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Beneficial symbionts exist in many different forms, ranging from vertically-transmitted
intracellular bacteria to environmentally-grown fungi. In many symbioses, the host ingests its
symbiont. Symbiont ingestion appears to present a dilemma: symbionts may no longer gain
from associations when acting as a food source, perhaps rendering the interaction unstable or
disqualifying the interaction as a symbiosis altogether. So, can a symbiont serve as a food source and
still be a symbiont? Contrary to perception, we argue that ingestion does not preclude the evolution
of beneficial interactions beyond simply host nutrition.

WHAT IS A MICROBIAL SYMBIOSIS?

Symbiosis is the long-term association between two organisms over evolutionary time. Generally, in
a microbial symbiosis, the microbial partner (symbiont) is in a relationship with a larger organism,
the host. Most hosts typically interact with a large population of clonal symbionts. These symbioses
exist on a spectrum, from mutualism to parasitism, and placement along that spectrum often
depends on the ecological context. Symbionts that associate with hosts are typically bacteria and
fungi, although viruses can also be beneficial (Oliver et al., 2009; Bondy-Denomy and Davidson,
2014).

DO SYMBIONTS HAVE TO BENEFIT IN A SYMBIOSIS?

Amutualism indicates that an interaction results in a net positive fitness outcome for both partners.
However, not all symbioses are mutualistic. Beneficial symbionts do not have to gain fitness for
the association to exist (Mushegian and Ebert, 2016). For example, exposure to gut microbiota
may help the host immune system respond properly (Kanther et al., 2011; Yilmaz et al., 2014), but
the microbes may not benefit more from being host-associated compared to growing outside the
host. Furthermore, some symbionts are exploited by their hosts, such that the symbiont exhibits a
fitness cost when in symbiosis compared to when free-living. The algal endosymbiont Chlorella, for
example, producesmetabolites from photosynthesis that are utilized by its protist host, Paramecium
bursaria, in exchange for nitrogen compounds. Despite this metabolic exchange, at high light
intensity, Chlorella grows to higher levels in the host’s absence than in its presence (Lowe et al.,
2016). The idea that symbionts have to gain from the association may have been exacerbated by the
common use of “mutualism” to describe symbioses, despite a lack of empirical evidence in most
systems for increased symbiont fitness when interacting with the host (Garcia and Gerardo, 2014).

WHERE DO SYMBIONTS RESIDE?

Beneficial symbionts help their hosts by making the environment more habitable for the host,
such as through nutrient provisioning or protection from enemies. Many symbionts reside inside
the host, such as in the gut, or within specialized cells that hosts have evolved to accommodate
symbionts. However, symbionts can also dwell their host’s surface or proliferate in the external
environment. These external symbionts can still be dependent on the host for growth and survival.
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WHERE DO SYMBIONTS COME FROM?

Symbiont populations can spread between hosts vertically,
horizontally, or throughmixed-mode transmission (Ebert, 2013).
Vertical transmission is direct transmission of symbiont from
parent to offspring. Hosts obtain symbionts horizontally from
other, non-parental hosts or from the environment. While
horizontally transmitted symbionts are passaged extracellularly,
vertical transmission does not always require the symbiont to
be inherited intracellularly. For example, a bacterial symbiont
can be transmitted vertically by an insect mother, such as
in firebugs, when she smears the bacteria onto her eggs’
surfaces, which are then ingested by her offspring when they
hatch (Salem et al., 2015).

CAN SYMBIONTS BE INGESTED? WHY IS
THIS IMPORTANT TO CONSIDER?

Food is any substance that provides nutrients to the organism
ingesting it. Here, we use “ingestion” to mean the intake of
a substance, and “digestion” to mean the catabolism of the
substance into materials that can be used. Symbiont ingestion
appears counterintuitive: it implies subsequent digestion of the
symbiont, thereby preventing further interactions, or symbiosis,
with the host. In many symbioses, the symbiont does directly
provide nutrients to its host through digestion (e.g., fungus-
growing ants, see below). However, in other symbioses, the
symbiont is acquired through ingestion but provides benefits
other than, or in addition to, serving as a food source. For
example, Sirex woodwasps deposit their fungal symbiont into
decaying trees and ingest both the wood and the symbiont
to obtain digestive enzymes from the fungi that help them
breakdown plant compounds (Kukor and Martin, 1983). While
these symbioses deviate from the more commonly known
vertically-transmitted, intracellular symbioses, the hosts and
symbionts can establish stable, long-term beneficial associations
with one another. Below, we outline cases where the symbiont is
ingested, either as a food, or as a route of acquisition by the host,
and demonstrate that there may be a fine line between symbiont
and food in many associations.

