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Abstract: Background: Thyroid cancer is the most common endocrine malignancy. Most PTC
patients have a good prognosis; however, there are 5–20% of PTC patients with extra-thyroidal
invasion, vascular invasion, or distant metastasis who have relatively poor prognoses. The aim of this
study is to find new and feasible molecular pathological markers and therapeutic targets for early
identification and appropriate management. Methods: The GEO and TCGA databases were used to
gather gene expression data and clinical outcomes. Based on gene expression and clinical parameters,
we developed a ferroptosis-related gene-based prognostic model and a nomogram. CCK-8, wound-
healing, and transwell assays were conducted to explore the proliferation, migration, and invasion
abilities of thyroid cancer cells. Results: We found 75 genes associated with ferroptosis that were
differentially expressed between normal thyroid tissue and thyroid cancer tissues. The prognostic
values of the 75 ferroptosis-related gene expressions were evaluated using the TCGA-THCA dataset,
and five (AKR1C3, BID, FBXW7, GPX4, and MAP3K5) of them were of significance. Following
that, we chose AKR1C3 as the subject for further investigation. By combining gene expression and
clinical parameters, we developed a ferroptosis-related gene-based prognostic model with an area
under the curve (AUC) of 0.816, and the nomogram also achieved good predictive efficacy for the
three-year survival rate of thyroid cancer patients. Knocking down AKR1C3 enhances thyroid cancer
cell proliferation, invasion, and migration abilities. Conclusions: A ferroptosis-related gene-based
prognostic model was constructed that provided unique insights into THCA prognosis prediction. In
addition, AKR1C3 was found to be a progression promoter in thyroid cancer cell lines.

Keywords: ferroptosis; thyroid cancer; AKR1C3; prognosis; bioinformatics

1. Introduction

Thyroid cancer is the most common endocrine malignancy and accounts for approx-
imately 94.5% of all endocrine tumors [1]. The incidence of thyroid cancer is related to
region, race, and gender, with the incidence in women being about three times higher
than that in men. In recent years, its incidence has been increasing at an annual rate of
about 4%, and it has become one of the few cancers with an increasing incidence [2–4].
Papillary thyroid carcinoma (PTC), which accounts for more than 80% of the cases, is the
most predominant type of thyroid cancer. Most PTC patients have a slow progression,
which is highly inert and has a good prognosis. However, there are 5–20% of PTC patients
with extra-thyroidal invasion, vascular invasion, or distant metastasis, who have relatively
poor prognoses [5,6]. For this group with invasive papillary thyroid cancer with high
malignancy, it is particularly important to find new and feasible molecular pathological
markers and therapeutic targets for early identification and appropriate management.

Ferroptosis, first proposed by Stockwell et al. in 2012, is a novel form of cell death
caused by lipid peroxidation with iron ion dependence [7,8]. Dysregulation of steric
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function and oncogene regulation in tumor cell lines generate a large accumulation of ROS,
leading to a state of high oxidative stress. The rapid growth of tumor cells needs more
lipids to support the formation of cell and organelle membranes, and excessive production
of lipid ROS causes lethal damage to tumor cells. The ferroptosis caused by lipid ROS may
selectively kill tumor cells [7,9]. Currently, scientists have identified a variety of genes and
proteins that regulate ferroptosis, including IREB2, TP53, and PIK3CA that serve as drivers
to promote ferroptosis, while SQSTM1, MTOR, and STAT3 serve as suppressors to prevent
ferroptosis [7,9]. However, it is unknown if these ferroptosis-related genes have an impact
on thyroid cancer development and progression.

The goal of this study is to look at the potential value of ferroptosis-related genes as
biomarkers in thyroid cancer patients, as well as the key functions of ferroptosis-related
genes in thyroid cancer progression.

2. Methods and Materials
2.1. Microarray Data

The gene expression profiles of the GSE33630, GSE35570, and GSE60542 datasets were
downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/ (accessed on
11 January 2022)). ATC and MTC are not included in the scope of this study.

