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ABSTRACT

Proper cytokine gene expression is essential in de-
velopment, homeostasis and immune responses.
Studies on the transcriptional control of cytokine
genes have mostly focused on highly researched
transcription factors (TFs) and cytokines, resulting
in an incomplete portrait of cytokine gene regulation.
Here, we used enhanced yeast one-hybrid (eY1H) as-
says to derive a comprehensive network comprising
1380 interactions between 265 TFs and 108 cytokine
gene promoters. Our eY1H-derived network greatly
expands the known repertoire of TF–cytokine gene
interactions and the set of TFs known to regulate
cytokine genes. We found an enrichment of nuclear
receptors and confirmed their role in cytokine regu-
lation in primary macrophages. Additionally, we used
the eY1H-derived network as a framework to identify
pairs of TFs that can be targeted with commercially-
available drugs to synergistically modulate cytokine
production. Finally, we integrated the eY1H data with
single cell RNA-seq and phenotypic datasets to iden-
tify novel TF–cytokine regulatory axes in immune dis-
eases and immune cell lineage development. Overall,
the eY1H data provides a rich resource to study cy-
tokine regulation in a variety of physiological and
disease contexts.

INTRODUCTION

Transcriptional regulation of cytokine genes plays a cen-
tral role in the development of the immune system, re-
sponses to pathogens, and inflammation (1,2). Indeed, dys-
regulation of cytokine expression, caused by mutations

in cytokine gene regulatory regions, transcription factors
(TFs) and genes belonging to upstream signaling pathways
that impinge on cytokine transcriptional control regions,
have been associated with autoimmune diseases, immunod-
eficiency, and susceptibility to infections (3). Thus, identify-
ing the repertoire of TFs that regulate each cytokine gene is
central to understanding the mechanisms that control im-
mune responses, which will aid in the design of novel ther-
apeutic strategies to modulate cytokine expression in im-
mune diseases.

Research conducted for more than three decades has
identified 170 TFs that bind to the transcriptional control
regions and/or regulate 95 (of ∼140) human cytokine genes
(4). This includes TFs that are activated by pathogen signals
(e.g. NF-�B, AP-1 and IRFs), stress signals (e.g. HIF1A,
TP53 and HSF1), cytokine signals (e.g. STATs and NF-
�B), as well as lineage factors (e.g. SPI1 and CEBPA).
However, analysis of this literature-derived human cytokine
protein–DNA interaction (PDI) network suggests that this
network is largely incomplete. For instance, no PDIs have
been reported for nearly 30% of the cytokine genes, and
new TFs and PDIs in the network are still being reported
at a rate of 6.6 TFs and 35 PDIs per year (4). More
importantly, most PDIs reported in the literature corre-
spond to highly studied TFs and cytokines. Whether this
bias has a biological basis or is due to research trends
that arise from reagent availability or ‘fashionable’ TFs
and cytokines, remains to be determined. Taken together,
these facts suggest that comprehensive and unbiased screens
are needed to delineate a more complete cytokine PDI
network.

Different approaches have been used to identify PDIs in
a high-throughput manner. Chromatin immunoprecipita-
tion followed by next generation sequencing (ChIP-seq) has
been widely used to identify the DNA regions where a TF
binds. Although ChIP-seq has provided a wealth of infor-
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mation regarding TF genomic occupancy, ChIP-seq data
are still largely incomplete. Only 30% of human TFs have
been tested due to the lack of ChIP-grade anti-TF antibod-
ies, and ChIP-seq has only been performed in a limited num-
ber of cell types and conditions, mostly in non-immune cell
lines in basal conditions (5,6). Another approach to infer
PDI networks involves integrating ATAC-seq or DNase-seq
footprinting data with DNA-binding site preferences and
expression levels of TFs (7). However, these analyses are
challenging for multiple reasons: (i) transposition and cleav-
age preferences have to be distinguished from true DNA
protection due to TF binding, (ii) DNA binding specificities
have not been determined for approximately half of human
TFs, (iii) similar DNA binding specificities between TF par-
alogs often lead to multiple TFs being predicted to bind a
protected site and (iv) multiple cells need to be assayed in
different conditions due to differences in chromatin land-
scape between cells.

Enhanced yeast one-hybrid (eY1H) assays is a powerful
PDI mapping method that tests the binding of hundreds of
TFs to a DNA region of interest (e.g. a cytokine promoter)
in the milieu of the yeast nucleus (8,9). This approach cir-
cumvents the requirement of antibodies in ChIP-seq and
testing in multiple cells and conditions in ChIP-seq, ATAC-
seq, and DNase-seq. eY1H assays constitute a robust sys-
tem to identify PDIs given that it uses a dual reporter sys-
tem, each interaction is tested in quadruplicate, and posi-
tive interactions are identified by integrating image analysis
software and manual curation (10,11). More importantly,
PDIs identified by eY1H assays display a 30–70% validation
rate in human cells and living animals, which is similar to
the validation rate of ChIP-seq interactions, although likely
because of different reasons (e.g., yeast versus mammalian
system, DNA binding versus reporter activity) (10,12,13).
We previously developed a high-throughput eY1H pipeline
that interrogates the binding of approximately two-thirds
(1086 of ∼1600) of all human TFs to defined regulatory re-
gions, which we used to identify TFs that bind to human
developmental enhancers, noncoding genetic variants, and
repetitive DNA elements (10,14).

Here, we used eY1H assays to interrogate the bind-
ing of 1086 human TFs to human cytokine promoters,
from which we derived a comprehensive cytokine PDI net-
work comprising 1380 PDIs between 265 TFs and 108
cytokine promoters, substantially expanding the current
literature-derived cytokine PDI network. Using orthogo-
nal assays, we observed a validation rate similar to PDIs
reported in the literature or identified by ChIP-seq, and
we experimentally confirmed a regulatory function for
175 eY1H-derived PDIs in mammalian cell lines or pri-
mary macrophages. Finally, we leveraged the eY1H net-
work as a framework to identify (i) pairs of TFs that can
be targeted with commercially-available drugs to synergis-
tically modulate cytokine production and (ii) novel TFs
and TF–cytokine regulatory axes in the pathogenesis of
immune diseases and in the development of immune cell
lineages. Altogether, these studies demonstrate the use of
the eY1H-derived network as a powerful resource to study
cytokine regulation in a variety of cellular and disease
contexts.

MATERIALS AND METHODS

Acquisition of literature-reported PDIs

A list of literature-reported PDIs was downloaded from
CytReg (https://cytreg.bu.edu) (4). To expand the list of
literature-reported physical and regulatory PDIs between
TFs and cytokine genes, in February 2019 we searched for
papers mentioning TF–cytokine pairs and key words ‘bind’,
‘direct’, ‘target’, ‘control’, ‘regulate’, ‘activate’, ‘repress’ or
‘suppress’. The resulting papers were manually curated to
determine whether direct experimental evidence for the PDI
was provided. Additionally, the species, type of assay, and
functional activity (activating or repressing) when provided,
were also annotated. In total, 160 additional literature-
derived interactions were curated for this paper (Supple-
mentary Table S1).

Annotation of TF and cytokine phenotypes and properties

The number of publications in PubMed for TFs and cy-
tokines were retrieved from NCBI’s Gene database (https:
//www.ncbi.nlm.nih.gov/gene) on 16 August 2019. TFs and
cytokines were ranked by the number of publications and
then partitioned into equal-sized bins. The number of inter-
actions in the literature-derived or the eY1H-derived PDI
network between TFs and cytokines in each pair of bins in
the two-dimensional matrix were counted.

The transcript per million (TPM) expression levels of
TFs in 20 immune cell-types was obtained from data pub-
lished by the Blueprint Epigenome Consortium (http://dcc.
blueprint-epigenome.eu) (15). The maximum expression of
each TF across the 20 immune cell-types was used to deter-
mine the average expression of TFs in immune cells in each
bin.

The association between TFs and immune diseases was
obtained from genome-wide association studies (GWAS)
downloaded from the NHGRI-EBI Catalog (https://www.
ebi.ac.uk/gwas) (16) on 27 July 2017 (Supplementary Table
S2). Terms describing autoimmune diseases and suscepti-
bility to infections were used to determine whether a TF is
associated with an immune disease.

The association between TFs and immune phenotypes
was determined from knockout mouse studies reported in
the Mouse Genome Informatics (MGI) database (http://
www.informatics.jax.org) (17) on 3 March 2019 (Supple-
mentary Table S2). All terms classified as an ‘immune sys-
tem phenotype’ in MGI were used to determine whether a
TF is associated with an immune phenotype.