FARMING: WHERE THE SYMBIONT IS THE
FOOD

Could a Host’s Primary Food Source Be
Considered a Symbiont?
In farming symbioses, the host organism farms its microbial
partner, such that the propagation of the microbe supplies the
host with a renewable food source or other resources. When
microbes are farmed, the microbial partner is commonly referred
to as the symbiont (Mueller et al., 2004; Nobre et al., 2011;
Qiu et al., 2016). Here, we define farming as growing and
active tending (e.g., crop propagation, weeding, fertilizing) of
symbionts for resources. Under this definition, many examples of
domesticators and crops can be viewed as symbioses. However,
an important point is that for the association to be considered

a symbiosis, the symbiont should be a crucial determinant
of host fitness at least under some environmental conditions.
The symbiont can also be dependent on the host for growth
and reproduction, resulting in a two-way obligate symbiosis.
Important from an evolutionary perspective, the symbiont
population is often clonal or lacking in genetic variation, so even
if portions of the population are digested, the remaining cells are
still able to reproduce and effectively maintain fitness.

Insects are some of the most well-studied groups of organisms
that farm their symbionts, particularly fungi. For example,
fungus-growing ants have an obligate association with their
cultivated fungi—these fungi, the “cultivars,” are tended by
the ants, where they supplement the cultivars with beneficial
substrates, minimize competition with other fungi, and combat
pathogens of the cultivar (Caldera et al., 2009). The ants in
turn feed on the cultivars. Neither partner can exist without
the other (Weber, 1966). This dependency is further reinforced
by genomic alterations in the ants: the ants no longer have
certain nutrient acquisition genes and must depend on the
fungus (Suen et al., 2011). Because the fungus is clonally
propagated, it does not lose fitness as the ants only feed
on some of the cultivar, and undigested cultivar will be
vertically transmitted to the next generation. As a result, despite
serving primarily as food, the host ant and cultivar fungi
have been coevolving with each other for millions of years
(Schultz and Brady, 2008). Similarly, termites, ambrosia beetles,
and Brazilian stingless bees have been shown to farm fungi
(Aanen et al., 2002; Six, 2012; Menezes et al., 2015).

Are There Other Farming Symbioses
Besides Fungus-Farming Insects?
Examples in other systems include primitive forms of farming,
where there is no evidence for active tending of the food
source, but growth of the particular resource (symbiont) in the
presence of the host is identified. For example, the social amoeba,
Dictyostelium discoideum, farms its bacterial food source through
dispersion, seeding, and careful harvesting (Brock et al., 2011,
2013; Stallforth et al., 2013). Marsh snails promote growth of
consumable fungi by preparing fungal growing substrates and
supplementing them with fecal pellets (Silliman and Newell,
2003). Lastly, the mitochondrion is proposed to have evolved
from the symbiosis of an archaeon host and alphaproteobacteria
prey. Theoretical models predict that the ancient association
began from phagocytosis of the bacteria and their subsequent
farming within the archaeon (Zachar et al., 2018). Therefore,
interactions that begin as predation can evolve into a long-
term symbiosis.

INGESTION AS A ROUTE OF
ACQUISITION: WHERE THE BENEFIT IS
NOT RELIANT ON SYMBIONT DIGESTION

Can Ingested Symbionts Benefit Their
Hosts When Not Digested?
An intimate association between a host and its symbiont
requires close physical proximity. Ingestion of symbionts
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facilitates this association by bringing the symbiont directly into
the host. Many ingested symbionts provide their hosts with
benefits that are not directly related to symbiont digestion.
For example, some insect species produce bacteria-containing
capsules, from which bacteria are ingested by the offspring
when they hatch (Salem et al., 2015). Subsequently, the bacteria
colonize a specific section of the gut and aid in the host’s
development (Fukatsu and Hosokawa, 2002). Several marine
organisms, such as corals, gastropods, anemones, and jellyfish,
also obtain their photosynthetic symbionts through ingestion
(Colley and Trench, 1985; Abrego et al., 2009; Banaszak et al.,
2013; Hambleton et al., 2014).

