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Colloidal gel elasticity arises from the packing
of locally glassy clusters

Kathryn A. Whitaker® ', Zsigmond Varga® 2, Lilian C. Hsiao3, Michael J. Solomon?, James W. Swan? &
Fric M. Furst® '

Colloidal gels formed by arrested phase separation are found widely in agriculture, bio-
technology, and advanced manufacturing; yet, the emergence of elasticity and the nature of
the arrested state in these abundant materials remains unresolved. Here, the quantitative
agreement between integrated experimental, computational, and graph theoretic approaches
are used to understand the arrested state and the origins of the gel elastic response. The
micro-structural source of elasticity is identified by the I-balanced graph partition of the gels
into minimally interconnected clusters that act as rigid, load bearing units. The number
density of cluster-cluster connections grows with increasing attraction, and explains the
emergence of elasticity in the network through the classic Cauchy-Born theory. Clusters are
amorphous and iso-static. The internal cluster concentration maps onto the known attractive
glass line of sticky colloids at low attraction strengths and extends it to higher strengths and
lower particle volume fractions.
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ARTICLE

n soft solids composed of colloidal suspensions, emulsions,

foams, and biomaterials, elasticity is governed by the spatial

distribution and interactions among amorphous mesoscale
structures!. Identifying and understanding the behavior of these
fundamental building blocks are the underlying challenges for
developing structure-property relations that are essential to
controlling and tailoring the mechanics of such materials. Among
soft solids, an important and ubiquitous class are colloidal gels, in
which attractive interactions between suspended colloidal parti-
cles drive a thermodynamic instability that promotes aggregation,
arresting in a space spanning network structure possessing
unique mechanical and transport properties®3. Commonly, phase
separation is induced by the addition of non-adsorbing polymer
to a suspension of repulsive colloids by the well-known depletion
interaction*~7. Depletion gels are often found in industrial pro-
cesses and products where fine solids are dispersed in polymer
solutions, including agrochemicals, consumer care products, and
pharmaceuticals, and have frequently served as model experi-
mental systems®?,

In applications, the rheology of a gel is its principal material
property of interest, including its elasticity!® and yielding!!. At
low volume fractions and strong interaction energies between
particles, colloidal gels are effectively modeled as fractal flocs
formed through diffusion-controlled aggregation processes,
which grow together to form a percolating microstructure!2. The
flocs are the principal load bearing units of the gel and theories
connecting the floc architecture to the gel modulus remain a
state-of-the-art description!314. Yet, there exists no definitive
micro-structural theory for the elasticity of colloidal gels at higher
volume fractions and lower strengths of interaction. What are the
fundamental structural units imparting elasticity to the network,
and what physical principles govern their formation?

Linear elasticity in depletion gels has been postulated to result
from the spatial organization of particles into locally dense
clusters, each cluster acting as a rigid, mechanical unit that pro-
pagates the elastic deformation!®1>-17, For instance, the work of
Zaccone, Wu, and Del Gado!® theorized that the role of cluster-
cluster contacts were central to gel elasticity. The authors showed
that one model of cluster microstructure, based on contact
number distributions for hard spheres and the Cauchy-Born
theory for the affine elastic response of amorphous solids!8, can
fit experimental measurements of the shear modulus. Similar
models with different approaches to enumerating clusters and
cluster contacts based on mode coupling theory (MCT) were also
explored by Ramakrishnan and co-workers!0. Signatures of
clustering are evident in light scattering!® and confocal micro-
scopy!®, which probe long-range fluctuations in colloid number
density, and active microrheology, which examines the elastic
deformation in response to a local perturbation2’,

In the present work, we combine experimental, computational,
and graph-theoretic approaches to systematically identify clusters
in depletion gels and show that they indeed constitute the fun-
damental structural units that lead to the gel’s elastic response.
For the same inter-particle interactions, the structure and elastic
modulus of the experimental and simulated gels agree quantita-
tively. Our experiments and simulations show that the gel elastic
modulus is a convex function of the inter-particle attraction.
However, this property cannot be accounted for by any macro-
scopic structural change or the change in inter-particle bond
stiffness. To resolve this important puzzle, we use a graph theo-
retic approach to identify the fundamental elastic units of the gels,
a set of clusters, and to measure the density of cluster-cluster
contacts. The physical size of the clusters is independent of the
strength of the depletion attraction, but their number density and
the number of cluster-cluster contacts grows with increased
attractive strength. These changes, when combined with the

