal 112, 2641–2652, June 20, 2017
equations, we obtain an ordinary differential equation for
the total Nanog protein concentration n, as follows:

dn

dt
¼ 2cb þ 2

cf n
H

KH þ nH
� cdn: (9)

To better understand the model dynamics, it is convenient to
nondimensionalize this equation. Doing so, using the scal-
ings n ¼ 2cf c

�1
d n, and t ¼ cd

�1t, we obtain the following:

dn

dt
¼ aþ nH

gH þ nH
� n; (10)

where n is the dimensionless total Nanog concentration and
t is dimensionless time. The dimensionless constants a ¼
cb/cf and g ¼ gwt ¼ cdK/2cf describe the relative strength
of the basal and positive feedback enhanced production
rates, respectively. Equation 10 has either one or two stable
equilibrium solutions depending on the relative sizes of a, g,
and the Hill coefficientH. In particular, forH> 1, two bifur-
cation curves in the ag plane may be found (see Supporting
Material). The case H ¼ 2 suffices to illustrate the gen-
eral structure of the resulting classification diagram (see
Fig. 2 A). In this case, the bifurcation curves are as follows:

g5 ðaÞ ¼ �
�
a2 � 5

2
a� 1

8

�
5

�
1

4
� 2a

�3
2

: (11)

If the model parameters fall inside the region enclosed
by these curves, then Nanog expression dynamics are bista-
ble; if the model parameters fall outside this region, then
Nanog expression dynamics are monostable. In the presence
of molecular noise, which is inherent to the intracellular
microenvironment, bistability can give rise to coexisting
subpopulations of phenotypically distinct cells within an
isogenic population under the same environmental condi-
tions (63). Thus, both homogeneous and heterogeneous
Nanog expression patterns are allowed by this model, de-
pending on whether the underlying dynamics are monosta-
ble or bistable. It should therefore be expected that Nanog
expression patterns in ES cell populations will vary sub-
stantially under different experimental conditions, as is
commonly observed (4,19,23), depending on how they stim-
ulate Nanog feedback mechanisms. More significantly, it
should also be expected that any genetic interventions that
perturb the kinetics of Nanog feedback have the potential
to push the dynamics in or out of the bistable regime,
thereby affecting a qualitative change in expression patterns.

To see this, consider the case of a heterozygous knock-in
reporter, in which one allele produces an inert reporter and
one allele is left intact. In this case, the wild-type kinetics
described by Eqs. 7 and 8 are modified as follows:

dn

dt
¼ cb þ cf n

H

KH þ nH
� cdn; (12)
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FIGURE 2 Perturbation of Nanog dynamics by reporters. (A) Given here is the wild-type: Nanog protein is produced from both alleles. Monostable or

bistable dynamics can occur depending on a and g. (B) Given here are knock-in reporters: one allele is left intact and one allele produces an inert reporter

protein. Loss of one Nanog allele reduces Nanog production by a factor of 2, thereby doubling g. (C) Given here are pre-/postreporters: both alleles encode

for Nanog;m copies of a self-cleaving reporter protein are also transcribed from one allele. In the case shown, the transcription rate from the reporter allele is

reduced by a factor 0% em % 1, thus increasing g by a factor 2/(1þ em). If em decreases withm, these reporters become more prone to systematic errors with

each additional insert. (D) Given here are fusion reporters: one allele encodes for Nanog; the other for a fusion of Nanog and a reporter protein. Transcription

rate from the reporter allele is altered by factor 0 % em % 1 as for the PP reporter, but the reporter fusion also reduces Nanog feedback functionality by a

factor 0 % d % 1. Overall, this increases g by a factor 2/(1 þ ed). Hatching shows regions of the parameter plane at risk of qualitative changes in behavior

when the reporter is introduced to the wild-type system. The upper-hatched regions are areas of parameter space for which the wild-type system is bistable,

but the reporter system with the same underlying values of cb, cf, cd, and K is monostable. The lower-hatched regions are areas of parameter space for which

the wild-type system is monostable and the knock-in system is bistable. To see this figure in color, go online.
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dr cf n
H

dt
¼ cb þ

KH þ nH
� cdr; (13)

where r is the reporter protein concentration. For simplicity

we have assumed that the reporter and Nanog protein half-
lives are perfectly matched. However, this assumption may
be relaxed without altering conclusions qualitatively.
Details of the dynamics when decay rates are mismatched
are given in the Supporting Material. The dimensionless
equation for total Nanog concentration in the reporter line
is as follows:

dn

dt
¼ aþ nH

gH
ki þ nH

� n; (14)