Can a Symbiont Be Food While Also
Providing Other Benefits?
Even ingested symbionts that benefit the host through means
other than nutrition can be digested. For example, Steinernema
spp. nematodes form a mutualism with the bacterium
Xenorhabdus nematophila, which helps the nematode infect
and kill insects by suppressing insect immunity, benefiting
both the nematode and the bacterium. The nematode picks up
X. nematophila through ingestion, and may obtain nutrients
directly from bacterial digestion or from the breakdown of the
insect cadaver by bacterial enzymes (Forst et al., 1997; Hussa and
Goodrich-Blair, 2013). Ingestion ultimately serves as a method in
which hosts can obtain symbionts and gain additional functions
through them. Table 1 provides examples where symbionts can
become food while helping their hosts through other means.
Additionally, it is unclear whether portions of the gut microbiota
[e.g., of humans, ruminants, coprophagic animals (Lozupone
et al., 2012; Onchuru et al., 2018; Clemmons et al., 2019)]
are digested.

Can a Long-Term Association Persist if the
Majority of the Symbiont Population Does
Not Remain in the Host Throughout the
Host’s Lifespan?
Symbionts obtained from ingestion may vary in the amount
of time they remain in a host. While some hosts have
physical structures that house symbionts, others allow symbionts
to proliferate throughout the gut. In either case, individual
symbionts have the potential to exit or be digested. While
ingestion may lead to a relatively brief interaction, a long-
term association across generations is still possible even when
most of the symbiont population is transient. For example,
the bobtail squid-Vibrio fischeri association is considered a
canonical symbiosis despite a high rate of symbiont turnover
within the host. A newborn squid picks up the bacteria from
the environment each night, and, similar to symbioses where
the symbiont is ingested [e.g., Steinernema spp. nematodes
(Martens et al., 2003)], few bacterial cells enter the host
(Wollenberg and Ruby, 2009). The bacteria then colonize the
host’s light organ, but over 95% are subsequently expelled
the next morning (Lee and Ruby, 1994). Indeed, a symbiosis
can form and persist for all or a portion of a single host’s
life span. Because microbes typically have shorter generation
times than their hosts, occupying the host for a brief period
of time can still result in multiple microbial generations
within hosts.

CONCLUSION

Here, we have presented examples of symbioses where the host
ingests its symbiont either to obtain nutrients, live microbes, or
both. Ingestion does not prevent the symbiont from coevolving

TABLE 1 | Examples of symbioses where the symbiont serves as food in addition to non-food functions.

Host Symbiont Symbiont non-food function References

Paracatenula flatworm Ca. Riegeria santandreae bacterium Provisioning of carbon and sugars Jäckle et al., 2019

Paramecium bursaria protist Chlorella algae Provisioning of metabolites from photosynthesis
Kodama and Fujishima,

2008

Santia spp. isopod crustacean Cyanobacteria

Production of chemical compounds that repel fish

predators of the host Lindquist et al., 2005

Sirex woodwasps Fungal symbiont
Digestive enzymes that breakdown plant compounds from

host diet Kukor and Martin, 1983

Steinernema spp. nematodes Xenorhabdus nematophila bacterium Aid host in infecting, killing, and digesting insects Forst et al., 1997
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with its host across evolutionary time. In the case of farming
symbioses, the symbiont is propagated outside of the host and
has the potential to evolve in response to its host. When the
symbiont is ingested as a means of acquisition, the symbiont
can be compartmentalized to specific locations within the
host or colonize the host gut, where it also maintains the
potential to respond to selective pressures from the host.
Because symbiont populations tend to be clonal, digestion of
some individuals does not limit the benefits the symbiont may
receive, or symbiosis altogether. This is particularly important
for associations where the symbiont serves as food in addition
to other roles, where the host does not digest all of the
symbiont population at once. Ultimately, ingestion is one of

the many ways in which hosts and symbionts interact with
one another, which can lead to intimate associations similar to
intracellular symbioses.
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