Cauchy-Born theory, yield a prediction of the elastic modulus
with the correct convexity and in quantitative agreement with
experimental measurements and calculations from simulations.
Additionally, we find that the internal cluster structure becomes
less dense with increasing attraction. The volume fraction of
colloids within the clusters falls on and then extends the attractive
glass line (AGL) of colloids determined via MCT, suggesting that
the arrest of the gel forming process is due to glassy physics
within the fundamental elastic units. Colloidal gels formed via
arrested phase separation should be viewed as dense packings of
locally glassy grains. There is a striking similarity to poly-
crystalline solids: elasticity and, potentially, plasticity emerges
from the few weak bonds between clusters?!.

Results

Gel structure, rheology, and interparticle interactions. The
structure, rheology, and interparticle interactions for the deple-
tion gels are summarized in Fig. 1. In experiments, a recently
developed model depletion gel is employed, which enables the
rheology, microstructure, and particle interactions to be mea-
sured in concert for complete determination of the microscopic
properties and macroscopic elastic response?2. In simulations, a
high-performance Brownian dynamics simulation algorithm
generates representative depletion gel structures and enables us to
compute the elastic modulus of those gels?324.

Colloidal gels formed by arrested phase separation (Fig. la,
experiment; 1b, simulation) exhibit no significant change in
number density correlation length and only subtle changes in
local bonding structure with increasing strength of attraction
between the colloids. However, the elastic modulus of the gels
measured experimentally and computed in simulations over the
same range of attractions varies by more than a factor of 5
(Fig. 1c). Figure 1d depicts the number density fluctuations
within spherical volumes of radius r measured from particle
tracking applied to confocal microscopy of depletion gels and
computed from results of Brownian Dynamics simulations. For
large r, all density fluctuations decay as the power-law r—3,
reflecting a homogeneous structure on large length scales. Below
the correlation length & (discussed below) shown in Fig. le, the
number density fluctuations scale with a different power-law
sensitive to the local structure of the gels. In both simulations and
experiments, these differences are plainly evident. Over length
scales similar to the particle size, the experimentally measured
variations in the number density fluctuations are overwhelmed by
statistical noise in the particle tracking algorithm arising from
static and dynamic tracking errors.

The correlation length & (Fig. le) is visible in the experimental
micrographs and renderings of the simulations. We calculate it
from the peak of the static structure factor computed from both
the experiments and the simulations. Across a broad range of
interaction strengths, the micro-structural correlation length is
nearly constant and in close agreement between experiment and
simulation. The value &= 10a, where a = 0.560 um is the colloid
radius, is commonly observed in experiments with gels formed
via arrested phase separation!®. It is well understood that a
diffusion-limited aggregation process precedes the arrest of the
gel in its terminal, elastic state, which freezes in the same
correlation length regardless of the strength of the attractive
interaction®2>26, But the key question remains: How are the local
number density fluctuations to be understood, and what impact
do these have on the elasticity of the colloidal gels?

Cauchy-Born theory. In order to understand the emergence
of elasticity in the particle network, a model of gel elasticity
can be formulated from the Cauchy-Born theory, in which
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Fig. 1 The microstructure and rheology of simulated and experimental gels. a Confocal micrographs and b simulation snapshots of depletion gels at
different polymer concentration and fixed volume fraction ¢ = 0.20. ¢ The elastic modulus of depletion gels measured in experiment (solid) and computed
via simulation (open) as a function of depletant concentration and strength of attraction. The predictions of the graph-decomposition and Cauchy-Born
theory (crosses) compare well with the measurements. The error bars of the experiments are calculated from three independent measurements. Similarly,
the error bars for the simulations are the 95% confidence intervals from data collected across multiple gels under the same conditions. The frequency
dependence of the experimental and simulated shear moduli are discussed in Supplementary Note 1 and compared in Supplementary Fig. 1. d Variance in
the number density of particles within a spherical boundary of radius r measured from experiments (solid) and simulations (open). The solid line is a
power-law decay for a geometrically dense structure. e The characteristic correlation length of number density fluctuations measured in experiments
(solid) and computed via simulations (open). f The stiffness of inter-particle bonds computed from the Asakura-Oosawa theory and direct application of
the equipartition theorem (open) or measured directly in simulations of arrested gels (solid)

