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ABSTRACT

Single-cell transcriptome has enabled the transcrip-
tional profiling of thousands of immune cells in
complex tissues and cancers. However, subtle tran-
scriptomic differences in immune cell subpopula-
tions and the high dimensionality of transcriptomic
data make the clustering and annotation of immune
cells challenging. Herein, we introduce ImmCluster
(http://bio-bigdata.hrbmu.edu.cn/ImmCluster) for im-
munology cell type clustering and annotation. We
manually curated 346 well-known marker genes from
1163 studies. ImmCluster integrates over 420 000 im-
mune cells from nine healthy tissues and over 648
000 cells from different tumour samples of 17 can-
cer types to generate stable marker-gene sets and
develop context-specific immunology references. In
addition, ImmCluster provides cell clustering using
seven reference-based and four marker gene-based
computational methods, and the ensemble method
was developed to provide consistent cell clustering
than individual methods. Five major analytic mod-
ules were provided for interactively exploring the an-
notations of immune cells, including clustering and
annotating immune cell clusters, gene expression of
markers, functional assignment in cancer hallmarks,
cell states and immune pathways, cell–cell commu-
nications and the corresponding ligand–receptor in-
teractions, as well as online tools. ImmCluster gener-
ates diverse plots and tables, enabling users to iden-
tify significant associations in immune cell clusters
simultaneously. ImmCluster is a valuable resource

for analysing cellular heterogeneity in cancer mi-
croenvironments.

INTRODUCTION

With the development of high throughput sequencing tech-
nologies, single-cell RNA sequencing (scRNA-Seq) has
emerged as a powerful tool for analysing cellular hetero-
geneity across multiple species, tissues and cellular contexts
(1). In addition, massively multiplexed single-cell transcrip-
tomics has enabled the transcriptional profiling of thou-
sands of immune cells in complex tissues and cancers (2).
As a result, great efforts have been made to collect and cu-
rate scRNA-Seq data, such as DISCO (2), scRNASeqDB
(3), JingleBells (4) and TISCH (5). The growing availabil-
ity of scRNA-Seq data provides opportunities for analysing
the complex tissues and diseases’ immune microenviron-
ments, such as cell–cell communications. However, subtle
transcriptomic differences in immune cell subpopulations
and the high dimensionality of scRNA-Seq data make the
clustering and annotation of immune cells challenging (6).
There is a still lack web resource for comprehensive, in-
tuitive, and user-friendly interactive annotating single-cell
transcriptomes.

A commonly used approach for cell cluster annotation
consists of identifying highly expressed genes in each cluster
and overlapping them with established marker-gene lists for
cell types (7). Several databases have been proposed to man-
ually inspect the marker genes for diverse cell types from
available information in the literature, such as CellMarker
(8), PanglaoDB (9), CancerSEA (10) and PCMDB (11).
These databases provide valuable resources for annotating
cell clusters derived from scRNA-Seq experiments. How-
ever, the manual annotation of cell cluster-specific marker
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genes is time-consuming and has limited reproducibility. In
addition, emerging evidence has demonstrated that several
marker genes are usually expressed in multiple cell types and
thus make the annotations difficult. For example, CD44 is
expressed in diverse immune cell populations (8), including
CD4 + T cells, activated CD8 + T cells and stem cells.

To overcome the limitations of the manual annotations
of cell clusters based on marker genes, there have been
a growing number of computational methods for the au-
tomated annotation of cell clusters. These methods ulti-
mately annotate single-cell gene expressions with curated
marker-gene databases, reference expression data, or super-
vised classification (12). The first category of methods based
on marker genes includes scSorter (13), scCATCH (14),
SCINA (15) and Sctype (16), and relies on a set of estab-
lished cell type-specific marker genes to assign the cell iden-
tity in the queried cells. The second category of methods
relies on annotated bulk or single-cell RNA datasets as ref-
erences (methods based on references). These methods use
correlation as the most straightforward statistical method
for revealing information about unlabelled cell clusters, and
the most representative methods are SingleR (17), Single-
CellNet (18), scPred (19) and ScClassify (20). Automated
cell type annotation methods have been applied in various
tissues and cancers. However, a benchmarking study has
demonstrated that each method possesses specific advan-
tages over the others (21). Furthermore, due to subtle tran-
scriptomic differences in immune cell subpopulations, the
annotations of different methods are not consistent with
each other for the same single-cell transcriptome. Moreover,
these methods are scattered in multiple studies or tools; it is
difficult for users to obtain the reference profiles and select
an appropriate method.