Enhanced yeast one-hybrid assays

eY1H assays were performed as previously described (8,9)
to detect PDIs between TFs and cytokine gene promoters
by mating ‘TF-prey strains’ with ‘DNA-bait strains’. DNA-
bait strains for 112 human cytokine promoters (∼2 kb up-
stream of the transcription start sites) (Supplementary Ta-
ble S3) were obtained by PCR amplification using Plat-
inum Taq DNA Polymerase High Fidelity (ThermoFisher)
from a pool of human genomic DNA (Clonetech). PCR
products were Gateway cloned into the pDONR P1-P4 vec-
tor and entry clones were confirmed by Sanger sequencing.
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Then DNA-baits were Gateway cloned upstream of two re-
porter genes (HIS3 and LacZ) and both reporter constructs
were integrated into the yeast genome to generate chroma-
tinized DNA-bait strains (18,19). Yeast DNA-bait strains
were confirmed by Sanger sequencing. DNA-bait strains
were mated with an array of 1086 TF-prey yeast strains
expressing human TFs fused to the yeast Gal4 activation
domain (AD) (10). Matings were performed using a Singer
Rotor robotic platform that manipulates yeast strains in a
1536-colony format. An interaction was detected when a
TF-prey binds the DNA-bait and the AD moiety activates
reporter gene expression, allowing the mated yeast to grow
on media lacking histidine, overcome the addition of 3-
amino-triazole (3AT), a competitive inhibitor of the His3p
enzyme, and convert the colorless X-gal into a blue com-
pound. Each interaction was tested in quadruplicate and
interactions were considered positive if at least two of the
four mated colonies tested positively (>90% of detected in-
teractions tested positively for all four colonies).

Images of mated colonies on plates lacking histidine and
containing 3AT and X-gal were processed using the Mybrid
web-tool to detect positive interactions (11). Positive inter-
actions detected by Mybrid were then manually checked
and curated. False positives detected by Mybrid, which typ-
ically occur on plates with uneven background, were re-
moved. False negatives missed by Mybrid, which typically
occur when baits exhibit high background reporter gene ex-
pression or when interactions occur next to very strong pos-
itives, were included. A total of high-quality 1380 PDIs be-
tween 265 TFs and 108 cytokine promoters were included
in the final dataset (Supplementary Table S4). The eY1H
interactions from this publication have been submitted
to the IMEx consortium (http://www.imexconsortium.org)
through IntAct [X] and assigned the identifier IM-27908
(20). In addition, all the eY1H- and literature-derived PDIs
are available in CytReg v2 (https://cytreg.bu.edu/search v2.
html).

Calculation of overlap between ChIP-seq and eY1H interac-
tions

ChIP-seq peak coordinates were downloaded from the
ENCODE Project (https://www.encodeproject.org) (5) and
GTRD database (http://gtrd.biouml.org) (6) on 27 Au-
gust 2018. Comparison between eY1H and ChIP-seq in-
teractions were limited to 130 TFs that were both detected
by eY1H and tested by ChIP-seq. ChIP-seq peaks were as-
signed to a particular promoter if the midpoint of the peak
was located within the promoter sequence. Multiple ChIP-
seq peaks mapping to the same promoter were counted as
one TF-promoter interaction. We compared the PDIs de-
rived from ChIP-seq to the PDIs observed in the eY1H net-
work or in 10 000 randomized versions of the eY1H data to
determine the significance of the overlap.

Calculation of overlap between TF binding sites and eY1H
interactions

Position weight matrices (PWMs) for 194 human TFs in
the eY1H network were downloaded from CIS-BP (http:
//cisbp.ccbr.utoronto.ca) (21). The presence of TF binding
sites within the cytokine promoter baits were determined

based on PWM matches. Each position within the cytokine
promoters was scored by calculating the sum of logs for
each PWM and significant scores were determined using
TFM P-value (22). Scores above the TFM score threshold
for P-value < 10−4 for a given PWM were considered signif-
icant hits and thereby predicted PDIs. To determine statisti-
cal significance of the overlap between eY1H and predicted
PDIs, we compared the predicted PDIs to 10 000 random-
ized versions of the eY1H network.

Calculation of significance by network randomizations

The eY1H network was randomized by edge switching
while preserving both overall network topology and indi-
vidual node degree. Briefly, edge pairs (e.g. A–B and C–D)
chosen at random from the network were swapped (i.e. A–
D and C–B) (23). Edges were switched only if neither of
the new edges were already present in the network. Each
random network was generated from >20 000 edge switch-
ing events. We generated 10 000 random networks to calcu-
late the PDI overlap with the ChIP-seq and TF binding site
datasets, and the enrichment of shared inflammatory dis-
eases between interacting TFs and cytokines. Based on the
overlap with each of the 10 000 random networks, a Z-score
was determined to calculate the P-value of the overlap cor-
responding to the eY1H-derived network.

Luciferase assays

Cytokine-promoter baits were cloned upstream of the
firefly luciferase reporter gene in a Gateway compatible
pGL4.23[luc2/minP] vector (10). TFs were cloned into the
Gateway compatible pEZY3 vector (Addgene) or pEZY3-
VP160 vector such that TFs are fused to 10 copies of
the VP16 activation domain (4). To perform luciferase
assays, HEK 293T cells were cultured in DMEM sup-
plemented with 10% FBS and 1% antibiotic–antimycotic
(100×) and plated in 96-well white opaque plates (∼1 ×
104 cells/well). Twenty four hours later, cells were trans-
fected using Lipofectamine 3000 (Invitrogen) according to
the manufacturer’s protocol, with 80 ng of a TF-pEZY3 or
TF-pEZY3-VP160 plasmid, 20 ng of a cytokine promoter-
pGL4.23[luc2/minP] firefly luciferase plasmid, and 10 ng of
the renilla luciferase plasmid as a transfection normaliza-
tion control. An empty pEZY3 or pEZY3-VP160 plasmid
co-transfected with the corresponding recombinant firefly
luciferase plasmid were used as negative controls. Forty
eight hours after transfection, firefly and renilla luciferase
activities were measured using the Dual-Glo Luciferase As-
say System (Promega) according to the manufacturer’s pro-
tocol. Non-transfected cells were used to subtract back-
ground firefly and renilla luciferase activities, and then fire-
fly luciferase activity was normalized to renilla luciferase
activity in each well. Each TF–cytokine promoter pair was
tested in three biological replicates.

Calculation of interaction profile similarity between TF or cy-
tokine paralogs

The interaction profile similarity between TFs or cytokines
was calculated using the Jaccard Index, which corresponds
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to the ratio between the number of shared interaction part-
ners divided by the union of interaction partners (24). Inter-
action profile similarities range from 0 to 1, where a Jaccard
Index of 0 indicates no shared interaction partners and a
Jaccard index of 1 indicates all shared interaction partners.
Paralogous TF and cytokine genes were downloaded from
the Ensemble Compara database (https://uswest.ensembl.
org/info/genome/compara/index.html) (25).

TF knockdown in human PBMC-derived macrophages

Peripheral blood mononuclear cells (PBMCs) were isolated
from de-identified human leukapheresis-processed blood
(New York Biologics, Inc.) by centrifugation through Lym-
phoprep (Stem Cell Technologies.) density gradient. Puri-
fied PBMCs were resuspended in serum-free RPMI medium
and plated in 12-well or 6-well plates at a density of 5 ×
106 cells/ml. Cells were incubated at 37◦C for 1–2 hours
to allow binding of monocytes to the plates, then the
medium and unbound cells were discarded and replaced
with RPMI supplemented with 10% FBS, 10% human
AB serum (Corning), 2 mM L-glutamine (Invitrogen) and
100U/ml of penicillin/streptomycin (Invitrogen). Mono-
cytes differentiated into macrophages over 7 days at 37◦C,
with fresh medium replenished every 2–3 days. On day 8,
cells were transfected using Lipofectamine 3000 according
to the manufacturer’s protocol, with 50 pmol/ml of ON-
TARGETplus SMART-pool siRNA (GE Dharmacon) to
knockdown the respective TFs. On day 10, cells were treated
with 10 ng/ml LPS for 4 hours and then harvested in TRIzol
and analyzed by RT-qPCR. For each PBMC donor, each
experimental condition was performed in three biological
replicates.

Generation of iBMDM stable cell lines and stimulation with
ligands

HEK293T cells and immortalized bone-marrow-derived
macrophages (iBMDMs) were cultured in DMEM supple-
mented with 10% FBS and 1% Pen-Strep under standard
cell culture conditions. Control and gene-specific shRNAs
(Supplementary Table S5) were cloned in pLKO.1 lentivi-
ral vector and sequences were verified by Sanger sequenc-
ing (Genewiz). Stable iBMDMs cell lines were generated as
described previously (26). In brief, HEK293T cells were co-
transfected with pLKO.1 shRNA plasmid (500 ng) together
with the packaging plasmids, psPAX (375 ng) and pMD2
(125 ng), using GeneJuice (Novagen). Culture supernatants
containing viral particles were collected at 48 and 72 hours
post transfection, pooled together and filtered through 0.45
mm PVDF membrane filter (Sigma). iBMDMs were trans-
duced with viral particles in the presence of polybrene (8
mg/ml), and cells were selected with puromycin (3 ug/ml).
iBMDMs were either stimulated with E. coli LPS (1 ug/ml)
or infected with Sendai virus (200 HAU/ml) or E. coli strain
DH5� (1 CFU/cell) for 6 hours. RNA was extracted using
Trizol and analyzed by RT-qPCR. Each experimental con-
dition was performed in three biological replicates and the
experiment was performed twice.