the elastic modulus arises from a few weak connections between
locally rigidified clusters!®!>16, The Cauchy-Born elastic mod-
ulus is written as the product of three physical quantities: G’ =
4ngx (r*), where n, is the number density of elastically active
bonds in the material, x is the bond stiffness, and (r?) =
(1/3) [(rer, + 1,1, + 1,1,)P(r)dr is a squared length scale asso-
ciated with the elastically connected domains!8. Formally, it is an
average over the cross-second moments of the vector r, con-
necting each cluster’s geometric center to the point at which it is
bonded to its neighboring clusters taken over the distribution of
cluster-cluster contacts, P(r).

It is natural to expect (r2) to scale with one of the two length
scales evident in a depletion gel: the particle size, a, or the
correlation length, &. Since neither varies significantly with inter-
particle interaction, changes in length scale cannot explain the
variation of the elastic modulus in gels formed by arrested phase
separation. The bond stiffness «, can be estimated from the inter-
particle potential through equipartition by computing kT/(h?),

where kT is the thermal energy and (h?) is the average of the
squared surface to surface separation of a pair of particles whose
inter-particle distance satisfies a Maxwell-Boltzmann distribution.
It may also be inferred in the simulations of arrested gels through
explicit calculation of kT/(h2). Both measures are plotted in
Fig. 1f. The bond stiffness with respect to the strength of inter-
particle interaction increases modestly and has the opposite
concavity of the elastic modulus, and thus it alone cannot explain
how elasticity in the gels develops. What remains from the
Cauchy-Born theory to explain the change in elasticity is a change
in the number density of elastically active bonds.

Visual inspection of gel structures measured experimentally
and computed in simulations offers no clear delineation of cluster
and inter-cluster bonds beyond the correlation length & associated
with the number density fluctuations. Laser tweezer experiments
have identified rigidly clustered regions with similar characteristic
length scale through mechanical interrogation of the network by
an oscillatory driving force?). This form of mechanical
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Fig. 2 Graph decomposition of depletion gels formed by arrested phase separation. a lllustration of the /-balanced graph partition algorithm applied to a
model gel. In counter-clock-wise order: the network is converted into a graph with particles representing vertices and bonds representing edges, the graph
is partitioned into subgraphs containing no more than [ vertices (=6 here), and the subgraphs are used to color the depletion gel. b Snapshots from
simulation data at varying U/kT of depletion gels after coloring with the graph partitioning scheme. The subgraph size | is chosen so that the correlation
length & equals the average radius of gyration of the clusters found via partitioning. ¢ The subgraph number density, the average number of contacts

between subgraphs, and the averaged square subgraph contact length: (r2)

interrogation is purely local and identifies only single clusters,
and cannot, in a practical way, provide a statistical description of
the cluster number density or their inter-connectedness. Yet,
these two quantities: the number density of rigid clusters, n., and
the average number of cluster-cluster contacts per cluster, z, are
sufficient to determine the remaining parameter for the Cauchy-
Born theory: the number density of elastically active bonds,
n, = in.z.. An alternative means of identifying rigid clusters and
their connectedness is needed. In the present work, we employ a
graph theoretic approach?”-28,