To address these challenges, we introduce the Imm-
Cluster database, which is freely available at http://bio-
bigdata.hrbmu.edu.cn/ImmCluster. Currently, ImmCluster
integrates 346 manually curated marker genes from 61 cell
types obtained from the literature. In addition, over 420
000 immune cells from nine tissues of healthy donors and
over 648 000 cells from different tumour samples of 17 can-
cer types were used to generate stable immune marker-gene
sets and develop context-specific immune cell type refer-
ences. Eleven computational methods were classified into
two types (reference-based and marker-gene-based). In ad-
dition, the ensemble method was integrated into ImmClus-
ter. Furthermore, ImmCluster is equipped with five major
analytic modules that allow users to explore the annota-
tions of immune cells interactively. Finally, functional heat
maps, bar plots, river plots, circos plots and tables were pro-
vided to enable the user to easily and simultaneously iden-
tify significant associations in multiple immune cell clusters.
In summary, we believe that ImmCluster is a valuable re-
source for analysing cellular heterogeneity in complex sys-
tems and cancer microenvironments.

MATERIALS AND METHODS

Collection of marker genes for immune cell types

We queried PubMed with ‘single-cell RNA-seq’ or ‘scRNA-
seq’ as keywords to collect the studies published in recent
years. We manually curated 1163 articles and recorded 346

canonical marker genes for 61 immune cell types (Figure
S1). Moreover, genes were scored by the number of studies
in the literature in which they appeared.

Single-cell transcriptomes across normal and cancerous tis-
sues

For scRNA-Seq datasets of various cancer types, we
queried the Gene Expression Omnibus (GEO) (22), 10×
Genomics, and the National Genomics Data Center
(NGDC) (23) with ‘scRNA seq’ and ‘cancer’, ‘carcinoma’
or ‘adenocarcinoma’ as keywords. The species was re-
stricted to ‘Homo sapiens’. Over 682 tumour samples within
41 datasets obtained from diverse platforms were collected
(Figure 1A and Supplementary Figure S2A), including 10×
Genomics, Smart-seq2, Drop-seq, inDrop, MARS-seq and
Seq-Well. The ‘raw count’ or ‘TPM’ expression profiles and
the meta information of each dataset were downloaded. In
addition, we obtained three datasets of peripheral blood
mononuclear cells (PBMCs) from healthy donors from the
10× Genomics website (Figure S2B). To obtain other nor-
mal tissues, we downloaded scRNA-Seq data that include
∼330 000 immune cells across eight tissues from a recent
study (24). Moreover, we collected another 11 datasets in-
volving >60 000 normal cells across four tissues from the
Human Cell Landscape (HCL) project (25).

Computational methods for immunology cell type annota-
tions

With the wide application of scRNA-Seq technology, sev-
eral computational methods were developed to annotate
cell types automatically. First, the numbers of cell clus-
ters in each dataset were automatically determined by the
‘findcluster’ function in the Seurat package with resolu-
tion = 0.5. Here, we integrated two types of computa-
tional methods into ImmCluster (Figure 1B), including
the reference-based and marker-gene-based methods. The
reference-based methods use labelled scRNA-Seq dataset
as the input for cell type annotations, which finds the best
correlation between the reference and user queried dataset.
SingleR (17), SingleCellNet (18), scPred (19), Garnett (26),
ScClassify (20), CHETAH (27) and scmap (28) were in-
tegrated into ImmCluster. The marker-gene-based meth-
ods rely on cell type-specific marker genes that are publicly
available in databases or that have been published, includ-
ing scSorter (13), scCATCH (14), SCINA (15) and Sctype
(16). All these methods were performed by R scripts.

Construction of reference profiles and marker atlas of im-
mune cell types

We first constructed comprehensive reference profiles for
distinct contexts for the reference-based computational
methods. First, all scRNA-Seq datasets from diverse plat-
forms were quality controlled and immune cells were identi-
fied based on known annotations and expression of marker
genes (see details in Supplementary methods). The neces-
sary processes were mainly performed using the R pack-
age Seurat (29), including the normalization, dimension re-
duction, unsupervised clustering, and visualisation of cell
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Figure 1. Schematic diagram of the overall design of ImmCluster. (A) Collection of reference transcriptomes from cancerous or normal tissues from
published studies. (B) Computational methods for automatically annotating cell types. (C) Ensemble method is provided in ImmCluster. (D) Four main
types of annotations are provided in ImmCluster.

clusters. Next, the batch effects from different samples or
datasets were removed by Harmony (30). Then, the datasets
from diverse cancer types, or normal tissues were clustered
and the clusters were annotated based on canonical marker
genes. Finally, based on the annotated cell types, we con-
structed cancer- or tissue-specific reference profiles for each
computational method with corresponding formats. The
reference files are available on the download page.

