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Abstract: The brain and the gut are connected from early fetal life. The mother’s exposure to
microbial molecules is thought to exert in utero developmental effects on the fetus. These effects
could importantly underpin the groundwork for subsequent pathophysiological mechanisms for
achieving immunological tolerance and metabolic equilibrium post birth, events that continue
through to 3–4 years of age. Furthermore, it is understood that the microbiome promotes cues
that instruct the neonate’s mucosal tissues and skin in the language of molecular and cellular
biology. Post birth mucosal lymphoid tissue formation and maturation (most probably including
the vermiform appendix) is microbiota-encouraged co-establishing the intestinal microbiome with
a developing immune system. Intestinal mucosal tissue maturation loops the brain-gut-brain
and is postulated to influence mood dispositions via shifts in the intestinal microbiome phyla.
A plausible appreciation is that dysregulated pro-inflammatory signals from intestinal resident
macrophages could breach the loop by providing adverse mood signals via vagus nerve afferents
to the brain. In this commentary, we further suggest that the intestinal resident macrophages act
as an upstream traffic controller of translocated microbes and metabolites in order to maintain
local neuro-endocrine-immunological equilibrium. When macrophages are overwhelmed through
intestinal microbiome and intestinal epithelial cell dysbiosis, pro-inflammatory signals are sustained,
which may then lead to mood disorders. The administration of probiotics as an adjunctive medicine
co-administered with antidepressant medications in improving depressed mood may have biological
and clinical standing.
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1. Commentary

1.1. Macrophages and Intestinal Tissue

Both the intestines and the brain develop from the same cluster of embryonic tissue that can be
traced back to the primitive streak in early vertebrate fetal growth. As such, this grooved structure that
forms on day 15 of human development, along the caudal midline of the bilaminar embryonic disc is
the first visible sign of gastrulation that will give rise to the ectoderm, mesoderm and endoderm [1].
When the tissue divides, a portion develops into the Central Nervous System (CNS) (i.e., brain and
spinal cord) and the other into the Enteric Nervous System (ENS). Immune molecules are intimately
related to the development of the CNS as they are for the intestinal tract. The intestinal tract is a
complex multi-dimensional structure that is derived from a simple tubular structure [2]. Such is the
complexity that the established intestinal epithelia are embraced by the crypt-villus elements that
contain absorptive enterocytes and secretory tuft, goblet, Paneth, entero-endocrine cell types; while also
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accommodating resident intestinal stem cells and rapidly dividing progenitor cells. Adjacent to the
intestinal epithelium is an additional complex structure comprising the lamina propria, submucosa,
and muscular layers.

Immune molecules have been reported to participate in integral functions in the CNS throughout
various stages of neural development, including affecting neurogenesis, neuronal migration, axon
guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity [3].
For example, the innate-like, evolutionarily conserved MR1-restricted mucosa-associated invariant
T cells (MAIT) from humans represent the most abundant T-cell subset that quickly respond to a
wide variety of bacteria [4]. MAIT cells in humans are prevalent and are distributed throughout the
blood and mucosal sites [5]. Studies of MAIT cells in human fetal development are important for the
consideration of the fundamental immune-biological characteristics expressed, as well as for the role
these cells play in the fetus and the newborn. In humans T cells are enriched in mucosal tissues [6].

In the intestines there is recognized a tripartite co-operation in order to maintain intestinal steady
state homeostasis. This occurs between the intestinal epithelium barrier, the intestinal microbiome and
gut mucosal immune cells such as macrophages [2,7,8].

Macrophages (mononuclear phagocytes) are distributed throughout the body in tissue sites that
include for example the intestines, the lung, the liver, and the brain [9]. Macrophages are established
from prenatal signals and from circulating monocytes post birth [9]. The appreciation that macrophages
have multiple actions in order to maintain the overall immunological efficiency in the gut is an idea that
reflects macrophage functional diversity in specific tissues, where the tissue site provides instructive
signals for local macrophage differentiation [10].