RT-qPCR measurements

To measure the expression of TFs and cytokines in hu-
man PBMC-derived macrophages or mouse iBMDMs, to-
tal RNA was extracted using TRIzol (Invitrogen) and then
purified using Direct-zol RNA MiniPrep kit (Zymo Re-
search) including the DNAse I treatment step to remove
contaminating DNA. cDNA was reverse-transcribed from
RNA using random hexamers and M-MuLV reverse tran-
scriptase (NEB). Primer sequences for qPCR were designed
using Primer3 such that primers are located in different
exons or in exon-exon junctions and checked for any off-
targets using the NCBI Primer-BLAST tool. qPCRs were
performed in two technical replicates using the PowerUp
SYBR Green Master Mix (ThermoFisher Scientific) and
primers listed (Supplementary Table S6). Relative transcript
abundances were calculated using the ��Ct method and
normalized to RPL13A and GAPDH mRNA levels for hu-
man and mouse genes, respectively.

Annotation of functional interactions between nuclear recep-
tors and cytokine genes

The functional interactions between nuclear receptors
(NRs) and cytokine genes were obtained from the
literature-reported network (Supplementary Table S1)
and the Nuclear Receptor Signaling Atlas (NURSA)
Transcriptomine resource (https://www.nursa.org) (27) on
26 July 2019 (Supplementary Table S7). Functional inter-
actions reported from genetic perturbation studies (e.g. NR
knockout, knockdown, and overexpression) and ligand-
based studies (e.g. NR activation or inhibition using ag-
onists or antagonists) were considered. Ligands were as-
signed to the corresponding nuclear receptors based on as-
signments in NURSA, DrugBank, and Tocris (Supplemen-
tary Table S7).

Synergistic potentiation of IL10 production in M2-polarized
THP-1 cells

THP-1 monocytes were cultured in RPMI supplemented
with 10% FBS, 0.05 mM 2-mercaptoethanol and 1%
antibiotic–antimycotic (100×), and differentiated into
macrophages with 100 nM phorbol 12-myristate 13-acetate
(PMA) for 72 hours, and then recovered in fresh media
for 48 hours. To perform the functional assays, THP-1-
derived macrophages were pre-treated with the respective
NR agonists/antagonists for 15 min, and then polarized to
M2 macrophages with 25 ng/ml IL4 and 25 ng/ml IL13
for 48 hours to promote IL10 production. The supernatants
were collected and the amount of IL10 in the supernatants
were measured using the Human IL10 ELISA MAX (Bi-
olegend) kit according to the manufacturer’s protocol. NR
agonists/antagonists: NR1I2 agonist SR12813 (Tocris),
NR1I2 antagonist SPA70 (Axon), RXR agonist Bexarotene
(Tocris), RXR antagonist HX531 (Sigma Aldrich), and
VDR agonist Ercalcitriol (Tocris). Each experimental con-
dition was tested in quadruplicate and the experiment was
performed twice.
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Annotation of TF and cytokine associations with immune dis-
orders and lineage differentiation abnormalities

The association between TFs or cytokines and abnormali-
ties in immune cell differentiation or inflammatory diseases
was obtained from DisGeNET (https://www.disgenet.org)
(28), GWAS (16), or MGI (17). Gene-disease associations
in DisGeNET were downloaded on 20 September 2019, as-
sociations in the NHGRI-EBI GWAS Catalog v1.0.2 were
downloaded on 4 September 2019, and associations in MGI
were downloaded on 24 June 2019. To determine whether
a TF or cytokine is associated with one of the 12 im-
mune diseases explored, terms describing allergy, asthma,
eczema/psoriasis, fatty liver disease, general inflammation,
inflammatory arthritis, inflammatory bowel disease, multi-
ple sclerosis, primary biliary cholangitis, HIV, and suscep-
tibility to infection, were considered (Supplementary Table
S8). To determine whether a TF or cytokine is associated
with abnormalities in immune cell differentiation, terms de-
scribing abnormal differentiation, abnormal proliferation,
and abnormal cell count, were considered (Supplementary
Table S9). In addition, TF associations with immune cell
differentiation were further curated from the literature by
searching papers mentioning a specific TF, immune cell lin-
eage, and the key word ‘differentiation’ (Supplementary Ta-
ble S10).

Analysis of bulk RNA-seq data

The non-alcoholic fatty liver disease data was downloaded
from the GEO repository GSE126848 (29) as FASTQ files,
and then were trimmed using Cutadapt (v2.2) for low qual-
ity bases and adapters. The trimmed FASTQ was aligned
to the Ensembl Human Reference Genome (GrCh38.98)
using STAR (v2.7.3a) (30), and then quantified using fea-
tureCounts from subread (v1.5.0) (31). The Immgen data
was downloaded from the GEO repositories GSE122597
(32), GSE109125 (32), and GSE122108 (33). The Inter-
national Human Epigenome Consortium (15) data were
downloaded from http://www.cell.com/consortium/IHEC.
The genes with lower read counts than 10 and standard de-
viations as 0 were excluded from the analyses.

The differential expression analyses for all dataset were
conducted using DESeq2 (version 1.24.0) (34), and then
the log2 fold change shrinkage to remove noise was con-
ducted using the APEGLM algorithm (35). The Pearson
correlation between TFs and cytokines were conducted us-
ing the log transformed TPM of genes and the Benjamini-
Hochberg method was used to perform multiple hypothe-
sis testing correction. The visualizations of data and results
were conducted using the R package ggplot2 (v3.2.1) and
PRISM (v8.4.0).

Analysis of single cell RNA-seq data

The Crohn’s disease data was downloaded from the GEO
repository GSE134809 (36). The hematopoietic progeni-
tor cell data was downloaded from the GEO repository
GSE117498 (37). Each dataset was merged using Seurat
(v3) (38) and cells with <200 genes and >20% mitochon-
drial contents were removed. The Louvain community net-
work clustering algorithm was used to cluster cells and the

MAST algorithm (39) was used to find the top markers for
each cluster. Canonical markers for immune cell types were
used to find different immune cell types.

For the Crohn’s disease dataset, we used the following
markers described in the original article (36) to identify in-
testinal epithelial cells, dendritic cells, macrophages, B cells,
and T cells (Supplementary Figure S1):

Intestinal epithelial cells: REG1B, REG1A, MUC13,
ARL14, AGR2

Dendritic cells: ITGAM, ITGAX, ANPEP, CD33, CD80,
CD7, CD83, CD86, CD27, CD28, CLEC4C, THBD, NRP1

Macrophages: CXCL2, MRC1, CD163, CD68, CSF1R,
CD86, CD209, CD33, TLR2, TREM1, MSR1, CD63,
LILRB1, IDO1, ENG, CD40, TGFB1, CXCL9, CXCL10,
GPNMB, IL10, CD80, IRF4, STAT6

B cells: MS4A1, CD79A, CD79B, CD19, CD70
T cells: CD2, CD3D, CD4, CD5, CD7, CD8A, IL2RA,

CD27, CD28
Pearson correlation analyses were conducted for interac-

tions in which the TF and the cytokine were detected in
at least 25% of cells, and the Benjamin Hochberg (‘BH’)
method was used to adjust the P-value from correlation
analyses and identify significantly correlated (FDR < 0.25)
TF–cytokine pairs (Supplementary Tables S11 and S12).

Reconstruction of pseudo-time series

The R package monocle2 (v2.4.0) (40) was used to con-
duct the pseudo-time series analysis. Briefly, a differential
expression analysis was performed to identify the top signif-
icantly differentially expressed genes (FDR < 0.05) between
healthy and disease conditions to build the disease trajec-
tory, and then each single cell was assigned a numeric pseu-
dotime value and then ordered along the disease trajectory
(Supplementary Figure S1). TFs and cytokines are included
in the analyses if their expressions were detected in at least
10% of cells within a cluster and are significantly differen-
tially expressed (FDR < 0.25) along the pseudo-temporal
relationship among cells.

RESULTS

Biases and incompleteness of the literature-derived cytokine
PDI network

We previously generated a literature-derived cytokine PDI
network, in which biophysical (i.e. determined from bind-
ing assays – ChIP or EMSA) and functional (i.e. determined
from reporter assays, or TF knockdown, knockout, or over-
expression experiments) PDIs between TFs and cytokines
genes were manually curated (4). We have updated this net-
work to include an additional 160 PDIs from the literature,
expanding the network to 899 PDIs in human, 740 PDIs
in mouse, and 73 PDIs in other species (Supplementary
Table S1). Although this literature-derived network con-
stitutes the most comprehensive cytokine PDI network to
date, we found marked research biases skewing the cover-
age of the network. When TFs and cytokines were ranked
by the number of publications in PubMed and then parti-
tioned into equal-sized bins, we found that nearly half of
the reported PDIs were between the 10% most highly cited

https://www.disgenet.org
http://www.cell.com/consortium/IHEC
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TFs and the 20% most highly cited cytokine genes (Fig-
ure 1A). Although an argument can be made that highly
cited TFs and cytokines could have more pleiotropic roles,
it is unlikely that lesser studied cytokines would be regu-
lated by fewer or no TFs. Additionally, while the number
of PDIs sharply decreases after the first TF bin, the expres-
sion levels of TFs in immune cells and the fraction of TFs
associated with immune diseases in genome-wide associa-
tion studies (GWAS) or with immune phenotypes in knock-
out (KO) mouse studies (MGI) show a more gradual de-
crease across the TF bins (Figure 1B and Supplementary
Table S2). Taken together, these observations suggest that
the skewed PDI distribution reflects a research bias towards
highly studied TFs and cytokines.