I-balanced graph partition of gels. To calculate n,, z,, and (r?),
we apply the [-balanced graph partition (Fig. 2a) to represent the
rigidly connected clusters comprising the gel in a form that
encodes the topology of the inter-particle bond network but that
is abstracted from the particles’ physical spatial arrangement. An
unweighted, undirected graph representing each simulated gel is
built by associating every particle with a vertex and every bond
between two particles with an edge connecting the corresponding
vertices. Decomposition proceeds by cutting edges to divide the
graph into clusters containing no more than [ particles. The
partition is chosen such that there are nearly equal numbers of
vertices in each cluster (balanced) while cutting the fewest pos-
sible edges. Subgraphs given by the partition represent the most
loosely connected set of particle clusters containing [ particles.
The bound of I can be chosen arbitrarily, and here we use
bisection to efficiently find a value I" such that the average radius
of gyration, Rg, of the clusters identified in the subgraphs is equal
to the correlation length of the gel, £& The number density of
clusters is simply n.=n/I', (where n is the number density of
particles) and is plotted in Fig. 2c. Importantly, the decomposi-
tion shows that the number of rigid clusters, and thus n, is an
increasing function of U/kT. With the cluster size and overall
number density fixed, the internal density of particles internal to
the clusters is a decreasing function of U/kT. The colored clusters
identified by the graph partitioning (Fig. 2b) exhibit this property.

The connections between subgraphs determines the average
cluster contact number z. and the square length scale (r2).
Figure 2c depicts n., z., and (r?) computed from the graph

decomposition. Like the correlation length & (r2) is not a
systematic function of the attraction strength. However, z. is an
increasing function, and crucially, the product n.z. is a convex
function of U/kT, such that the number of elastically active
contacts alone is able to reproduce trends in the elastic modulus
measured from experiments and simulations. When these
measures of the connectivity among the fundamental elastic
subunits are substituted into the Cauchy-Born theory (Fig. 1c),
the elastic modulus is reproduced quantitatively as well.

We compute a histogram of the number of bonds formed by
particles within the individual clusters to verify that the clusters
identified by the I-balanced graph decomposition are themselves
rigid (Fig. 3). This distribution reveals that the mean number of
bonds per particle exceeds six for all cases studied. For particles
with central interactions, six bonds are necessary for iso-staticity
and thus rigidity. The contact number distribution cannot prove
definitively that the clusters identified by the decomposition are
internally rigid. However, that the mean number of contacts per
particle in a cluster is larger than six is consistent with clusters
having a rigid core. Specific notions of iso-staticity and rigidity of
the whole gel structure or parts has been highlighted recently
through alternative methods?%-31,

It is important to recognize that the I-balanced graph
decomposition is not unique. For example, consider the graph
with five vertices connected in a ring. The I-balanced graph
decomposition with subgraphs having three or fewer vertices (I =
3) could result in any pair of subgraphs containing three and two
vertices selected from the ring by cutting just two edges. We
employ a spectral decomposition method that determines the
decomposition through k-means clustering using a stochastically
sampled initial condition. Degeneracy of the decomposition
should only affect the loose connections between rigid subunits
and not the subunits themselves. The effect of degeneracy in the
decomposition on the predicted macroscopic elasticity was
quantified by determining 95% confidence intervals on the
inferred quantities from five replicates of the decomposition
process. These uncertainties are smaller than the size of the
symbols in Fig. 2c, but are propagated forward to the elastic
modulus determined from the Cauchy-Born theory in Fig. le.
During the process of bisection for determining the value of I, we
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Fig. 3 The nearest neighbor distribution for particles within clusters. The I-
balanced graph decomposition identifies minimally connected clusters
among the different gels studied. The analysis itself is agnostic to whether
the clusters themselves are rigid. By identifying minimally connected
clusters in a homogeneous network, there is a bias toward clusters with
large number of internal bonds. To quantify this effect and confirm that the
clusters are indeed rigid, we examine each cluster in isolation and compute
the number of bonded neighbors each particle within the cluster possesses.
This number excludes any neighbors that might reside within another
cluster. The plot shows this distribution for all the simulated gels. Clearly,
the mean number of nearest neighbors is larger than six for all cases.
Therefore, the clusters exceed the Maxwell iso-staticity condition and
contain a rigid core that can serve as an elastic sub-unit for the Cauchy-
Born theory

observe that the mean radius of gyration of clusters varies
monotonically in the neighborhood of I', which itself is much
smaller than the total number of particles in the gels. Therefore,
based on smoothness of the objective function and reproducibility
of the decomposition, we conclude that the graph decomposition
is stable and insensitive to the precise value of I when the gel
contains a large number of clusters.