We next constructed the marker-gene atlas of immune cell
types based on the manually curated marker genes from the
literature and the reference profiles. Similar to a recent study
(31), four filters were applied to this process: (i) the gene was
detected in at least three cells on at least three counts across
all cells; (ii) the gene was statistically significantly higher in
expression in this cluster than in the complement set; to es-
tablish significance, we used the two-tailed Mann–Whitney
U test with multiple hypothesis correction, false discovery
rate (FDR) <5%; (iii) gene exhibited maximal average ex-
pression in this cluster and (iv) the max-to-second-max ra-
tio for the gene was at least 1.1×. The marker genes for
immune cell types were saved as R data and can be down-
loaded from ImmCluster.

Ensemble annotations of immune cell types

To obtain robust cell type annotations from diverse com-
putational methods, we developed an ensemble annotation
method to integrate the results from different methods (Fig-

ure 1C). The majority voting strategy was used in the ensem-
ble methods. For each cell, the annotations from different
methods were collected, and we labelled the cell with the cell
type that had the highest number of votes. In addition, cells
with more than two labels annotated as different immune
lineages were defined as ‘unknown’. If a cell was labelled
with two cell types in the same immune lineages and each
type had the same number of votes, we kept both cell types
for users. Users can ultimately determine the most accurate
cell type based on their knowledge of biology. The marker-
gene and reference-based methods were analysed separately.

Cell type-specific expression of genes and functional assign-
ments

Based on the annotations of immune cell types, we used
COSG to identify the specifically highly expressed genes in
a cell type compared to other cell types (32). COSG is a
cosine similarity-based method that is faster than the ‘find-
AllMarkers’ of Seurat. The top highly expressed 100 genes
were selected for each immune cell type.

To investigate the functions of cell types, we first calcu-
lated the single sample gene set enrichment analysis (ss-
GSEA) score for each cell (33). The cell states (10), im-
mune signatures (34) and cancer hallmarks (35) were con-
sidered. In addition, we performed a hypergeometric test
to identify the significantly enriched functions based on
highly expressed genes. The genes with FDR <0.01 and
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fold-change >2 were identified as highly expressed. Func-
tions with a P <0.05 were identified as significant.

Cell–cell communications

To further explore the interactions between immune cell
types and identify cell–cell communications, ImmClus-
ter integrated iTALK (https://github.com/Coolgenome/
iTALK), celltalker (https://github.com/arc85/celltalker),
and ICELLNET (36). The integrated ligand-receptor
interactions were collected from several databases (see the
supplementary methods for further details).

Database implementation

The frontend of ImmCluster was built with HTML5,
JavaScript, and CSS, and it includes the jQuery (v3.3.1),
Datatable (1.10.25), ECharts (v5.5.1) and D3 (v7.6.1) plu-
gins. The backend of ImmCluster is powered by MySQL
(v5.5.21) and is queried via the Java Server Pages with
Apache Tomcat container (v6.0) as the middleware. All
data in ImmCluster are stored and managed using MySQL
(v5.5.21) and it employs Java and R programs to perform
online analyses. ImmCluster has been tested on several pop-
ular web browsers, including Google Chrome, Firefox, and
Apple Safari.

DATABASE CONTENT AND ONLINE TOOLS

ImmCluster provides a comprehensive collection of canon-
ical marker genes of immune cell types and single-cell tran-
scriptomes. Approximately 346 marker genes from 61 cell
types were manually curated from the literature. ImmClus-
ter integrated over 420 000 immune cells from nine tissues
of healthy donors and over 648 000 cells from patients with
17 different cancer types to generate stable immune marker-
gene sets and develop context-specific immunology refer-
ences. In total, 11 computational and the ensemble meth-
ods were integrated into ImmCluster to annotate immune
cell types automatically. ImmCluster provided five major
analytic modules that allow users to interactively explore
the annotations of immune cells (Figure 1D): (i) cluster-
ing and annotating the immune cell clusters based on com-
putational methods; (ii) gene expression of markers across
cell clusters in the user uploaded dataset and the refer-
ence immunology profiles; (iii) functional assignment of the
cell clusters in cancer hallmarks, cell states and immune
pathways; (iv) cell–cell communications and correspond-
ing ligand–receptor interactions and (v) online annotation
tools for user uploaded data.