In the gut, intestinal resident macrophages (CX3CR1hi) are specialized cells that are involved
in antigen presentation to T cells that in turn shape the T cell responses generated [11]. As such
intestinal resident macrophages are important participants in contributing and maintaining the steady
state equilibrium of mucosal immunity. Macrophages shape mucosal immune equilibrium through
the action of phagocytosis eliciting protection from pathobiont translocations across the intestinal
epithelium [12] (Figure 1).

The activated macrophage phenotype is known to present antigens to T lymphocytes, which
initiate the controlled and appropriate immune response that is elicited by a recognition signal that
responds to microbial proteins [13–15] (Figure 1). Studies report that antigen presentation triggers
macrophage activities that activate T cells; the activity of macrophages is linked to up regulation of a
sequence of cytokines that includes interleukin 1 (IL-1), interferon-alpha (IFN-a) and other cytotoxic
proteins [13]. have an important role in maintaining immunological equilibrium [15].

Maintaining immunological equilibrium also involves the phagocytosis of exogenous antigens,
cellular debris, insoluble particles and activated clotting factors [15]. It is also noted that intestinal
resident macrophage populations sustain mucosal tolerance by contributing to the survival and
expanding T lymphocytes already primed toward immunological defense of pathogens [8]. Further,
the colitogenic T lymphocyte inflammatory response that occurs in the intestinal mucosa is suppressed
by the anti-inflammatory cytokine IL-10 elaborated by intestinal resident macrophages; an activity
promoting intestinal mucosa immunological tolerance. The macrophage can be hence envisaged to
promote regulatory T cell activities [8].

The intestinal epithelia produce soluble protein factors (e.g., thymic stromal lymphopoietin,
transforming growth factor-b, and retinoic acid) and also express the integrin ligand semaphorin 7A
that undergoes contact-dependent interactions with intestinal macrophages. This activity induces the
expression of IL-10 that in turn further promotes intestinal homeostasis. Therefore these cumulative
actions combine components of the local innate immune system (i.e., macrophages and dendritic cells
and others) and the intestinal epithelia in an interaction that preserves a tolerogenic functional steady
state [13].

A recent review by Roman and colleagues [16] has progressed the view that macrophages can
influence inflammatory disease outcomes and that sustained inflammatory responses can lead to
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depressive moods. Furthermore it was postulated that antidepressive medications can influence
peripheral and brain macrophages skewing them toward anti-inflammatory activities that then can
improve cognitive functions [16].

1.2. The Brain–Intestinal Microbiome/Epithelia–Mucosa–Brain Loop

There are multiple mechanisms in the gut including a mucus layer, antimicrobial peptides and a
tight junction protein network that cooperate to continuously preserve local homeostasis and hence
ensure that the intestinal epithelial barrier integrity is maintained. Goblet cells secrete mucin to
provide a protective coating, provide structural integrity and regulate macrophage and adaptive T cell
responses during inflammation [8,17–29] (Figure 1).

Figure 1. The Brain–Intestinal Microbiome–Intestinal Epithelia–Neuroendocrine-immune–Vagus
Nerve–Brain Loop. Mucus production and immune activities delineate the complexity of the intestinal
mucosa site. (This figure was adapted from selected reviews [8,30]).
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Mental health is very much intricately linked to physical health [31]. Gastrointestinal dysbiosis
is associated with an intestinal epithelial cell barrier dysfunction that can be due to environmental
and nutritional triggers, which can be further progressed by the intestinal pathobiont cohort that
exacerbates and maintains intestinal barrier in a dysfunctional pro-inflammatory state. It has been
recently reported that depression is linked to the exacerbation in gap junction integrity between
intestinal epithelial cells (i.e., also termed a leaky gut) is a contentious posit. A recent study has
reported that approximately 35 % of depressed individuals exhibited evidence of a leaky gut [32,33].