A comprehensive eY1H-derived cytokine PDI network

To delineate a comprehensive PDI network for cytokine
genes, we used eY1H assays to systematically test 121 632
pairwise interactions between 1086 human TFs (66% of hu-
man TFs) and 112 cytokine promoters (83% of human cy-
tokine genes) (Figure 1C). The resulting eY1H-derived net-
work comprises 1380 PDIs between 265 TFs and 108 cy-
tokine promoters (Figure 1D and Supplementary Table S4).
All the interactions from the eY1H- and literature-derived
networks are available in CytReg v2 (https://cytreg.bu.edu/
search v2.html).

The eY1H data substantially expands the current
literature-derived cytokine PDI network by increasing the
number of PDIs, TFs and cytokines genes. In total, we
found 116 TFs that were not previously reported in the
literature or by ChIP-seq to bind to or regulate cytokine
transcriptional control regions (Supplementary Table S2).
Of these, 31 TFs have previously been associated with im-
mune diseases in GWAS and/or with immune phenotypes
in KO mouse studies (MGI) (Supplementary Table S2). In
addition, we identified PDIs for 32 human cytokine genes
missing from the literature-derived network, expanding the
number of cytokine genes with at least one PDI to 129 (out
of ∼140) (Supplementary Tables S1 and S3).

We also found that the eY1H-derived network is less bi-
ased towards highly studied TFs and cytokines compared
to the literature-derived network (Figure 1E). Importantly,
we observed a similar distribution between the fraction of
eY1H-derived PDIs, the expression of TFs in immune cells,
and the association of TFs with immune diseases deter-
mined by GWAS, across the TF bins (Figure 1B and Sup-
plementary Table S2). The association of TFs with immune
phenotypes reported from KO mouse studies (MGI) shows
an intermediate distribution pattern between the fraction
of eY1H- and literature-derived PDIs in each bin, which
is unsurprising given that the data in MGI was manually
curated from the literature and would be subject to similar
biases as the literature-derived PDIs. Overall, the eY1H net-
work expands the cytokine gene PDI network by capturing
a broader spectrum of TFs that bind to cytokine promot-
ers and by providing coverage for lesser studied TFs and
cytokine genes.

To assess the quality of the eY1H network generated,
we compared the eY1H PDIs to interactions identified or
predicted by other methods. First, we compared the over-

lap with literature-derived PDIs and found that among the
most highly studied TFs and cytokines, where the literature-
derived network is most complete, the overlap between the
eY1H- and literature-derived networks is highest, with 44%
of the PDIs found by eY1H assays being previously re-
ported (Figure 1D and F). Second, we found a significant
overlap with ChIP-seq interactions obtained from the EN-
CODE Project (5) and the GTRD database (6) (Figure
1G), showing that eY1H PDIs recover physical interactions
found in vivo. This overlap is higher for highly studied TFs,
which have been more frequently tested by ChIP-seq (Fig-
ure 1D). Third, we observed a significant overlap with PDIs
predicted based on motif analyses (Figure 1H), indicating
that the eY1H PDIs are likely a result of direct DNA bind-
ing. Finally, we found that TFs in the eY1H-derived net-
work are more frequently associated with immune disor-
ders in humans (GWAS) and with immune phenotypes in
KO mice (MGI) compared to TFs that did not bind to the
cytokine promoters in eY1H assays (Figure 1I and Supple-
mentary Table S2), providing confidence that the TFs and
PDIs identified by eY1H assays are immune-relevant.

In addition to the in silico validation, we experimentally
evaluated the quality of the eY1H PDIs by performing lu-
ciferase reporter assays in human cells. We tested the ability
of TFs fused to the VP160 (10 copies of VP16) activation
domain to bind to their target cytokine promoters in HEK
293T cells (Figure 1J). We randomly tested 241 eY1H inter-
acting pairs and, at a threshold of >1.5-fold-change (FC)
with an FDR < 0.05, we observed a 63% validation rate
(Figure 1K, Supplementary Table S13). Among the eY1H
PDIs, we tested 61 PDIs that were previously reported in
the literature (22 PDIs) and/or identified by ChIP-seq (43
PDIs) and observed a 72% validation rate, similar to the val-
idation rate of eY1H PDIs for which experimental evidence
was not available. As a negative control, we also tested 20
non-interacting TF–cytokine pairs absent from the eY1H-,
literature- or ChIP-seq-derived networks, and none passed
the threshold. Overall, the similarly high validation rates of
the eY1H and the reported PDIs confirms the high quality
of the eY1H PDI dataset.

To summarize the supporting evidence for the eY1H-
derived PDIs, we have provided a table of supporting evi-
dence and calculated a ‘supporting evidence score’ for each
PDI (Supplementary Table S13).

Identification of known and novel PDIs

The eY1H network includes 37 PDIs that have been
reported in the literature, such as interactions between
TFAP2A and the promoters of CXCL8 and TNF, and be-
tween SPI1 and the IL12B promoter (Supplementary Ta-
ble S1). Additionally, we provide physical binding evidence
for 22 literature PDIs that were reported only from func-
tional assays, such as interactions between TFAP2B and the
TNF gene, and between MAFB and the IL10 gene (Sup-
plementary Table S1). We also detected 18 PDIs that have
been reported in mice but not yet in humans, such as in-
teractions between ETS1 and the CCL5 promoter, and be-
tween SMAD4 and the promoters of CCL2, IFNB1, IL5,
IL9 and IL10, showing that these PDIs are conserved be-
tween mouse and human.

https://cytreg.bu.edu/search_v2.html
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Figure 1. Cytokine PDI network. (A, E) Distribution of literature and eY1H PDIs based on the number of publications of TFs and cytokine genes. TFs
and cytokine genes were ranked by the number of publications in PubMed and then partitioned into equal-sized bins. The intensity of blue in each matrix
cell indicates the corresponding percentage of PDIs in the literature (A) or the eY1H network (E). (B) For each TF bin, the graph depicts the relative
fraction of PDIs in the literature- or in the eY1H-derived network, the average relative expression of TFs in immune cells (Blueprint Epigenome), and the
relative fraction of TFs associated with immune diseases in humans (GWAS) or immune phenotypes in KO mice (MGI). (C) Schematic of eY1H assays.
A cytokine promoter (DNA-bait) is cloned upstream of two reporter genes (HIS3 and LacZ) and integrated into the yeast genome. The resulting yeast
DNA-bait strain is mated with a collection of yeast TF-prey strains harboring human TFs fused to the Gal4 activation domain (AD). Positive PDIs are
determined by the ability of diploid yeast to grow in the absence of histidine, overcome the His3p competitive inhibitor 3AT, and turn blue in the presence
of X-gal. Each PDI is tested in quadruplicate. Red boxes indicate positive interactions. (D) The eY1H cytokine PDI network comprises 1380 PDIs (edges)
between 265 TFs (turquoise nodes) and 108 cytokine gene promoters (orange nodes). TFs and cytokines are binned by the number of publications in
PubMed. The eY1H PDIs reported in the literature (blue), ChIP-seq (pink), or both (purple) are indicated. (F) Overlap between literature and eY1H
PDIs. The intensity of red indicates the percentage of eY1H PDIs reported in the literature. (G, H) eY1H PDIs significantly overlap with the occurrence
of ChIP-seq peaks (G) and known TF binding sites (H) in the corresponding cytokine promoters. The Venn diagrams indicate the number of overlapping
interactions. The histograms show the distribution of the overlap with each randomized eY1H network, where the eY1H network was randomized 10 000
times by edge-switching. The numbers under the histograms indicate the average overlap in 10 000 randomized networks, while the red arrows indicate
the observed overlap with the actual eY1H-derived network. Statistical significance was calculated from Z-score values assuming normal distribution for
overlap with the randomized networks. (I) Odds ratio for TFs in the eY1H cytokine network having an association with immune diseases in humans
(GWAS) or immune phenotypes in KO mice (MGI). Statistical significance determined by Chi-square tests. (J) Schematic of luciferase reporter assays.
HEK 293T are co-transfected with TFs fused to the VP160 (10 copies of VP16) activation domain and cytokine promoters (DNA-baits) cloned upstream
of a luciferase reporter gene. After 48 hours, cells are harvested and luciferase assays performed to measure the level of luciferase light signal. Each PDI
is tested in triplicate. (K) Volcano plot of luciferase reporter assays results. Each point represents the average luciferase light signal for each PDI tested in
triplicate relative to cells co-transfected with the empty VP160-vector control. PDIs with a fold-change above 1.5 and an FDR-corrected P-value below
0.05 are considered positive PDIs. PDIs that did not pass the selected threshold are also shown. The positive control set consists of PDIs found in the
literature or ChIP-seq, and the negative control set consists of non-interacting TF–cytokine pairs.
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We found that paralogous and functionally related cy-
tokines often share TF interactors. While the majority of
non-paralogous cytokine genes share few or no TF inter-
actors, paralogous cytokine genes often share a larger frac-
tion of TF interactors (Figure 2A). For example, we found
that PPARA, which was reported to regulate the expres-
sion of IL17A (Supplementary Table S1), also binds to the
promoter of IL17F (Figure 2B, C). Similarly, we detected
multiple TFs interacting with the promoters of IL17A and
IL17F, also binding to the promoter of IL25, an IL17
family member absent from the literature-derived network:
RORA, RORC, PPARG, NR2F6 and ZNF281 (Figure 2B).
Indeed, we confirmed that RORC and PPARG bind the
IL25 promoter using luciferase assays in HEK 293T cells
(Figure 2C). Additionally, we found novel TF interactors
shared by IL17A, IL17F and IL25, including the nuclear re-
ceptors NR1H4, NR2C2 and RXRG (Figure 2B). Interest-
ingly, the NR1H4 antagonist ursodeoxycholic acid was re-
ported to inhibit IL17A production and attenuate rheuma-
toid arthritis, although through a different mechanism (41),
and RXR agonists were found to suppress Il17a expression
in mouse (42). Altogether, these observations show that in
some cases, such as the IL17 family, functionally related cy-
tokines are regulated by shared transcriptional networks.