where a ¼ cb/cf as before, but gki ¼ cdK/cf ¼ 2gwt (see
Supporting Material for details). In this case, the loss of
Nanog production from one allele diminishes the Nanog
production rate by a factor of 2, which weakens the endog-
enous feedback mechanisms and thereby doubles the
parameter g. Because for fixed a the magnitude of g deter-
mines if the dynamics are monostable or bistable, and
therefore if Nanog is homogeneously or heterogeneously
expressed in the population, this change can induce a hetero-
geneous Nanog expression pattern in the reporter cell line
that is not found in the wild-type (or vice versa). Areas in
the ag plane for which the map (a,g) 1 (a, 2g) crosses
one of the bifurcation curves in Eq. 11 are at risk of this
kind of perturbation. Importantly, this problem is not
restricted to knock-in lines: similar issues arise with a
wide range of other reporters, in both single-allele and
dual-allele reporter systems. Fig. 2 summarizes similar ana-
lyses for some other reporters. See Supporting Material
for full details of calculations for these and a range of other
reporter constructs.

For example, instead of replacing the Nanog protein cod-
ing region on one allele by that of a fluorescence reporter,
the reporter construct may be inserted immediately pre/
post the Nanog gene using a 2A self-cleaving peptide or in-
ternal ribosome entry site. If this insertion alters the Nanog
mRNA transcription rate from that of the allele, then the re-
sulting mismatch in transcription rates can lead to a pertur-
bation similar to that of the knock-in. As there are many
factors that influence transcription rate—including gene
length, proximal pausing, and recruitment of RNA polymer-
ase and cofactors (46,68)—it is reasonable to assume that
insertion of a reporter construct has the potential to alter
transcription rate through interference with one or more of
these factors in a manner that is likely to be context-spe-
cific for each given gene. In this case, assuming that the
transcription rate from the reporter allele is reduced by a
factor of 0 % e % 1, the insertion changes g by a factor
of 2/(1þ e) (see Fig. S2 and Supporting Material for full de-
tails). Thus, so long as the insertion does not completely
Biophysical Journal 112, 2641–2652, June 20, 2017 2647
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block transcription from the reporter allele (in which case,
e ¼ 0), pre-/postreporters are less likely than knock-in re-
porters to induce qualitative changes in Nanog expression
dynamics, yet they are still subject to a similar type of sys-
tematic risk (compare the at-risk regions in Fig. 2, B and C).
Furthermore, if multiple (m) reporters are inserted then
this affect is compounded, assuming that the transcription
rate from the reporter allele changes by a factor of 0 %
em < e. Thus, although multiple reporter additions may
improve fluorescent signal, the risk of inducing a qualitative
change in dynamics is increased with each additional re-
porter insert (see Supporting Material for more details).
Similarly, fusion reporters, which encode a fusion of Nanog
and a reporter protein from the reporting allele(s), are also
susceptible to related problems. Assuming that the fusion
reporter alters the transcription rate from the reporter allele
by a factor of e, and fusion of the reporter protein to Nanog
reduces its functional efficacy by a factor 0% d% 1, fusion
reporters change g by a factor of 2/(1 þ ed) (see Supporting
Material for full details). In this case, the risk of a qualitative
perturbation to the dynamics increases with both the extent
to which the reporter perturbs transcription rate (e) and the
extent to which the attachment of the reporter protein to
Nanog compromises Nanog function (d).

Taken together, these theoretical considerations suggest
that both technical and systematic errors can arise when us-
ing genetic reporters for Nanog. Technical errors occur due
to the inevitable temporal mismatch between Nanog and re-
porter expression within individual cells, due, for example,
to the effects of intrinsic noise on gene expression (as
described in the previous section); systematic errors occur
when unforeseen interactions between the reporter construct
and the endogenous pluripotency regulatory circuitry induce
qualitative changes in dynamics in the reporter cell line that
are not representative of the wild-type (as described above).