While it is ultimately desirable to use the experimental confocal
image data to perform an identical cluster analysis, the present
experimental system sacrifices some particle tracking resolution
(index mismatch) to enable both rheology and optical trapping
for direct measurements of the particle interactions by laser
tweezers?2. This increases both the static and dynamic contribu-
tions to the variation in particle positions. Figure 1d clearly shows
the small wave vectors and short length scales of these
contributions, while both experiment and theory capture the
long-range structure of the gel.

Discussion

The model data in Fig. 1c are the quantity: 2n.z.x(r%), with n.z.
and (r?) determined via graph theoretic methods. The results
show that Cauchy-Born theory yields a prediction of the elastic
modulus with the correct convexity and in quantitative agreement
with experimental measurements and calculations from simula-
tions. The graph decomposition, which is agnostic to the absolute
spatial arrangement of the colloids, has revealed the underlying
elastic structure of these heterogeneous gels. Similar graph the-
oretic approaches have proven useful for understanding the
mechanical properties of other amorphous solids such as granular
packings32,

The graph theoretic approach provides further insight into the
microstructure of gels formed during arrested phase separation
on length scales below the correlation length, £ The number
density of clusters n. can be used to define an effective cluster
volume fraction ¢. = 47n£3/3, representing the fraction volume
in the gel occupied by the elastic subunits. Through conservation
of particle number, the volume fraction of colloids internal to the
subunits is ¢, = ¢/¢.. Because . is an increasing function of the
strength of inter-particle attraction, the internal volume fraction
of the clusters is a decreasing function of the same. That is, the
elastic subunits contain fewer particles with increasing strength of
attraction. Figure 4a depicts both ¢. and ¢, determined from the
graph decomposition. Following the work of Zaccone, Wu, and
Del Gado!®, an approximation for ¢. is also calculated by solving
the implicit equation G’ = ¢pz.(P)x/(57€), at each strength of
attraction and measured value of G'. This equation is a re-stated
form of the Cauchy-Born theory with G’ the modulus determined
in the simulations, (r2) = £2/15, and z.(¢.) drawn from the hard-
sphere equation of state’334, in which the radial distribution

1
ﬁ, gives z.(¢) = ¢g(2;¢). The
resultant volume fraction of clusters and their internal volume
fraction are also plotted in Fig. 4a. The hard-sphere approxima-
tion provides a reasonable estimate of the volume fraction of
elastic subunits and their internal volume fraction; both differ
from the graph-theory result by roughly 10%. The data in Fig. 4a
come from the simulated G’ to provide a direct comparison
between different models of the cluster architecture: graph
decomposition and hard sphere equation of state. A quantitatively
equivalent set of cluster volume fractions can be generated using
the hard-sphere approximation and experimentally measured
values of G’, which are indistinguishable from the the simulated
values within the experimental uncertainty.

Remarkably, the internal volume fraction of clusters ¢, extra-
polate from the AGL calculated from MCT, which includes a
bilinear coordinate transformation to superimpose the MCT
theory predictions onto Monte Carlo simulations3>3°, It is
important to note that glassiness is conventionally defined in
terms of long or diverging relaxation times and not merely the
density of a phase. We observe in both experiments and simu-
lations that the gel as a whole is arrested. This highlights the
importance of work that tracks the morphology and dynamics of
individual clusters over longer time scales than studied here, in
order to understand how clusters form, relax, and eventually
arrest’0. In Fig, 4b, each interparticle attraction strength corre-
sponding to a depletant concentration is represented by the
reduced Baxter temperature 75>%37-39, The Baxter temperature is