The importance exhibited by the brain–intestine–brain axis is that it provides a bidirectional flow
of neuroendocrine-immunological equilibrium control. The intestinal microbiome is thought to exert
effects on this axis that significantly impacts the biochemistry of the central and peripheral nervous
systems and in turn behavior [34] (Figure 1 (see within the rectangular area)). Studies reporting
that depression is accompanied by activation of immune–inflammatory pathways [35] with increased
IgM/IgA responses to lipopolysaccharides (LPS) from gram-negative commensal bacteria, indicate that
at least in part adverse mood is supported by commensal microbes and or metabolite translocations
across the intestinal epithelial barrier [32,33]. We have reported [36] (as have others [37]) that resistant
depression can be accompanied by systemic inflammatory states that are posited to originate from
intestinal inflammation and the resultant intestinal dysbiosis.

1.3. The Vermiform Appendix

The vermiform appendix is characterized as a diverticulum of the cecum and delineates the
beginning of the colon in the confluence of tanias [38]. The appendix is posterior-medially attached to
the cecum, approximately 2 cm below the ileocecal junction. The histological structure of the appendix
reflects that of the intestinal wall of the large bowel, in particular with appendiceal structures such as
the mucosa, submucosa and lymphoid follicles (Figure 2).

It has only been recently recognized that the human vermiform appendix is not just a rudimentary
part of the intestine, but rather as suggested by numerous studies an organ of immunological
importance for the development and preservation of the intestinal immune system [39,40]. Furthermore
the importance of the vermiform appendix has been demonstrated to have a direct functional
interaction with the intestinal microbiome [41,42].

Figure 2. Histological transverse section of the vermiform appendix (adapted/modified from
Kooij et al., 2016 [43]).
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Reports present the vermiform appendix as an important participant in intestinal ecological
microbial contributions and maintenance [41]. This is especially relevant to the ascending colon and the
distal small bowel where much of the microbiome is posited to have high metabolic activities. Reports
have documented key activities that through co-evolution the human host and the microbial cohort
have shaped a tolerant relationship of benefits. These beneficial activities include (i) the intestinal based
immune system sustains microbial biofilms in the intestines and is a key constituent of the mutualistic
connection between mammals and bacteria [44,45] (ii) biofilms defined as mucilage layers in the gut
have been reported to be safe bacterial zones [46], where bacteria and other entities (e.g., fungi) form
communal relationships for safeguarding their activities and survival; (iii) the vermiform appendix
is very much recognized as an immune tissue [47], with concentrated gut-associated lymphoid
tissue; (iv) a recent reported concentrated biofilms contribute to the overall epithelial structure of
the vermiform appendix [41,48]; (v) research also shows that biofilms in the intestines are subject to
continual turnover an activity that helps to limit bacterial translocations across the intestinal epithelial
cells and Peyer’s patches [48], where this mucin turnover activity is rapid (approximately 1–2 h) of any
biofilms that adhere to the intestinal epithelia [49].

Early reports through culture dependent studies have demonstrated the presence of several
Gram-negative bacilli such as Klebsiella, Enterobacter and Escherichia coli whereas Gram-positive cocci
were less frequently observed [50]. In a more recent study with patients following an appendectomy
showed a comprehensive view of the microbial population within the biofilm of the appendix, this can
be determined by high-throughput DNA sequencing [51]. The human appendix was demonstrated
to contain members of some fifteen bacterial phyla [51], including Firmicutes (the most dominant),
Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria. Moreover, certain oral pathogens not
associated with the intestines were also detected in the appendix samples (i.e., Gemella, Parvimonas,
and Fusobacterium). This report presents an immunological organ with a significant associated
microbial diversity which in part supports the posit that the appendix microbiota has important
functions in human health; the biofilm in the appendix acts as a safe house for commensal bacteria,
therefore, facilitating re-inoculation of the intestines post a gastrointestinal tract infection as the
appendiceal lumen is spared from diarrhoeal clearance [40].