Experimental results

To determine the extent to which these issues arise in exper-
iment, we compared Nanog expression patterns in wild-
type (male v6.5) mouse ES cells to those in a heterozygous
knock-in reporter ES cell line with the same male v6.5 ge-
netic background, in which the Nanog coding sequence
was replaced with a GFP-IRES-puro reporter on one allele
(34) (designated NHET cells). Cells were cultured in stan-
dard culture conditions (0i, serum plus LIF) and 2i condi-
tions (0i conditions with the addition of mitogen-activated
protein kinase and glycogen synthase kinase with three
inhibitors), which maintain ‘‘ground state’’ pluripotency
(69). Homogeneous Oct3/4 expression was confirmed via
immunostaining in all culture conditions (Fig. S3). Nanog
expression in individual cells was assessed via fluorescence
immunolabeling and quantified by flow cytometry (Fig. 3)
and image analysis (Fig. S4). Substantial variability in
Nanog expression was observed in both v6.5 and NHET
lines in 0i conditions (Fig. 3 A; Fig. S4). In accordance
2648 Biophysical Journal 112, 2641–2652, June 20, 2017
with previous reports, substantially less variability was
observed in 2i conditions (Fig. 3 A; Fig. S4) (69). Distinctly
bimodal GFP fluorescence was observed for NHET reporter
cells in 0i cultures, with cell clusters containing both GFP
high cells and GFP low cells present in abundance. In
both conditions a clear mismatch between Nanog and GFP
expression levels was observed in a substantial proportion
of cells (Fig. 3 B). This was most apparent in 0i conditions,
where, of the highest 20% of Nanog-expressing cells, 23%
were GFP low and of the lowest 20% of Nanog-expressing
cells, 11%were GFP high. In 2i conditions the percentage of
GFP low cells was consistent across the Nanog distribution,
suggesting that GFP status was not representative of Nanog
expression. In addition, within the GFP high subset there
was no clear association between Nanog and GFP expres-
sion levels (Fig. 3 B). Although 2i conditions showed
more consistent Nanog-GFP coexpression patterns, there
was a clear bias toward high GFP levels independently
of Nanog expression (Fig. 3 B). These observations are
indicative of technical errors due to expression noise (as
described in the first section of this article) and we caution
that some substantial contamination should be expected
subsequent to cell sorting based on GFP signal as a proxy
for Nanog when using such lines.

To determine whether Nanog expression was perturbed
by introduction of the knock-in reporter, we compared
Nanog distributions between NHET and wild-type v6.5
cell lines using immunostaining and flow cytometry. In
NHET cells, the Nanog distribution in 0i conditions ex-
hibited a wide, flattened distribution. Fitting of this data to
a Gaussian mixture model with one or two components re-
vealed that the two-component model best described the
data, suggesting the presence of two coexisting subpopula-
tions of cells characteristic of bistability in the underlying
dynamics (Fig. 3 B). By contrast, in wild-type v6.5 cells,
the Nanog distribution in 0i conditions was less broad and
was better fit by a single-component model, suggesting
monostability in the underlying dynamics (Fig. 3 B). To
establish the robustness of these results, we also assessed
Nanog expression using image analysis, and these broad
conclusions were confirmed (Fig. S4 A). Taken together,
these analyses suggest that the bimodal expression patterns
observed in 0i conditions using the NHET line may be due
to systematic perturbation of the Nanog regulatory network
by the reporter, as predicted by theory. By contrast, both
wild-type and NHET cells expressed similar, more compact,
Nanog distributions in 2i conditions, with neither showing
evidence of bimodality. This suggests that in 0i conditions,
the wild-type system lies within the at-risk region of the ag
parameter plane, whereas in 2i conditions, the system lies
outside the at-risk region.

To further investigate the extent to which environmental
changes might affect the fidelity of the reporter output, we
also sought to assess the association between Nanog and
GFP during the process of cellular differentiation. Starting



A C

D

B

FIGURE 3 Nanog expression in wild-type and reporter cell lines. (A) Shown here are wild-type and Nanog reporter (NHET) cell cultures in 0i and 2i

conditions. Nanog immunofluorescence is in red, and direct GFP fluorescence is in green. White arrows indicate Nanog low/high cells (wild-type) or cells

in which there is a Nanog-GFP mismatch (NHET). Grayscale fluorescence signals are shown Fig. S3. Scale bar represents 50 mm. (B) Given here are repre-

sentative flow cytometry distributions of Nanog in v6.5 wild-type cells (top) and Nanog-GFP joint distributions in NHET cells (bottom). Dashed-black lines

show components of fit to a two-component Gaussian mixture model. Dashed-gray threshold lines indicate regions of Nanog high/low expression (highest

20% and lowest 20% of cells). Dashed-green lines indicate regions of GFP high/low expression (minimum between two peaks). Percentages show propor-

tions of cells in the relevant subpopulations. (C) Shown here are changing Nanog and GFP distributions during undirected differentiation subsequent to LIF

withdrawal starting from 0i (top) and 2i (bottom) cultures. Data from days 0, 1, 2, 3, 5, and 7 are shown. (D) Given here is MI between GFP and Nanog during

differentiation. Results of three experimental repeats are shown. To see this figure in color, go online.
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in 0i or 2i conditions, NHET cell cultures were allowed
to undergo undirected differentiation by withdrawing LIF
for a period of seven days. Fig. 3 C and Fig. S4 B show the
evolving joint distributions for Nanog andGFP coexpression.
From 0i conditions, the proportion of cells in the GFP high
population gradually decreased over time and the corre-
sponding Nanog distribution concomitantly evolved from
an initial broad, flat distribution to a narrow distribution
with lower average expression, indicating gradual loss of
Nanog expression. From 2i conditions, both GFP and Nanog
levels gradually declined over time without qualitative
change in distribution shape. To quantify the association be-
tween Nanog and GFP levels, we calculated the mutual infor-
mation (MI) between their expression patterns as follows:

Iðn; rÞ ¼
Z N

0

Z N

0

pðn; rÞlog
�

pðn; rÞ
pðnÞpðrÞ

�
dn dr; (15)
where p(n,r) is the joint probability density function for
Nanog and GFP coexpression, and p(n) and p(r) are the mar-
ginal probability density functions for Nanog and GFP
expression, respectively. Mutual information is a powerful
generalization of traditional measures of association, such
as correlation, which is able to identify nonlinear relation-
ships between variables (70). In this context, the MI pro-
vides an unbiased measure of the amount of information
that knowledge of a cell’s GFP status provides about its
Nanog status (zero MI indicates complete independence;
low values indicate near independence; high values indicate
strong association). In all cases, the mutual information be-
tween Nanog and GFP exhibited a mild transient increase,
indicating a slight increase in strength of association during
the early stages of differentiation (Fig. 3 D; Fig. S4 C;
compare the MI values in these plots with those in Fig. 1
for an informal assessment of their relative size). However,
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mutual information was always low, indicating that Nanog
and GFP signals are only weakly related both in and out
of equilibrium (Fig. 3 C).
DISCUSSION

The advantages of genetic reporters are substantial: they
provide a means to investigate expression dynamics of
hard-to-monitor proteins and enable live cell observation,
tracking, and selection. By assessing expression directly
via fluorescence rather than indirectly via immunolabeling
they also provide a more transparent way to assess protein
activity, free of the reproducibility issues associated with
the use of antibodies. However, it is generally accepted
that genetic reporter systems are not perfect: quantification
is normally relative, reporter fluorescence is an imperfect
proxy-measurement for the variable of real interest, and it
is known that wild-type dynamics may be compromised,
for example by fusing cumbersome fluorescent proteins to
(often relatively small) proteins of interest (71). To assess
the importance of these issues, the advantages and disadvan-
tages of different types of reporter are usually considered
purely in terms of their technical characteristics, or with
only limited concern for their regulatory context, for
instance to match reporter half-life to that of the protein
of interest (72). Here, we have explored how intrinsic and
extrinsic noise and reporter interactions with endogenous
regulatory mechanisms affect reporter accuracy, focusing
on Nanog as an example. Although technical issues relating
to noise and reporter protein mismatch are generally well
accepted, the systematic limitations we have identified,
have not been well appreciated. Yet, our results show that
if such limitations are not taken into account then confound-
ing results can follow. The example of Nanog shows how a
whole field of study can become complicated by these
issues.

Taken together, this work suggests several practical
guidelines to help prevent unforeseen issues with reporter
observations: first, the scale at which the reporter is used
should be considered. In particular, for assays involving
cell sorting based upon reporter signal, accuracy should be
tested at the single cell level before subsequent functional
assays. Second, systematic limitations of reporters, due to
interactions between the reporter and its regulatory context,
should also be considered. The most appropriate reporter
strategy will be determined by a trade-off between the
type of spatial and temporal information required, the
strength of the reporter signal required, and the likelihood
that the reporter chosen will qualitatively perturb the endog-
enous kinetics. For example, reporters that produce multiple
copies of a fluorescent protein per copy of the protein of
interest naturally produce a stronger fluorescence signal,
yet their construction involves greater genetic intervention,
so they also carry a correspondingly higher systematic risk
(see Fig. 2; Supporting Material). Before designing or using
2650 Biophysical Journal 112, 2641–2652, June 20, 2017
such reporters the benefits of increased signal should
therefore be weighed against the increased possibility of
systematic errors. For genes that are regulated by positive
feedback mechanisms—which includes many developmen-
tally important factors (24,59,62,64)—the risk of systematic
failures is greatest for knock-in reporters and least for BAC
reporters, and single allele reporters carry less systematic
risk than dual allele reporters (see Supporting Material).