We also observed that TF paralogs often interact with
the same cytokine promoters. While the majority of non-
paralogous TFs interact with different cytokine promot-
ers, TF paralogs interact with highly overlapping sets of cy-
tokine promoters (Figure 2D). Although this may be due to
similar DNA-binding specificities shared between TF par-
alogs, it may also be associated with TF redundancy, di-
vision of labor between TFs expressed in different cells or
different biological contexts, and TFs with opposing func-
tions as we have previously shown for TFs regulating de-
velopmental enhancers (10). The Maf TFs, MAF, MAFB
and MAFK, have been shown to regulate IL10 (Supple-
mentary Table S1). Using eY1H and luciferase assays we de-
tected interactions between their paralogs, MAFF, MAFG
and NRL, and the IL10 promoter (Figure 2E, F). Simi-
larly, we found that highly related ETS TFs, SPIB and SPIC,
bind to the promoters of four target cytokine genes, CCL23,
CCL24, IFNA2, and IL18 (Figure 2G), which were previ-
ously found by ChIP-seq to be bound by their close paralog
SPI1 (also known as PU.1) (5). We further confirmed these
PDIs by luciferase assays in HEK 293T cells (Figure 2H).
Interestingly, SPI1, SPIB, and SPIC have been reported to
have redundant and opposing functions in B cell develop-
ment (43–45).

In mouse immune cells reported by the Immunological
Genome Project (ImmGen) (32), the expression of Spi1 and
Spic are positively correlated, while the expression of Spib is
generally negatively correlated with their target cytokines,
Ccl24 and Il18 (Figure 3A). To our knowledge, SPIC has
not yet been reported to directly regulate the expression of
cytokines genes. When we knocked down the expression
of SPIC by siRNA in human primary macrophages (83%
knockdown efficiency in LPS stimulated macrophages, Fig-
ure 3B), the LPS-induced expressions of CCL23, CCL24,
and IL18 were also downregulated (Figure 3C), suggest-
ing that SPIC activates the expression of these cytokine
genes. Spic is highly expressed in lymphocytes and lym-

phoid tissues, where it has been reported to regulate the
development of macrophage populations (46,47). SPIC is
also expressed in the liver (Human Protein Atlas, https:
//www.proteinatlas.org) (48), possibly in Kupffer cells. In
published RNA-seq data from liver biopsies of patients di-
agnosed with non-alcoholic fatty liver disease (NAFLD)
and its inflammatory subtype non-alcoholic steatohepatitis
(NASH), in which Kupffer cells and recruited macrophages
play a central role in disease progression (49), the expres-
sion of SPIC and its target cytokines, CCL23 and CCL24,
were significantly downregulated (Figure 3D, E) (29). Given
the role of CCL23 in monocyte chemotaxis and angiogen-
esis, and the role of CCL24 in eosinophil recruitment, all
of which contribute to liver inflammation in NASH (50–
52), SPIC downregulation may constitute a compensatory
homeostatic mechanism to limit disease pathogenesis.

Role of nuclear receptors in modulating the expression of cy-
tokine genes

We detected multiple TF families in the eY1H-derived cy-
tokine network, including major families such as Cys2His2
zinc fingers (ZF-C2H2) and homeodomains (Figure 4A and
Supplementary Table S4). We found an enrichment of in-
teractions with the AP-2 and IPT/TIG families (P = 1.0 ×
10−9 and P = 6.2 × 10−8 by proportion comparison test, re-
spectively), which are known to play prominent roles in im-
mune cell differentiation and immune responses (53). Inter-
estingly, we also observed a significant enrichment of PDIs
involving nuclear receptors (NRs) (P = 7.4 × 10−28 by pro-
portion comparison test). While NRs represent <4% of the
1086 TFs tested by eY1H assays, they constitute 18% of the
PDIs (248 PDIs involving 28 NRs) in the eY1H network
(Figure 4A, B). This also represents a 3.5-fold increase in
the number of PDIs involving NRs compared to PDIs re-
ported in the literature (Supplementary Table S1).

NRs are a family of 48 ligand-activated TFs (54) that
can sense multiple endogenous and exogenous ligands
(e.g. steroids, retinoids, vitamins, xenobiotics, and other
lipophilic substances) and modulate the expression of genes
involved in a variety of biological processes including de-
velopment, differentiation, metabolism, and immunity (55).
Indeed, NRs have been shown to modulate the expression
of key cytokines such as Il17a (56,57) and TNF (58) in im-
mune cell differentiation and autoimmune disorders. To de-
termine whether NRs identified by eY1H assays potentially
regulate their target cytokine genes, we searched for func-
tional evidence for the eY1H PDIs in the literature and
in expression profiling datasets from the Nuclear Receptor
Signaling Atlas (NURSA) Transcriptomine database (27).
Notably, for 80 of the 248 PDIs, the NR has been found
to functionally regulate its target cytokine gene (Figure 4B
and Supplementary Table S7); in most cases, however, di-
rect DNA binding had not been reported. The majority of
reported regulatory interactions involving NRs have only
been studied using natural or synthetic ligands. For exam-
ple, NR1I2 (also known as PXR) is activated by a vari-
ety of compounds including steroids, antibiotics, bile acids,
and plant metabolites (59), and 18 of the 20 cytokine genes
found to interact with NR1I2 by eY1H assays were reported
to be functionally regulated by NR1I2 ligands (Figure 4B

https://www.proteinatlas.org
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Figure 2. Identification of known and novel PDIs. (A, D) Interaction profile similarity between paralogous and non-paralogous cytokines (A) or TFs (D)
as determined by the Jaccard Index. A Jaccard Index of 1 indicates all shared interaction partners, and a Jaccard Index of 0 indicates no shared interaction
partners. Paralogous TFs and cytokines were obtained from the Ensemble Compara database. Statistical significance was determined by Mann-Whitney
U test. (B, E, G) eY1H interactions involving IL17 cytokines (B), IL10 (E) and SPI TFs (G). TFs (turquoise circles) and cytokines (orange rectangles)
are connected by edges based on PDIs identified in eY1H assays (red lines), literature or ChIP-seq (blue), or both (purple). PDIs reported in mice but
not yet in humans are indicated by dashed lines. (C, F, H) Luciferase assays performed in HEK 293T cells to validate eY1H interactions. TFs fused to
the VP160 activation domain were co-transfected with cytokine promoters cloned upstream of a luciferase gene. The relative luciferase activity is plotted
as a fold-change compared to cells co-transfected with the vector control. Experiments were performed in triplicates and the average luciferase activity is
indicated by the black line. *P<0.05 by unpaired two-tailed Student’s t-test.
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Figure 3. Role of SPIC in modulating the expression of cytokine genes. (A) Correlations between the expression of Spi TFs and Ccl24 or Il18 in various im-
mune cells reported in ImmGen. Correlations were determined by Pearson correlation coefficient. (B) Expression of SPIC in PBMC-derived macrophages
transfected with control non-targeting siRNA or siRNA targeting SPIC, and stimulated with 10 ng/ml LPS for 4 hours. Experiments were performed in
triplicates and the average expression of SPIC in each donor is shown. Column bars indicate the average expression of SPIC across all donors. Error bars
indicate the standard error of the mean. *P < 0.05 by paired Wilcoxon signed-rank test. (C) Expression of SPIC target cytokines (CCL23, CCL24 and
IL18) in PBMC-derived macrophages transfected with control non-targeting siRNA or siRNA targeting SPIC, and stimulated with 10 ng/ml LPS for 4
hours. Each line represents a different donor evaluated in biological triplicate. *P < 0.05 by paired Wilcoxon signed-rank test. (D) Volcano plot of differ-
ential gene expression between healthy and non-alcoholic steatohepatitis (NASH) liver biopsies. eY1H TFs (blue) and cytokines (orange) with FC ≥ 2.0
and adjusted P-value <0.05 are indicated. (E) Expression of SPIC and its target cytokines (CCL23, CCL24 and IL18) in liver biopsies from healthy, obese,
non-alcoholic fatty liver disease (NAFLD), and NASH patients. *P < 0.05 by Kruskal–Wallis test with Dunn’s multiple comparisons test when compared
to healthy patients.

and Supplementary Table S7). NR1I2 has been highly stud-
ied for its role in metabolism, but has also recently emerged
as an important regulator of innate immune responses (60),
T-cell function (61), and inflammatory bowel disease (IBD)
(62). Similarly, 19 of the 29 cytokine genes found to interact
with RXRG were reported to be regulated by RXR ligands
such as vitamin A derivatives and fatty acids (Figure 4B
and Supplementary Table S7). RXRA is well known to reg-
ulate inflammatory responses and attenuate host antiviral
responses by modulating cytokine expression (63,64), and
RXRA deficiency has been associated with autoimmune
diseases (65). Less is known about its paralog RXRG, for
which we found many previously observed functional and
novel interactions by eY1H assays (Figure 4B and Supple-
mentary Table S7).