related to the reduced second virial coefficient B; by 75 = AR
2

where B; = %, ogff is the effective hard sphere diameter, and B,
3 ff

function at contact, g(2;¢) =

is the second virial coefficient calculated from the pair interaction
potential U(r) by B, = 27 [ r*[1 — e V"/*T]dr. The Asakura-
Oosawa potential is used to calculate B; for the experimental
system of PMMA in CH and CHB (mass fraction wcy = 0.37)
with polystyrene depletant. Based on the principle of corre-
sponding states for short-range attractive interactions*(, the
particle volume fraction and reduced Baxter temperature 75 for
each experiment is plotted on the phase diagram for adhesive
hard spheres (AHS) with open black circles in Fig. 4b. The solid
black circles represent the corresponding ¢, values derived from
the cluster model. We also plot 75, ¢, and ¢, obtained from fitting
the cluster model to the elastic moduli of depletion gels from
octadecyl silica nanoparticles in decalin!® (Details of the model
fits are provided in Supplementary Note 2). The results are
remarkably consistent between depletion gels that differ sub-
stantially in size and chemistry, but that otherwise correspond to
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Fig. 4 The internal cluster particle concentration. a The cluster densities ¢,
(black) and volume fractions of clusters ¢ (red) determined from
simulations and application of the graph theory. The lines are
approximations of ¢, (black) and ¢ (red) found by substituting the hard
sphere equation of state into the Cauchy-Born theory with (r2) = £2/15 and
G’ given by the simulation results. Nearly identical values are found when
using the experimentally determined modulus. b Initial volume fraction and
reduced temperature of gel samples (open circles) and cluster densities ¢,
determined in this work (closed circles, graph theory; circle-x, hard sphere
equation of state). The square symbols reproduce the data of
Ramakrishnan et al.19 with open squares the experimentally measured
particle volume fraction and closed squares the cluster densities inferred
from application of the Cauchy-Born theory with the hard-sphere equation
of state. The attractive and repulsive glass lines with a bilinear shift from
the mode coupling theory (MCT) are drawn in solid red3>3¢ while an
extrapolation through the experimental data is indicated with the dashed
red line. The AHS phase boundaries with the fluid-solid coexistence lines
for a/Ry =10 © are given by short dashed black lines. Fluid-fluid coexistence
is indicated by the solid black line and its extrapolation by the dashed black
line. The local volume fraction of particle-rich regions (shown as open
circle-plus) is compared with values from ref. °: blue triangles are ¢ = 0.13
and § = 0.059, green triangles are ¢p = 0.045 and 6 = 0.018, and black
triangles are ¢ = 0.045 and 6 = 0.059, where § is the range of the
attraction relative to the particle radius

the same scaled range and strength of the interaction potential.
Finally, without a graph-theoretic approach to identify gel clus-
ters, we calculated the local packing fraction of dense particle
strands in the network, following the approach of Lu et al.” These
values, shown in Fig. 4b, are roughly constant at a volume frac-
tion ¢ ~0.57 and agree with their earlier study using PMMA
colloids (a=0.560 pm) in density matched cyclohexyl bromide
and decahydronaphthalene with tetrabutylammonium chloride.

The Cauchy-Born cluster model of gel rheology accurately
describes the elastic modulus of depletion gels based on the bond
rigidity, the cluster size, and the cluster density. As the attractive
strength increases with depletant concentration, the gel modulus
also increases. However, the higher modulus is due mainly to the
lower density of particles within clusters, which coincides with
the AGL extrapolated into the coexistence region of the phase
diagram. These results are supported by a long line of evidence
that there is an intimate connection between the gelation of
colloids with short-range attraction and phase separation. For
particles with centro-symmetric forces, a thermodynamic driving
force in the two-phase region drives aggregation, and locally
arrested density fluctuations, clusters that are sparsely connected,
give the network elastic properties.