Because systematic perturbations depend on the details of
the regulatory kinetics of particular system under study, it is
difficult to determine a priori when they will occur. One po-
tential strategy is to engineer two separate reporter cell lines
for the same factor: one in which expression of the gene of
interest is monitored in one color, and expression of an inert
downstream target of the gene of interest (which does not
affect the dynamics of the upstream regulator either directly
or indirectly) is monitored in a different color; and a second
in which only the downstream gene is monitored and the
gene of interest is left unperturbed. Potential systematic per-
turbations to the dynamics of the upstream gene may then be
identified by careful comparison of the reporter distributions
for the downstream target in the two reporter cell lines. In all
cases, because reporter accuracy depends intimately on reg-
ulatory context, and the same reporter in the same cells may
fail in some experimental conditions and succeed in others,
quality controls should be conducted for all experimental
conditions under consideration.
SUPPORTING MATERIAL

Supporting Materials and Methods, four figures, and two tables are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)

30509-X.
AUTHOR CONTRIBUTIONS

R.C.G.S. and B.D.M. wrote the article. R.C.G.S. and P.S.S. did the exper-

iments. R.C.G.S., P.S.S., S.J.R., and B.D.M. did the mathematical

modeling. R.C.G.S., A.S., S.F., and H.A.H. analyzed the experimental

data. R.C.G.S. and B.D.M. designed the study.
ACKNOWLEDGMENTS

We thank Neil Smyth for the provision of LIF and Jianlong Wang for the

NHET cell line.

This work was funded by Biotechnology and Biological Sciences Research

Council (BBSRC) grant No. BB/L000512/1 and Engineering and Physical

Sciences Research Council (EPSRC) grant No. EP/K041096/1. H.A.H. ac-

knowledges a Royal Society University Research Fellowship.
REFERENCES

1. Prasher, D. C., V. K. Eckenrode, ., M. J. Cormier. 1992. Primary
structure of the Aequorea victoria green-fluorescent protein. Gene.
111:229–233.

http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)30509-X
http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)30509-X
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref1
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref1
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref1


Nanog and the Problem of Measurement
2. Chalfie, M., Y. Tu,., D. C. Prasher. 1994. Green fluorescent protein as
a marker for gene expression. Science. 263:802–805.

3. Chalfie, M., and S. R. Kain. 2005. Green Fluorescent Protein:
Properties, Applications and Protocols, 2nd Ed. John Wiley and
Sons, Edison, NJ.

4. Faddah, D. A., H. Wang,., R. Jaenisch. 2013. Single-cell analysis re-
veals that expression of Nanog is biallelic and equally variable as that
of other pluripotency factors in mouse ESCs. Cell Stem Cell. 13:23–29.

5. Filipczyk, A., K. Gkatzis, ., T. Schroeder. 2013. Biallelic expression
of Nanog protein in mouse embryonic stem cells. Cell Stem Cell.
13:12–13.

6. Wigner, E. 1963. The problem of measurement. Am. J. Phys. 31:6–15.

7. Potten, C. S., and M. Loeffler. 1990. Stem cells: attributes, cycles,
spirals, pitfalls and uncertainties. Lessons for and from the crypt.
Development. 110:1001–1020.

8. Chambers, I., J. Silva, ., A. Smith. 2007. Nanog safeguards pluripo-
tency and mediates germline development. Nature. 450:1230–1234.

9. Kalmar, T., C. Lim, ., A. Martinez Arias. 2009. Regulated fluctua-
tions in Nanog expression mediate cell fate decisions in embryonic
stem cells. PLoS Biol. 7:e1000149.

10. Hayashi, K., S. M. C. S. Lopes,., M. A. Surani. 2008. Dynamic equi-
librium and heterogeneity of mouse pluripotent stem cells with distinct
functional and epigenetic states. Cell Stem Cell. 3:391–401.

11. Canham, M. A., A. A. Sharov, ., J. M. Brickman. 2010. Functional
heterogeneity of embryonic stem cells revealed through transla-
tional amplification of an early endodermal transcript. PLoS Biol.
8:e1000379.

12. Trott, J., K. Hayashi,., A. Martinez-Arias. 2012. Dissecting ensemble
networks in ES cell populations reveals micro-heterogeneity under-
lying pluripotency. Mol. Biosyst. 8:744–752.

13. Kumar, R. M., P. Cahan, ., J. J. Collins. 2014. Deconstructing tran-
scriptional heterogeneity in pluripotent stem cells. Nature. 516:56–61.

14. Martinez Arias, A., and J. M. Brickman. 2011. Gene expression hetero-
geneities in embryonic stem cell populations: origin and function. Curr.
Opin. Cell Biol. 23:650–656.

15. Cahan, P., and G. Q. Daley. 2013. Origins and implications of pluripo-
tent stem cell variability and heterogeneity. Nat. Rev. Mol. Cell Biol.
14:357–368.