Some NRs, such as NR2C2, NR2F2 and NR2F6, have
no known natural or synthetic ligand but have been stud-
ied using genetic perturbations. For example, ChIP-seq and
microarray analysis of NR2F2 knockdown in endometrial
stromal cells show that NR2F2 primarily regulates the ex-
pression of genes involved in inflammation and cytokine
signaling (66). Its paralog, NR2F6, has been reported to
be a critical regulator of Th17 cell fate and function by
binding to the Il17a promoter, thereby preventing the bind-
ing of NFAT/AP-1 and RORC (57). To determine whether

NR2F6 can functionally regulate the promoters of other
cytokine genes found by eY1H assays, we performed lu-
ciferase assays in HEK 293T cells and found that NR2F6
activated 10 of the 18 cytokine promoters tested (Fig-
ure 4C). Additionally, we found that in human primary
macrophages in which we knocked down the expression
of NR2F6 by siRNA (>95% knockdown efficiency, Figure
4D), the LPS-induced expressions of CCL15, CXCL3 and
IL12B, were also downregulated (Figure 4E). Taken to-
gether, these observations show that, contrary to the mech-
anism described in mouse Th17 cells, NR2F6 activates the
expression of cytokine genes in human macrophages.

Cytokines are often stimulated in response to pathogen-
associated molecular patterns (e.g. LPS, CpG DNA and
peptidoglycan) and pathogens. To determine whether other
NRs in the eY1H network modulate cytokine expression
in stimulated conditions, we knocked down five NRs in
mouse immortalized bone marrow-derived macrophages
(iBMDMs) using a constitutive shRNA system and treated
the iBMDMs with LPS, E. coli, or Sendai virus (Figure
4F). Of the 16 TF–cytokine pairs tested, 15 resulted in the
modulation of cytokine expression induced by at least one
of the stimuli in at least one replicate, and 10 were sig-
nificant for the same stimuli in both replicates. Some TFs
showed stimuli-specific regulation of their target cytokines.
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Figure 4. Role of nuclear receptors in modulating the expression of cytokine genes. (A) Pie charts showing the distribution of TF families in the 1086 TFs
tested by eY1H assays and the TFs and PDIs in the eY1H-derived network. AP2 – activating protein 2; bHLH – basic helix-loop-helix; HD – homeodomain;
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For example, Esrra knockdown significantly increased the
expression of Ccl20 only in E. coli-stimulated conditions,
and Nr2c2 knockdown significantly increased the expres-
sion of Ccl20 only in LPS-stimulated conditions. Other TFs
showed more general regulatory mechanisms that may be
condition-independent, such as Nr2f6 knockdown that re-
sulted in increased expression of Il7 and Il10 in nearly all
conditions tested. Interestingly, while NR2F6 activated cy-
tokine genes in human cells (Figure 4C and E), consis-
tent with observations in mouse Th17 cells (57), NR2F6 re-
pressed cytokine gene expression in mouse iBMDMs (Fig-
ure 4F), suggesting a different regulatory mechanism be-
tween human and mouse. Overall, these observations show
that NRs can modulate the expression of cytokine genes,
and that some of these regulatory interactions occur only
under specific stimulated conditions.

Modulation of cytokine expression using synergistic TF com-
binations

Modulation of cytokine expression using small molecules
or blocking cytokine activity using antibodies have been
used as potent therapeutic strategies for multiple immune-
related diseases (67). NRs present promising therapeutic
drug targets to modulate cytokine expression because of
the lipophilic nature of their ligands and because multi-
ple NR agonists and antagonists have been approved as
therapeutic agents (68). To explore the therapeutic poten-
tial of NRs in modulating cytokine expression, we focused
on IL10, an important anti-inflammatory cytokine that is
often downregulated in autoimmune diseases such as IBD
(69). M2 macrophages are a major source of IL10 (70); how-
ever, THP-1-derived M2 macrophages do not readily pro-
duce IL10 (71) and thus serve as a fitting model to test
for pairs of NRs that synergistically promote IL10 pro-
duction. From eY1H assays, we found several NRs in-
cluding NR1I2 and RXRG that bind to the IL10 pro-
moter, while RXRA and VDR have been reported to reg-

ulate IL10 (Supplementary Table S1). Strikingly, we found
that in THP-1-derived M2 macrophages, combinations of
SR12813 (NR1I2 agonist) with Bexarotene (RXRA and
RXRG agonist) or with Ercalcitriol (VDR agonist) syn-
ergistically promoted IL10 production (Figure 4G). Fur-
ther, SPA70 (NR1I2 antagonist) and HX531 (RXRA and
RXRG antagonist) dose-dependently reduced the IL10 pro-
duction mediated by SR12813 and Bexarotene (Figure 4H).
Altogether, these observations demonstrate the use of the
eY1H- and literature-derived networks as a framework to
identify combinations of TFs that synergistically modulate
the expression of cytokine genes.

Prediction of TF–cytokine axes in inflammatory diseases

Cytokine imbalance is widely associated with the pathogen-
esis of immune disorders including autoimmunity and sus-
ceptibility to infections (3). Similarly, aberrant TF expres-
sion or activity is also associated with immune disorders,
likely due to dysregulation of downstream target genes im-
portant for immune cell functions such as cytokines genes
(72). Indeed, we found many TFs in the eY1H network that
have been associated with the same immune disorders (re-
ported in DisGeNET, GWAS, or MGI) as their correspond-
ing target cytokines (Figure 5A). In total, we found 377 TF–
cytokine-disease associations wherein both the TF and tar-
get cytokine have been associated with the same immune
disease (Figure 5A and Supplementary Figure S1, and Sup-
plementary Table S8), which is higher than expected by
chance (Figure 5B). We found known TF–cytokine disease
regulatory axes, such as RORC inducing IL17A and IL17F
in inflammatory arthritis, psoriasis, and multiple sclerosis
(56,73). In other cases, the link is less well-established. For
example, while loss of GFI1 results in de-repression of Il17f
in type 2 innate lymphoid cells (ILC2) in the course of in-
fection (74), evidence of the GFI1-IL17F regulatory axis in
asthma has not been determined. For most TF–cytokine–
disease associations, the link has not yet been explored, and