This work raises a number of interesting possibilities for
engineering the mechanical strength of colloidal gels, similar to
controlling crystallite grain size in metals*!*2, During the
quiescent formation of gels, the constant value of & at different
attractive strengths results from the diffusion-limited aggregation
kinetics. By imposing a flow or external field, the cluster size can
be altered and clusters can even be made anisotropic. Thus, one
could rely on processing, with a focus on altering the cluster size &
or the cluster shape as a means of controlling the material stiff-
ness. The Cauchy-Born theory has a more primitive tensorial
form that can account for such anisotropies. The [-balanced graph
decomposition provides the necessary tool to detect anisotropic
clusters from which these anisotropies derive. Finally, the graph
theory methods introduced here should also be powerful tools for
identifying and characterizing meso-scale structures from real-
space position data that dictate the mechanics of other networked
colloidal materials, like capillary suspensions*? and particle net-
works at interfaces*4-46,

Methods

Depletion gels. Experiments are performed using a recently-developed model
colloidal gel that enables the simultaneous measurement of the structure, rheology,
and particle interactions?2. The depletion gels consist of poly(methylmethacrylate)
latex (PMMA) particles dispersed in a mixture of cyclohexane and hexadecane.
With this model system, we measured the bulk shear modulus with a rotational
rheometer, the microstructure using confocal microscopy, and the particle inter-
actions with laser tweezers.

Depletion gels were prepared with PMMA particles (2a = 1.11 um # 3%)
suspended in a mixture of cyclohexane (CH) and cyclohexyl bromide (CHB) with
the CH mass fraction wcyy = 0.37 at a particle volume fraction ¢ = 0.2. Polystyrene
(M,, = 900,000 g/mol, c¢* = 10.8 mg/mL, R; =32 + 2 nm) is added at different
concentrations (c/c" = 0.35, 0.46, 0.58, 0.69, 0.80, and 0.93) to adjust the strength of
the attraction between the particles. The results from the model system are
compared with depletion gels reported by Ramakrishnan et al.!? (Supplementary
Note 2 contains information on the experimental system). The material properties
of the two model systems are summarized in Table 1.

Confocal imaging of gel structure. An inverted confocal microscope (Nikon
AlRsi) equipped with a resonant scanner head and a high-speed piezo stage is used
to image the colloidal gels. Gel samples are loaded into glass capillaries with 300 um
spacers to match the gap used in the rheometer. The top and bottom of the
capillaries are glass coverslips suitable for microscopy (0.17 mm thickness). After
loading, the gels sit quiescently for 30 min before imaging. 3D image stacks
are taken from the bottom coverslip at a speed of 15 slices per second. The
image stacks are 42 pm x 42 um x 10 um in dimension. The voxel dimensions
are 83 nm X 83 nm x 83 nm.

Confocal image volumes are analyzed using feature finding code based on the
particle tracking algorithm of Crocker and Grier?’, which uses a Gaussian mask to
filter out digital noise and that identifies centroids based on their intensity maxima.
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Table 1 Model depletion systems compared in this work
This work Ramakrishnan et al.'®
Particles PMMA Octadecyl silica
Solvent CH/CHB Decalin
Radius, a (pm) 0.555 0.045
Depletant PS PS
M,, (g/mol) 900,000 Not reported
Ry (nm) 32 35
c¢* (mg/mL) 10.8 Not reported

The particle tracking is modified from the original two-dimensional algorithm to
locate the center of a particle within a three-dimensional voxel with sub-voxel
resolution. Errors in centroid location are determined in the xy- and the xz-planes
using immobilized samples. The error is +34 nm in the xy-plane and +67 nm in the
xz-plane. Particle position data are used to calculate several measures of the gel
structure, including the particle contact number distribution and the number
density fluctuations. Particles are considered to be nearest neighbors if they are
closer than the distance that defines the first minimum in the radial distribution
function, g(r).

Bulk rheology. Oscillatory rheometry is performed on a stress-controlled rhe-
ometer (AR-G2, TA Instruments) at T = 25 °C. Colloidal gels are loaded onto a
Peltier plate and a stainless steel parallel plate geometry (d =6 cm, gap h =300
pm) is lowered to the gap distance while rotating at w = 1 rad/s to minimize the
formation of bubbles at the sample interface. The geometry minimizes confinement
effects and a solvent trap is used to prevent the loss of the volatile solvent. We
employ a correction factor for the nonhomogeneous strain rate in the parallel plate
geometry*8. We verified that gap size effects are negligible for 4 > 150 pm, which is
determined by measuring the strain-dependent linear elastic modulus for poly
(ethylene oxide) standards (Molecular weight M,, = 2 x 10° g/mol, 4 wt%) at h =
50, 100, 150, 200, 300, 400, and 500 pm, and for colloidal gel samples at & = 300
and 500 pum. Slip does not occur; a smooth fixture and a fixture with a sand-blasted
surface (parallel plate geometry d =6 cm) give identical moduli to within
experimental error.