ImmCluster is organised into six main pages (Figure 2):
Home, Browse, Search, Tool, Download and Help. We pro-
vided a global browse function on the ‘Browse’ page to
allow users to query the annotations of published cancer
or normal single-cell transcriptomes. Users can browse the
cancerous or normal tissues of interest via the human body
map or the dataset tables (Figure 2A). Annotations of the
reference dataset include the tSNE, or UMAP visualisa-
tion of the clustering, details of the marker genes for each
cell type, and functional annotations of the cell types and
cell–cell communications mediated by ligand–receptor in-
teractions (Figure 2B). The search page provides four types

of query options for users to search for datasets, genes,
cell types, or reference profiles of interest (Figure 2C). The
heatmap, tSNE, or UMAP figures can be used to visualise
the expression of genes across cell types (Figure 2D). The
functional annotations and the cell–cell communications
between cell types that the users search for are provided in
the result pages (Figure 2E). In particular, ImmCluster pro-
vides useful tools for annotating the single-cell transcrip-
tome uploaded by users (Figure 2F). After quality control
of the data uploaded by users, ImmCluster automatically
annotates the cell types and performs downstream analyses
based on the user’s selected methods. The immune cell type
annotations for different computational and the ensemble
method are then provided (Figure 2G). Details of marker
genes, functional annotations in immune pathways, cellu-
lar states, cancer hallmarks, and cell–cell communications
are provided in the forms of diverse types of figures and ta-
bles (Figure 2G). Finally, the download page allows users
to download all of the integrated data, including the refer-
ence transcriptomes, marker genes and metadata of cells in
RDS format. Instructions for each module are provided on
the help page.

CASE STUDY

To demonstrate the application of ImmCluster, we compre-
hensively analysed the colon cancer data from a recent study
(37). In the original study, immune cells were classified into
five major classes: B cells, CD4 T cells, CD8 T cells, innate
lymphoid cells (ILCs, major class of NK cells), and myeloid
cells (Figure 3A). When we analysed the dataset based on
ImmCluster, we found that the ensemble method can ac-
curately recapture the cell annotations of the original study
(Figure 3B). The average accuracy of cell annotations for all
cell types reached 0.963. The maximum accuracy was 0.998
for myeloid cells. We found that ImmCluster can distinguish
the subpopulations of the same cell type. For example, the
B cells were further classified into plasma and B-Fol cells.
In addition, T cells were also classified into functional sub-
populations, such as naive CD4+ T cells, T helper cells and
cytotoxic T cells (Figure 3B). These results suggested that
ImmCluster can accurately annotate the cell types by inte-
grating various computational methods.

Next, we identified genes highly expressed in various
cell types based on the analysis module in ImmCluster.
We found that most genes identified in ImmCluster were
validated by previous studies (Figure 3C). For example,
JCHAIN was highly expressed in plasma, which was also
demonstrated in the original study (37). Moreover, IL7R
and CCR7 were highly expressed in naive CD4+ T cells,
and GZMK and CD160 were highly expressed in cytotoxic
T cells. In particular, we found that ImmCluster identified
XCL2 and PRF1 as being highly expressed in cytotoxic T
cells and NK cells, respectively, which has also been shown
in a recent study (38) but not in the original study (Figure
3C). These results suggested that ImmCluster can identify
novel genes of interest and generate new hypothesis for in-
vestigation. In addition, we performed functional enrich-
ment analysis based on ImmCluster. We found that genes
highly expressed in several cell types, such as NK cells, were
significantly enriched in the natural killer cell cytotoxicity
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Figure 2. User interface and workflow of using ImmCluster. (A) Browse page of ImmCluster. (B) Annotation results of the reference datasets selected
by users. (C) Search page of ImmCluster. (D) Expression of genes queried by users. (E) Annotations of cell types queried by users. (F) Tools provided in
ImmCluster for annotating user uploaded data. Users must select parameters and methods; quality control was performed before cell type annotations.
(G) Four main types of annotations were provided in ImmCluster, including immune cell type annotation, details of marker genes, functional annotations
and cell–cell communications.

pathway (Figure 3D). Genes highly expressed in DC cells
were significantly enriched in antigen processing and pre-
sentation pathway, which was consistent with their func-
tions reported in a previous study (39). Finally, we analysed
the cell–cell communications and found that the interac-
tions were mediated by various ligand–receptor interactions
(Figure 3E). In particular, ITGA4–CD44 interaction helps
the communications between DCs and CD4+ T cells (39).
Together, the applications demonstrated that the ImmClus-
ter database could not only recapitulate findings from the
literature, but could also generate several novel hypotheses
for further functional studies.