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
IPT/TIG – immunoglobulin-like, plexins, TFs/TF immunoglobulin; MH1 – Mad homology 1; NR – nuclear receptor; WH-ETS – winged-helix E-twenty
six; ZF-C2H2 – zinc finger C2H2; ZF-DHHC – zinc finger DHHC. (B) eY1H-derived PDI network involving nuclear receptors (NRs) comprising 248
PDIs (edges) between 28 NRs (turquoise circles) and 48 cytokine promoters (orange rectangles). PDIs reported in the literature or NURSA from functional
assays using ligands (purple edges), genetic perturbation studies (green edges), or both (black edges) are indicated. PDIs determined in mice but not yet
in humans are indicated by dashed lines. The size of the node indicates the number of interactors. (C) Luciferase assays performed in HEK 293T cells
co-transfected with an NR2F6 expressing vector and 18 cytokine promoters cloned upstream of a luciferase gene. The relative luciferase activity is plotted
as a fold-change compared to cells co-transfected with the vector control. Experiments were performed in triplicate and the average luciferase activity is
indicated by the black line. *P < 0.05 by unpaired two-tailed Student’s t-test and FC > 1.5. (D) Expression of NR2F6 in human PBMC-derived macrophages
transfected with control non-targeting siRNA or siRNA targeting NR2F6, and stimulated with 10 ng/ml LPS for 4 hours. Experiments were performed in
triplicates and the average expression of NR2F6 in each donor is shown. Column bars indicate the average expression of NR2F6 across all donors. Error
bars indicate the standard error of the mean. *P < 0.05 by paired Wilcoxon signed-rank test. (E) Expression of NR2F6 target cytokines in human PBMC-
derived macrophages transfected with control non-targeting siRNA or siRNA targeting NR2F6, and stimulated with 10 ng/ml LPS for 4 hours. Each
line represents a different donor evaluated in biological triplicate. *P < 0.05 by paired Wilcoxon signed-rank test. (F) Expression of TFs and cytokines in
mouse iBMDMs transduced with control luciferase-targeting shRNA or shRNA targeting mouse nuclear receptors (Esrra, Nr1d2, Nr2c2, Nr2f6 or Rxra),
and stimulated with 1 �g/ml LPS, 1 CFU E. coli, or 200 HAU Sendai virus. The log2 fold-change expression of TFs and cytokines in response to the
ligands versus vehicle in control-shRNA iBMDMs are shown on the left (green-orange heatmaps). The log2 fold-change in relative expression of TFs and
cytokines in response to the ligands between TF-shRNA and control-shRNA iBMDMs are shown on the right (blue-red heatmaps). The experiment was
performed twice and in each experiment each condition was tested in biological triplicate. The average relative expression of each gene is shown. *P < 0.05
by unpaired two-tailed Student’s t-test. (G) Heatmap showing the expression of IL10 (pg/ml) in THP-1-derived M2 macrophages treated with increasing
concentrations of SR12813 (NR1I2 agonist) and Bexarotene (RXR agonist) or Ercalcitriol (VDR agonist). Experiments were performed in quadruplicate
and the average expression of IL10 (pg/ml) is shown. Data is representative of 2 experiments. (H) Expression of IL10 (pg/ml) in THP-1-derived M2
macrophages treated with SR12813 (NR1I2 agonist) and Bexarotene (RXR agonist), SPA70 (NR1I2 antagonist), and/or HX531 (RXR antagonist). The
experiment was performed twice and in each experiment each condition was tested in quadruplicate. The average expression of IL10 (pg/ml) is shown.
Error bars indicate the standard error of the mean. *P < 0.05 by unpaired two-tailed Student’s t-test when compared to THP-1-derived M2 macrophages
treated with 10 �M SR12813 + 1 �M HX531.
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Figure 5. IBD-associated PDI network. (A) Heatmap showing TFs and number of target cytokines (shades of red) associated with the same immune
disease (reported in DisGeNET, GWAS, or MGI). TFs not associated with the immune disease are shaded in grey. (B) eY1H PDIs include significantly
more TF–cytokine–disease associations than expected by chance. The eY1H network was randomized 10 000 times by edge-switching and the overlap of
TF–cytokine–disease associations with each randomized network was calculated. The numbers under the histogram indicates the average overlap in 10 000
randomized networks, while the red arrow indicates the observed overlap with the actual eY1H-derived network. Statistical significance was calculated from
Z-score values assuming normal distribution for overlap with the randomized networks. (C) IBD-associated PDI network comprising 582 PDIs (edges)
between 46 cytokines (yellow rectangle nodes) associated with IBD (reported in DisGeNET, GWAS, or MGI) and 195 TF interactors (circle nodes). TFs
associated with IBD are represented by red nodes, while TFs not yet associated with IBD are represented by blue nodes. PDIs between TFs and cytokines
that are both associated with IBD are indicated by red edges. PDIs correlated/anti-correlated in expression on a single-cell basis in intestinal epithelial
cells (brown edges), dendritic cells (orange edges), macrophages (pink edges), B cells (purple edges), or T cells (green edges), are indicated. (D) Expression
of RBPJ and CXCL9 along the pseudotime in macrophages are anti-correlated. (E, F) Relative expression of Rbpj (E) or log2 fold-change expression of
Cxcl9 (F) in mouse iBMDMs transduced with control luciferase-targeting shRNA or shRNA targeting mouse Rbpj, and stimulated with 1 �g/ml LPS, 1
CFU E. coli or 200 HAU Sendai virus. Experiments were performed in triplicate and the average expression of Rbpj or Cxcl9 is shown. Error bars indicate
the standard error of the mean. Data are representative of two experiments. *P < 0.05 by unpaired two-tailed Student’s t-test.

thus, the identified associations constitute a framework to
generate hypotheses of regulatory axes in disease contexts.

To find supporting evidence for our predicted TF–
cytokine–disease associations, we integrated scRNA-seq ex-
pression data to reveal correlated TF–cytokine pairs at the
single-cell level that may contribute to pathogenesis of the
disease. As a proof-of-concept, we focused on IBD given
the important role of cytokines in IBD pathogenesis (75).
The IBD-associated PDI network comprises of 582 PDIs
between 46 cytokines associated with IBD (reported in Dis-
GeNET, GWAS or MGI) and 195 TF interactors found by
eY1H assays (Figure 5C). Importantly, we found 71 PDIs
wherein the TF interactor was also found to be associated
with IBD. To identify correlated TF–cytokine PDI pairs

that may contribute to pathogenesis of IBD, we integrated
scRNA-seq data collected from intestinal epithelial cells,
dendritic cells, macrophages, B cells, and T cells, from IBD
patients (36) (Supplementary Figure S2A, B). We found
62 TF–cytokine pairs correlated/anti-correlated in expres-
sion on a single-cell basis in at least one cell type, of which
12 PDIs were correlated/anti-correlated in multiple cell
types (Figure 5C and Supplementary Table S11). Further,
18 PDIs correlated/anti-correlated in expression involve
TFs associated with IBD, such as RORC, RUNX3 and
NR1H4, which play a role in IBD by directly modulat-
ing the expression of cytokine genes (76–78). Notably, nine
PDIs correlated/anti-correlated in expression have been re-
ported in the literature. Five of these PDIs involve TFs that



12068 Nucleic Acids Research, 2020, Vol. 48, No. 21

are associated with IBD (i.e., REL-CXCL8, REL-CCL20,
RORC-IL17A, RORC-IL26 and NR4A2-CCL20), suggest-
ing these TF–cytokine pairs may constitute disease regula-
tory axes in IBD. The other four PDIs involve TFs that are
not yet associated with IBD (i.e. RORA-IL17F, MAFB-
IL10, TFAP2A-CXCL8 and ELK1-CCL2), and further
studies are needed to determine their role in IBD. Taken
together, these findings show that the IBD-associated PDI
network provides a framework to identify TF–cytokine reg-
ulatory axes that contribute to pathogenesis of the disease.

To determine whether TF–cytokine pairs in the IBD-
associated PDI network could have a role in IBD progres-
sion, we used the scRNA-seq data from healthy and IBD
patients to reconstruct a pseudotime trajectory of disease
progression (Supplementary Figure S2C–G). Across intesti-
nal epithelial cells, dendritic cells, macrophages, B cells, and
T cells, we found that 141 of 195 TFs and 37 of 46 cytokines
significantly changed in expression along the pseudotime
trajectory in at least one cell type (Supplementary Figure
S3). To identify novel TF–cytokine disease regulatory axes,
we focused on the 42 PDIs between TFs and cytokines that
are both associated with IBD and significantly change in
expression along the pseudotime. For example, RBPJ and
CXCL9, which are both associated with IBD, were found
to be anti-correlated along the pseudotime in macrophages
(Figure 5D). Interestingly, in PBMC-derived monocytes in-
fected with Salmonella, a bacterial disease that affects the
intestinal tract, RBPJ and CXCL9 were also anti-correlated
in expression on a single-cell basis (79). Further, mice har-
boring a RBPJ deletion spontaneously develop IBD (80),
while experimental IBD models and IBD patients mani-
fest significantly increased CXCL9 levels (81,82). To deter-
mine whether RBPJ regulates CXCL9 in stimulated con-
ditions, we knocked down RBPJ in iBMDMs and treated
the iBMDMs with LPS, E. coli or Sendai virus (Figure 5E).
RBPJ knockdown significantly increased the expression of
CXCL9 across all conditions (Figure 5F), providing evi-
dence of a disease regulatory axis involving a loss of RBPJ-
mediated repression of CXCL9 during infection and inflam-
mation. Altogether, these findings demonstrate the power of
the eY1H network to identify novel TFs and PDIs that have
a role in inflammatory diseases.

Identification of lineage TFs regulating cytokine genes

Cytokines have a fundamental role in the determination and
commitment to specific immune cell lineages. For example,
IFNG promotes Th1-cell differentiation and inhibits Th2-
cell differentiation, whereas IL4 promotes Th2-cell differ-
entiation and inhibits Th1-cell differentiation (83). Produc-
tion of these lineage-directing cytokines is regulated by key
transcription factors that ultimately determine the fate of
the cell. For example, TBX21 (also known as T-bet) regu-
lates the IFNG promoter in Th1 cells and GATA3 regulates
the IL4 promoter in Th2 cells (83). Although cell-fate deter-
mining TFs have been identified for many immune cell lin-
eages, TFs involved in early fate decisions and maintenance
of the established cell lineages are still being discovered.

To predict novel TFs that have a role in development of
immune cell lineages, we leveraged the eY1H network and

gene associations with abnormalities in immune cell differ-
entiation (reported in DisGeNET, GWAS or MGI) to gen-
erate lineage-associated PDI networks (Figure 6). Each lin-
eage network consists of cytokines that are associated with
abnormalities in lineage-specific differentiation and their
TF interactors found by eY1H assays (Supplementary Ta-
ble S9). Indeed, we found 100 TF–cytokine-lineage associ-
ations across all the lineage networks, wherein the cytokine
and its TF interactor were both associated with differentia-
tion abnormalities in the same lineage. For example, RORC
and IL17A were associated with CD4+ T cell differentia-
tion, SPIC and IL18 were associated with macrophage dif-
ferentiation, and RUNX3 and XCL1 were associated with
dendritic cell differentiation. Further, when we searched
for additional TF-lineage associations in the literature, we
found an additional 119 TF–cytokine-lineage associations
wherein the TFs were reported to be associated with differ-
entiation of the same lineage as their target cytokines (Fig-
ure 6 and Supplementary Table S10). We also found sev-
eral TFs that have not yet been associated but have been
predicted to regulate differentiation in the same lineage as
their target cytokines. For example, ELF3 was predicted in
neutrophil differentiation based on its expression patterns
during differentiation (84), and PROX1 was predicted to
play a role in CD4+ T cell differentiation by suppressing
key lineage cytokines (85). Overall, the lineage-associated
PDI networks, generated from cytokines associated with
abnormalities in lineage-specific differentiation, identified
many TF interactors found by eY1H assays that have them-
selves been associated with differentiation of the same cell
lineage.