16. Torres-Padilla, M.-E., and I. Chambers. 2014. Transcription factor het-
erogeneity in pluripotent stem cells: a stochastic advantage. Develop-
ment. 141:2173–2181.

17. Chambers, I., D. Colby, ., A. Smith. 2003. Functional expression
cloning of Nanog, a pluripotency sustaining factor in embryonic
stem cells. Cell. 113:643–655.

18. Mitsui, K., Y. Tokuzawa, ., S. Yamanaka. 2003. The homeoprotein
Nanog is required for maintenance of pluripotency in mouse epiblast
and ES cells. Cell. 113:631–642.

19. Miyanari, Y., and M.-E. Torres-Padilla. 2012. Control of ground-state
pluripotency by allelic regulation of Nanog. Nature. 483:470–473.

20. Saunders, A., F. Faiola, and J. Wang. 2013. Concise review: pursuing
self-renewal and pluripotency with the stem cell factor Nanog. Stem
Cells. 31:1227–1236.

21. Hatano, S.-Y., M. Tada,., T. Tada. 2005. Pluripotential competence of
cells associated with Nanog activity. Mech. Dev. 122:67–79.

22. Abranches, E., E. Bekman, and D. Henrique. 2013. Generation and
characterization of a novel mouse embryonic stem cell line with a
dynamic reporter of Nanog expression. PLoS One. 8:e59928.

23. Silva, J., J. Nichols, ., A. Smith. 2009. Nanog is the gateway to the
pluripotent ground state. Cell. 138:722–737.

24. MacArthur, B. D., A. Sevilla, ., I. R. Lemischka. 2012. Nanog-
dependent feedback loops regulate murine embryonic stem cell hetero-
geneity. Nat. Cell Biol. 14:1139–1147.

25. Abranches, E., A. M. V. Guedes, ., D. Henrique. 2014. Stochastic
NANOG fluctuations allow mouse embryonic stem cells to explore plu-
ripotency. Development. 141:2770–2779.
26. Xenopoulos, P., M. Kang,., A.-K. Hadjantonakis. 2015. Heterogene-
ities in Nanog expression drive stable commitment to pluripotency in
the mouse blastocyst. Cell Reports. 10:1508–1520.

27. Toyooka, Y., D. Shimosato,., H. Niwa. 2008. Identification and char-
acterization of subpopulations in undifferentiated ES cell culture.
Development. 135:909–918.

28. Kobayashi, T., H. Mizuno, ., R. Kageyama. 2009. The cyclic gene
Hes1 contributes to diverse differentiation responses of embryonic
stem cells. Genes Dev. 23:1870–1875.

29. Singer, Z. S., J. Yong,., M. B. Elowitz. 2014. Dynamic heterogeneity
and DNA methylation in embryonic stem cells.Mol. Cell. 55:319–331.

30. Skinner, S. O., H. Xu,., I. Golding. 2016. Single-cell analysis of tran-
scription kinetics across the cell cycle. eLife. 5:e12175.

31. Ochiai, H., T. Sugawara, ., T. Yamamoto. 2014. Stochastic promoter
activation affects Nanog expression variability in mouse embryonic
stem cells. Sci. Rep. 4:7125.

32. Filipczyk, A., C. Marr, ., T. Schroeder. 2015. Network plasticity of
pluripotency transcription factors in embryonic stem cells. Nat. Cell
Biol. 17:1235–1246.

33. Cannon, D., A. M. Corrigan, ., J. R. Chubb. 2015. Multiple cell and
population-level interactions with mouse embryonic stem cell hetero-
geneity. Development. 142:2840–2849.

34. Maherali, N., R. Sridharan,., K. Hochedlinger. 2007. Directly reprog-
rammed fibroblasts show global epigenetic remodeling and widespread
tissue contribution. Cell Stem Cell. 1:55–70.

35. R Core Team. 2016. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria
https://www.R-project.org/.

36. Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis.
Springer, New York http://ggplot2.org.

37. Kamentsky, L., T. R. Jones,., A. E. Carpenter. 2011. Improved struc-
ture, function and compatibility for CellProfiler: modular high-
throughput image analysis software. Bioinformatics. 27:1179–1180.

38. Bray, M. A., M. S. Vokes, and A. E. Carpenter. 2015. Using CellProfiler
for automatic identification and measurement of biological objects in
images. Curr. Proto. Mol. Biol. 109:14.17.1–14.17.13.

39. Hausser, J., and K. Strimmer. 2009. Entropy inference and the James-
Stein estimator, with application to nonlinear gene association net-
works. J. Mach. Learn. Res. 10:1469–1484.