CONCLUSIONS AND FUTURE DEVELOPMENT

Herein, we presented ImmCluster, a database for automati-
cally clustering and annotating immune cell types based on
the constructed reference profiles and numbers of compu-
tational methods. To better understand the functions of im-
mune cell clusters, we provided diverse downstream analy-
ses following cell clustering and annotations in single-cell

analysis. The expression of highly expressed genes in each
cell cluster was visualised and functional pathways of cell
clusters were predicted based on gene set enrichment analy-
sis and hypergeometric test. Moreover, the cell–cell commu-
nications were identified and visualised in diverse types. In
particular, we provided several tools for automatic analysis
of scRNA-Seq data uploaded by users. All the results can
be returned to the webpage or sent to the users via emails.
In addition, users can browse and download the reference
profiles and marker atlas for more advanced analysis.

The ImmCluster database integrated manually curated
cell-type marker genes and over 420 000 immune cells from
nine healthy tissues and over 648 000 cells from differ-
ent tumor samples of 17 cancer types. The ImmCluster
database also provided comprehensive analysis and visu-
alization functions of immune cell clusters. We compared
ImmCluster with public databases and web-based analy-
sis platforms for scRNA-Seq data, and found that Imm-
Cluster provided more immunology datasets and functional
analysis modules in immunology (Tables S1 and S2). These
results suggested that ImmCluster is a valuable resource
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Figure 3. Case study of scRNA-Seq data analysis based on ImmCluster. (A) TSNE plot showing the cell annotations from the original study. (B) TSNE
plot showing the cell annotations based on the ensemble method in ImmCluster. (C) Heat map showing the expressions of marker genes in various cell
types. Genes marked with black are from the original study, marker genes manually curated from literature are shown in red, blue indicates genes reported
by recent literature, and genes highly expressed in specific cell types are shown in grey. (D) Functional pathways enriched by genes highly expressed in cell
types. Heat map showing the ssGSEA scores and *P < 0.05 for hypergeometric tests. (E) Cell–cell communications mediated by ligand–receptor pairs.
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for analyzing cellular heterogeneity in complex systems and
cancer microenvironments. ImmCluster also integrates 11
computational methods, and we developed the ensemble
method to annotate the immune cell clusters robustly. Next,
we evaluated the accuracy of the ensemble method com-
pared with individual methods based on 11 PBMC scRNA-
Seq datasets with cell type annotations (40). We found that
the ensemble method greatly improved the accuracy of cell
type annotations compared with other methods (Supple-
mentary Figure S3).

As single-cell technologies develop and increase the
scRNA-Seq data, we intend to update and upgrade Imm-
Cluster continuously. We will integrate more scRNA-Seq
data into ImmCluster as new studies are published and
more datasets are available. In addition, assigning cell iden-
tities to cell clusters generated by clustering is a crucial
step in scRNA-Seq data analysis (12). Manual cell anno-
tation is time-consuming and partially subjective. Thus,
emerging computational tools have been developed for au-
tomatic cell type annotations. ImmCluster currently inte-
grates 11 widely used computational methods and the en-
semble method. More computational methods will be pro-
vided in the future. We also plan to expand the scope of
ImmCluster to encompass other single-cell omics data, such
as scATAC-seq (41), scTCR-seq and scBCR-seq. Moreover,
spatial transcriptomics can also be deployed for exploring
tissue architecture and tumor microenvironment (42,43).
In summary, the ImmCluster database provides compre-
hensive analysis and visualization functions of immune cell
clusters, which is a valuable resource for analysing cellular
heterogeneity in complex systems and cancer microenviron-
ments.

DATA AVAILABILITY

ImmCluster is an open source for immunology cell type
clustering and annotations in normal and cancerous tissues
(http://bio-bigdata.hrbmu.edu.cn/ImmCluster).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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