To narrow our focus on PDIs likely involved in immune
cell differentiation, we integrated scRNA-seq data collected
from human hematopoietic stem/progenitor cells (HSPCs)
during early cell fate commitment (37). We found 20 PDIs
wherein the TF and cytokine are significantly correlated in
expression on a single-cell basis in the corresponding cell
lineage (Supplementary Table S12). Of these, six PDIs in-
volve TFs that have been associated with differentiation
of the corresponding lineage and 14 PDIs involve TFs not
yet associated with differentiation of the corresponding lin-
eage. For example, KLF3 was found to be correlated with
TNF in CD4+ and CD8+ T cells. Interestingly, although
KLF3 has not yet been associated with T cell differentia-
tion, KLF3 is highly expressed in T cells (ImmGen, http:
//www.immgen.org) (32) and is predicted to regulate mem-
ory T cell formation (86). Additionally, several correlated
TFs that have not yet been associated with lineage-specific
differentiation have been observed to play a role in prolifer-
ation. For example, HEY1, a target of the NOTCH signal-
ing pathway, was found to be correlated with the essential
B cell cytokine IL7. In B cell lymphoma, HEY1 is overex-
pressed, and impairing either NOTCH signaling or down-
regulation of HEY1 results in reduced proliferation of B
cell lymphoma cells (87). IL7 has also been found to be ex-
pressed and enhance the development of B cell lymphomas
(88). These observations suggest that beyond the context of
cancer, HEY1 may have a role in B cell development po-
tentially by regulating IL7. In total, 26 TFs that have not
yet been associated with lineage-specific differentiation have

http://www.immgen.org
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Figure 6. Immune cell lineage PDI networks. Lineage-associated (LA) PDI networks. Each LA network consists of eY1H PDIs involving cytokines (yellow
rectangle nodes) associated with lineage-specific differentiation (DisGeNET, GWAS or MGI), and their TF interactors (circle nodes). TFs associated with
abnormalities in lineage-specific differentiation reported in DisGeNET, GWAS or MGI, are represented by green nodes. TFs associated with lineage-
specific differentiation reported in the literature are represented by cyan nodes. TFs not yet associated with lineage-specific differentiation are represented
by purple nodes. PDIs between TFs and cytokines both associated with the same lineage-specific differentiation are indicated by green or cyan edges, and
listed next to each lineage network in green or cyan font. PDIs between TFs and cytokines found to be correlated by scRNA-seq in the specific lineages
are indicated by blue edges for LA TFs, or red edges for non-LA TFs, and listed next to each lineage network in blue or red font, respectively.

been implicated in proliferative disorders, such as neoplastic
growth transformations or leukemia, in the same lineage as
their target cytokines (Supplementary Table S10), suggest-
ing that these TFs may also have roles in the proliferation
stages during lineage development. Altogether, these find-
ings demonstrate the use of the eY1H network to identify
novel TFs that have a lineage-defining role in the develop-
ment of immune cells.

Supporting evidence for eY1H-derived PDIs

We devised a ‘supporting evidence score’ for each eY1H
PDI, in which we weighted the interactions based on: (i)
literature-reported evidence, (ii) presence of ChIP-seq peaks
in the cytokine promoter, (iii) presence of correspond-
ing TF-binding motif in the cytokine promoter, (iv) func-
tional evidence from genetic or drug perturbation exper-
iments reported in NURSA Transcriptomine, (v) experi-
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mental evidence from this project (e.g. luciferase reporter
assays and TF knockdown experiments in primary cells),
(vi) TF–cytokine co-expression in bulk RNA-seq or single-
cell RNA-seq datasets analyzed in this project and (vii)
shared TF–cytokine associations with immune diseases or
lineage differentiation (Supplementary Table S13). In to-
tal, 973 PDIs are supported by some evidence of a po-
tential interaction, including 243 PDIs supported by re-
ported experimental evidence (e.g. functional assays, bind-
ing assays, or ChIP-seq), and 175 PDIs experimentally val-
idated in this study in mammalian cell lines or primary
macrophages. Additionally, 79 PDIs are correlated/anti-
correlated in bulk RNA-seq or scRNA-seq datasets sug-
gesting that these PDIs have a regulatory function, and
313 PDIs share the same association with immune diseases
or lineage differentiation. Overall, we found abundant evi-
dence supporting the PDIs detected by eY1H assays.

DISCUSSION

In this study, we used eY1H assays to delineate a compre-
hensive cytokine PDI network comprising 1380 PDIs be-
tween 265 TFs and 108 cytokine gene promoters. We per-
formed in silico and in vitro validations confirming the high
quality of the network, and further investigated several TFs
in primary macrophages showing that they can function-
ally regulate their target cytokines. Additionally, we found
correlations/anti-correlations in expression between many
TF–cytokine pairs in bulk or scRNA-seq datasets. Alto-
gether, we found supporting evidence, either from external
sources or validations we performed in this study, for over
70% of the PDIs found by eY1H assays. To summarize the
supporting evidence, we provide a table (Supplementary Ta-
ble S13) and an evidence score for each PDI providing a re-
source for researchers to prioritize PDIs for follow-up stud-
ies.

It is important to note that the data used to generate the
‘supporting evidence score’ are not complete and have their
own confidence issues. For example, functional validations
reported in the literature or phenotypic studies suffer from
research biases towards highly studied TFs and cytokines.
Additionally, only 30% of human TFs have been tested by
ChIP-seq due to the lack of ChIP-grade anti-TF antibodies,
and ChIP-seq has only been performed in a limited number
of cell types and conditions, mostly non-immune and un-
stimulated cell lines. These factors likely contributed to the
modest overlap observed between eY1H PDIs and ChIP-
seq PDIs. The generation of additional ChIP-seq datasets
in immune cells and in different stimulating conditions is
likely to increase the number of eY1H PDIs overlapping
with ChIP-seq peaks as we have previously reported (10).
Further, interactions not supported by any evidence may
still be physiologically relevant, and as new datasets are gen-
erated, evidence may be found to support these interactions.

eY1H assays provide a powerful high-throughput PDI
mapping method to test the binding of hundreds of TFs
to defined DNA regions of interest. However, eY1H assays
are not without caveats. Foremost, eY1H assays are lim-
ited to detecting PDIs for 1086 (out of ∼1600) TFs that
are in the TF array, and thus PDIs that occur with TFs
missing from the array will not be detected. eY1H assays

also cannot detect TFs that exclusively interact with DNA
as heterodimers, in cooperative complexes, or after post-
translational modifications (89). These include NF-�B het-
erodimers and phosphorylated STATs which have impor-
tant roles in immunity and cytokine regulation. In addition,
eY1H-derived PDIs occur within the yeast nucleus, outside
of the endogenous chromatin context which plays an im-
portant role in immune regulation (90). Improvements to
the eY1H method, such as co-expressing two TFs or ex-
pressing phosphomimetic TF variants, and integration with
chromatin accessibility and histone marks, will likely reduce
the false negative rate and identify the appropriate cellular
contexts in which the PDIs are relevant. The rate of false
positives is conceptually more complicated to define as in-
teractions can be specific to a cell-type or condition in which
they have not been tested. Nonetheless, we found that inter-
actions identified by eY1H assays and interactions that have
been reported in the literature or identified by ChIP-seq val-
idated at similar rates.

The eY1H dataset is enriched in NRs. NRs are ligand-
activated TFs and thus they present an opportunity to mod-
ulate cytokine activity using drugs, especially in inflamma-
tory diseases. Although antibodies have proven to be effec-
tive approaches in autoimmune diseases, approved antibod-
ies blocking cytokine activity are available for only nine cy-
tokines (DrugBank, (91)). Additionally, a therapeutic strat-
egy may require the induction of cytokine activity rather
than inhibition, or the concomitant modulation of multi-
ple cytokines. Thus, NRs may provide an alternative thera-
peutic approach to modulate cytokine expression. Here, we
demonstrated the use of the eY1H and literature datasets as
a framework to identify combinations of NR agonists that
synergistically increase the production of IL10. Further ex-
ploration of the eY1H- and literature-derived datasets may
identify other NRs that synergistically or concomitantly
modulate the expression of multiple cytokine genes.

The eY1H data provides a resource of PDIs to integrate
with other large-scale datasets and make functional predic-
tions about TFs in cytokine regulation. Here, we present
examples from integrating the eY1H data with scRNA-seq
datasets to identify novel TFs and TF–cytokine regulatory
axes in inflammatory diseases and lineage differentiation.
Applying a similar approach, the eY1H data can be used to
complement CRISPR screens to identify direct interactions
between TFs and cytokine genes. Overall, the eY1H PDIs
provides a powerful resource that can be mined in myriad
additional ways to complement other datasets and delineate
a more accurate understanding of cytokine gene regulatory
networks.
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