Health interventions that may disrupt the microbiome ecology of the large bowel may lead to
disease. A recent study has highlighted that the vermiform appendix may have a significant association
with chronic diseases in particular in the development of large bowel cancer following the surgical
removal of the appendix [52]. Recently a study of patients clinically treated with antibiotics for
appendicitis were reported to have a significant increased risk for large bowel cancer [53]. Moreover,
although there is a paucity of studies on the relationship of appendicectomy to mood disorders,
an early study has postulated that an appendicectomy may lead to psychological disturbances [54].
An interesting corollary from another study with subjects undergoing an appendicectomy showed
that 80% of the participants with inflammatory problems of the appendix were designated as positive
for depressive symptoms [55]. Moreover psychological depressive symptoms have been reported to
continue post an appendicectomy [56]. These studies overall tend to support the notion that severe
disruptions of the intestinal microbiome and the loss of the appendix biofilm may increase the risk of
disease including adverse mood dispositions.

1.4. Probiotics

Current research continues to draw connections between the intestinal microbiome and
environmental factors to sensitivities to the host’s emotional states [57]. In animal models, dysbiosis
has been demonstrated to impair vagus signaling which results in reduced protein synthesis in
the hippocampus, corrected by rescuing the intestinal microbiome with either specific strains of
probiotics [58,59]. Our group has recently demonstrated in a small pilot study [60] with treatment
resistant depression (while on SSRI medications) that the administration of a probiotic formulation
improved depressive symptoms in a small cohort. An anti-inflammatory response was suggested.
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A meta-analysis by Ng and colleagues [61] investigating the administration of probiotics to alleviate
depressive symptoms was largely inconclusive with an insignificant effect on mood.

An interesting recent study [62] in a healthy murine model demonstrated that oral administration
of probiotic bacteria cell walls stimulated the immune system. This study although preliminary,
showed that probiotic bacteria and their cell walls have important immunoregulatory effects on
intestinal epithelial cells without an adverse effect on the local metabolic and environment equilibrium.
The study by Lemme-Dumit and colleagues [62] showed that cell walls from probiotic bacteria
increased immunoglobulin A secreting cells in the intestines and in innate immune cells as well as
other tissues such as those of the spleen and peritoneum [62]. This study also demonstrated the
capacity that probiotic bacteria provide to stimulate important cellular and immune elements such as
the intestinal epithelia and intestinal resident macrophages in the gut [62].

2. Reprise

We have previously postulated that depressed mood [36] is linked to antagonistic immuno-endocrine
control of intestinal homeostasis. The scientific rationale posited suggests that inflammation of the
intestines relevant to depressed mood is an effect associated with the intestinal mucosa. Intestinal
microbiome adverse shifts that maintain low-level pro-inflammatory activity and intestinal dysbiosis that
overwhelm intestinal resident macrophages is posited to play a role in depressed mood. Clinical studies
show that the vermiform appendix re-inoculates the proximal colon following excessive pro-inflammatory
triggers (e.g., gastrointestinal inflammations, dysentery, antibiotic administration). Reports of a surgically
removed chronically inflamed vermiform appendix have been linked to chronic disease developed
including depression.

We postulate that intestinal inflammations may provoke an increased risk for adverse mood
disorders in those without a vermiform appendix. In depression the loss of keystone intestinal
bacterial species and the incapacity to restore microbial diversity and stability in the proximal
colon (i.e., due to an appendectomy) could be an important factor that disrupts the steady state
of neuro-endocrine-immunological equilibrium in the intestinal mucosa, especially following the over
prescription of antibiotics. We advance the idea that an in situ normal functioning vermiform appendix
continually contributes to diversity and stability to the intestinal bacterial cohort over a lifetime.
Probiotics that can regulate the functioning of the immune system in the gut may have important
plausible implications in improving depressive mood states; dedicated studies are warranted.
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