40. Scargle, J. D. 1998. Studies in astronomical time series analysis. V.
Bayesian blocks, a new method to analyze structure in photon counting
data. Astrophys. J. 504:405–418.

41. Friedman, N., L. Cai, and X. S. Xie. 2006. Linking stochastic dynamics
to population distribution: an analytical framework of gene expression.
Phys. Rev. Lett. 97:168302.

42. Sherman, M. S., K. Lorenz, ., B. A. Cohen. 2015. Cell-to-cell vari-
ability in the propensity to transcribe explains correlated fluctuations
in gene expression. Cell Syst. 1:315–325.

43. Golding, I., J. Paulsson,., E. C. Cox. 2005. Real-time kinetics of gene
activity in individual bacteria. Cell. 123:1025–1036.

44. Chubb, J. R., T. Trcek, ., R. H. Singer. 2006. Transcriptional pulsing
of a developmental gene. Curr. Biol. 16:1018–1025.

45. Raj, A., C. S. Peskin,., S. Tyagi. 2006. Stochastic mRNA synthesis in
mammalian cells. PLoS Biol. 4:e309.

46. Lenstra, T. L., J. Rodriguez, ., D. R. Larson. 2016. Transcription
dynamics in living cells. Annu. Rev. Biophys. 45:25–47.

47. Iyer-Biswas, S., F. Hayot, and C. Jayaprakash. 2009. Stochasticity of
gene products from transcriptional pulsing. Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 79:031911.

48. Elowitz, M. B., A. J. Levine, ., P. S. Swain. 2002. Stochastic gene
expression in a single cell. Science. 297:1183–1186.

49. Swain, P. S., M. B. Elowitz, and E. D. Siggia. 2002. Intrinsic and
extrinsic contributions to stochasticity in gene expression. Proc. Natl.
Acad. Sci. USA. 99:12795–12800.
Biophysical Journal 112, 2641–2652, June 20, 2017 2651

http://refhub.elsevier.com/S0006-3495(17)30509-X/sref2
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref2
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref3
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref3
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref3
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref4
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref4
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref4
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref5
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref5
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref5
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref6
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref7
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref7
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref7
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref8
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref8
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref9
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref9
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref9
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref10
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref10
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref10
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref11
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref11
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref11
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref11
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref12
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref12
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref12
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref13
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref13
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref14
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref14
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref14
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref15
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref15
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref15
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref16
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref16
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref16
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref17
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref17
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref17
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref18
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref18
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref18
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref19
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref19
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref20
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref20
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref20
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref21
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref21
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref22
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref22
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref22
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref23
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref23
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref24
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref24
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref24
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref25
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref25
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref25
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref26
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref26
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref26
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref27
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref27
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref27
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref28
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref28
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref28
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref29
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref29
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref30
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref30
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref31
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref31
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref31
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref32
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref32
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref32
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref33
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref33
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref33
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref34
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref34
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref34
https://www.R-project.org/
http://ggplot2.org
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref37
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref37
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref37
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref38
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref38
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref38
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref39
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref39
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref39
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref40
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref40
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref40
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref41
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref41
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref41
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref42
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref42
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref42
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref43
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref43
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref44
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref44
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref45
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref45
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref46
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref46
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref47
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref47
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref47
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref48
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref48
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref49
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref49
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref49


Smith et al.
50. Paulsson, J. 2004. Summing up the noise in gene networks. Nature.
427:415–418.

51. Kaern, M., T. C. Elston, ., J. J. Collins. 2005. Stochasticity in gene
expression: from theories to phenotypes. Nat. Rev. Genet. 6:451–464.

52. Raj, A., and A. van Oudenaarden. 2008. Nature, nurture, or chance: sto-
chastic gene expression and its consequences. Cell. 135:216–226.

53. Li, G.-W., and X. Sunney Xie. 2011. NIH Public Access. Nat. 475:
308–315.

54. Wang, J., S. Rao, ., S. H. Orkin. 2006. A protein interaction network
for pluripotency of embryonic stem cells. Nature. 444:364–368.

55. Kim, J., J. Chu, ., S. H. Orkin. 2008. An extended transcriptional
network for pluripotency of embryonic stem cells. Cell. 132:1049–
1061.

56. Macarthur, B. D., A. Ma’ayan, and I. R. Lemischka. 2009. Systems
biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol.
Cell Biol. 10:672–681.