After sample loading, gels are pre-sheared unidirectionally for 1 min (strain =
37,700, shear rate = 628.3 s~!). Oscillatory strain sweep (fixed angular frequency,
w =10rad/s) and frequency sweep measurements (fixed strain amplitude, y =
0.01) are performed after waiting 30 min. The waiting time is chosen to allow direct
comparison between the gel microstructure and the rheological measurements on
the gels. The average of three independent measurements of the gel rheology are
made for each depletant polymer concentration.

Brownian dynamics simulations. Computer simulations are performed using a
recently developed a method for rapid calculation of hydrodynamic interactions
(HI) in suspensions of mono-disperse spheres?%. The positively-split Ewald (PSE)
algorithm makes the cost of computing Brownian displacements in simulations of
colloidal scale particles with HI comparable to the cost of computing deterministic
displacements in freely draining simulations. Here, the Rotne-Prager-Yamakawa
tensor (RPY)* is used to account for the long-ranged HI with great fidelity. The
method relies on a new formulation for Ewald summation of the RPY tensor,
which guarantees that the real-space and wave-space contributions to the tensor
are independently symmetric and positive-definite for all possible particle config-
urations. Brownian displacements are drawn from a superposition of two inde-
pendent samples: a wave-space (far-field) contribution, computed using techniques
from fluctuating hydrodynamics and non-uniform fast Fourier transforms; and a
real-space contribution, computed using a Krylov subspace method. The combined
computational complexity of drawing these two independent samples scales line-
arly with the number of particles enabling hydrodynamic simulations with system
sizes up to 10° particles.

The short-ranged depletion attraction is modeled with an Asakura-Oosawa
form*:

2(2a(1 + )’ — 3r(2a(1 +8))* + 1

Up(r) = U2 3 2 3
(2a(1498))” — 6a(2a(1+ 98))° + (2a)

ey

for particle separations r in the range of 2a < r <2(a + §). The width of the
attraction is § = 0.057a and the value of the potential at contact, U, relative to the
thermal energy scale, kT, is chosen to match the depletion strength of the polymer
concentration ¢/c” used in the experiments.

Simulations of colloidal dispersions with 216,000 spherical particles of mean
radius a and 5% polydispersity are conducted in a cubic simulation box of size L
and periodic boundary conditions. We impose a particle volume fraction, ¢ = 0.20,
matching that of the experiments. The attractive dispersion is allowed to gel in a
solvent of viscosity # for 10 bare diffusion steps 7 = 67na3/kT at which point
each sample is found to be percolated and the measurements are performed. All

results are averaged over 5 independently generated samples for each value of
U/KT.

In order to measure the structural correlation length in the simulated gels we
compute the static structure factor using all particle positions, x € R*":

S(g.t) = <%Z eXp(iq~ (x;(2) ka(t)))>7 2

k=1

S(q, t) measures spatial correlations between particle positions over distances
proportional to ~27/q. As the samples are arrested, the S(q, ) curves are
unchanging at long times. The location of the peak in S(g, ) at small wave vectors
(q — 0) is a measure of the characteristic correlation length of the particles in the
gel. For each sample we identify the value of the wavevector at the maximum, gumqx
using a local fit to a parabola, and use it to compute &= 27/gnax.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability

The simulation method, Brownian Dynamics with hydrodynamic interactions, is made
publicly available through a plug-in to HOOMD-blue, the open source molecular
dynamics suite, at the authors website: http://web.mit.edu/swangroup/software.shtml, as
well as via email requests. HOOMD-blue version 1.3.4 is used in this study.
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