57. Dunn, S.-J., G. Martello, ., A. G. Smith. 2014. Defining an essential
transcription factor program for naı̈ve pluripotency. Science. 344:
1156–1160.

58. van Kampen, N. G. 2007. Stochastic Processes in Physics and Chem-
istry, 3rd Ed. North-Holland, Amsterdam, the Netherlands.

59. MacArthur, B. D., C. P. Please, and R. O. C. Oreffo. 2008. Stochasticity
and the molecular mechanisms of induced pluripotency. PLoS One.
3:e3086.

60. Glauche, I., M. Herberg, and I. Roeder. 2010. Nanog variability and
pluripotency regulation of embryonic stem cells—insights from a
mathematical model analysis. PLoS One. 5:e11238.

61. Wang, J., D. N. Levasseur, and S. H. Orkin. 2008. Requirement of
Nanog dimerization for stem cell self-renewal and pluripotency.
Proc. Natl. Acad. Sci. USA. 105:6326–6331.
2652 Biophysical Journal 112, 2641–2652, June 20, 2017
62. Xiong, W., and J. E. J. Ferrell, Jr. 2003. A positive-feedback-based bi-
stable ‘memory module’ that governs a cell fate decision. Nature.
426:460–465.

63. Tyson, J. J., K. C. Chen, and B. Novak. 2003. Sniffers, buzzers, toggles
and blinkers: dynamics of regulatory and signaling pathways in the
cell. Curr. Opin. Cell Biol. 15:221–231.

64. Becskei, A., B. S�eraphin, and L. Serrano. 2001. Positive feedback in
eukaryotic gene networks: cell differentiation by graded to binary
response conversion. EMBO J. 20:2528–2535.

65. Walczak, A., A. Mugler, and C. H. Wiggins. 2012. Analytic methods
for modeling stochastic regulatory networks. In Computational
Modeling of Signaling Networks. Humana Press, Totowa, NJ, pp.
273–322.

66. Alon, U. 2007. An Introduction to Systems Biology: Design Principles
of Biological Circuits. Chapman and Hall, London, UK.

67. Andrecut, M., J. D. Halley, ., S. Huang. 2011. A general model for
binary cell fate decision gene circuits with degeneracy: indeterminacy
and switch behavior in the absence of cooperativity. PLoS One.
6:e19358.

68. Jonkers, I., and J. T. Lis. 2015. Getting up to speed with transcrip-
tion elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16:
167–177.

69. Ying, Q.-L., J. Wray, ., A. Smith. 2008. The ground state of embry-
onic stem cell self-renewal. Nature. 453:519–523.

70. Cover, T. M., and J. A. Thomas. 2006. Elements of Information Theory,
2nd Ed. John Wiley and Sons, Edison, NJ.

71. Snapp, E. 2005. Design and use of fluorescent fusion proteins in cell
biology. Curr. Protoc. Cell Biol. chapter 21 Unit 21.4. http://dx.doi.
org/10.1002/0471143030.cb2104s27.

72. Day, R. N., and M. W. Davidson. 2009. The fluorescent protein palette:
tools for cellular imaging. Chem. Soc. Rev. 38:2887–2921.

http://refhub.elsevier.com/S0006-3495(17)30509-X/sref50
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref50
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref51
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref51
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref52
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref52
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref53
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref53
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref54
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref54
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref55
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref55
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref55
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref56
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref56
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref56
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref57
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref57
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref57
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref58
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref58
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref59
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref59
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref59
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref60
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref60
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref60
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref61
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref61
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref61
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref62
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref62
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref62
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref63
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref63
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref63
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref64
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref64
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref64
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref64
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref65
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref65
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref65
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref65
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref66
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref66
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref67
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref67
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref67
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref67
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref68
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref68
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref68
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref69
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref69
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref70
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref70
http://dx.doi.org/10.1002/0471143030.cb2104s27
http://dx.doi.org/10.1002/0471143030.cb2104s27
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref72
http://refhub.elsevier.com/S0006-3495(17)30509-X/sref72

	Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Cell Biology
	Introduction
	Materials and Methods
	Cell culture
	Immunocytochemistry and flow cytometry
	Image analysis
	Model fitting
	Mutual information calculation

	Results
	Regulatory noise and reporter accuracy
	Reporter perturbation of Nanog dynamics
	Mathematical model
	Experimental results


	Discussion
	Supporting Material
	Author Contributions
	Acknowledgments
	References