The GSE33630 dataset included 49 PTC patients and 45 cases of normal thyroid, which
were all included in our study (ATC (n = 11) is excluded from our study). The GSE35570
dataset included 65 PTC patients and 51 cases of normal thyroid. Radiation-induced PTC
(n = 33) is not within the scope of our study. Thus, we included 32 cancer samples and
51 normal samples. The GSE60542 dataset included 33 PTC samples and 30 normal thyroid
samples. LNM samples (n = 23), normal lymph node samples (n = 4), recurrence samples
(n = 1), and pleural metastasis samples (n = 1) were excluded. Additionally, the RNA
sequencing data of THCA were acquired from The Cancer Genome Atlas (TCGA) database
(https://www.cancer.gov/tcga/ (accessed on 12 January,2022)).

From the FerrDb database (http://www.zhounan.org/ferrdb/ (accessed on 12 January
2022)), a total of 259 ferroptosis-related genes, including drivers, suppressors, and markers,
were collected (Table S1). Among them, 75 were chosen as candidate genes, and the details
are presented in Table S2. The publication requirements for the GEO and TCGA datasets
were followed in this work.

2.2. Identification and Functional Study of Differentially Expressed Ferroptosis-Related Genes

The GEO GSE33630, GSE35570, and GSE6054 datasets were used to detect the DEGs be-
tween tumor and adjacent normal tissues via the R package “limma” in RStudio
(version 3.42.2), with the following cutoff for adjustment: p-value < 0.05 and |log2FC| > 1.
The R package “ComplexHeatmap” (version 2.2.0) was applied to visualize the degree
range of differences in the three datasets. The intersection of candidate genes and DEGs
was then used to find ferroptosis-related genes. Metascape Online (https://metascape.org/
gp/index.html#/main/step1 (accessed on 24 January 2022)) was used for the functional
analysis. The ferroptosis-related genes were put into Metascape to conduct a functional
analysis as well as to construct a PPI network. MCODE was performed for further study to
reveal the highly connected regions. p < 0.05 was used as a cutoff value.

2.3. Construction of the Ferroptosis-Related Gene Prognostic Model in Thyroid Cancer

The GEO GSE33630, GSE35570, and GSE60542 datasets, and the TCGA-THCA dataset
were used to establish the prediction model. DEGs were obtained from the GEO GSE33630,
GSE35570, and GSE60542 datasets. Clinicopathological characteristics and survival status of
patients were obtained from the TCGA-THCA dataset. A statistical analysis was conducted
to study the discrimination capability of AKR1C3 in thyroid cancer patients. The median
value of the original AKR1C3 values was used as the threshold. Patients with AKR1C3
values greater than the threshold were included in the AKR1C3_high group and the
remaining patients were in the AKR1C3_low group. The Kaplan–Meier survival curve

https://www.ncbi.nlm.nih.gov/geo/
https://www.cancer.gov/tcga/
http://www.zhounan.org/ferrdb/
https://metascape.org/gp/index.html#/main/step1
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and the log-rank test were performed to assess differences between the AKR1C3_high and
AKR1C3_low groups.

Patients who survived after treatment were classified within a survival group, whereas
those who died were classified within a non-survival group. In order to discriminate
between the survival and non-survival groups, AKR1C3 and all clinical factors (including
pathologic stage, T stage, N stage, extrathyroidal extension, and residual tumor) were
normalized. The Z-score normalization was utilized so that all prediction factors had the
same scale. A prediction model, named the AKR1C3_clinical model, was constructed using
all normalized prediction factors and logistic regression classifiers for predicting survival
status in patients with thyroid cancer. A clinical model was also developed based on all
normalized clinical factors and logistic regression classifiers. Obviously, the difference
between the AKR1C3_clinical model and the clinical model was that the former contained
AKR1C3, while the latter did not. We further compared the performances of the proposed
AKR1C3_clinical and clinical models. The discrimination performance was quantified by
area under the receiver operating characteristic (ROC) curve (AUC), accuracy, precision,
recall, F1 score, sensibility, and specificity. Finally, the risk score formula of the optimal
model was calculated, and its statistical analysis was explored.

2.4. A Nomogram Construction

The risk score of the model was integrated as a prognostic component to evaluate the
prediction likelihood of one-, two-, and five-year OS, and a nomogram was constructed to
offer the survival probability of a specific event. A calibration curve displaying the three-
year OS was constructed to visualize the observed rates against the nomogram-predicted
probability. The nomogram and calibration curves were plotted using the R package “rms”
(version 6.2-0).

2.5. Human Cell Lines

The human anaplastic thyroid cancer cell line 8505c and human papillary thyroid
cancer cell line TPC-1 were purchased from the German Collection of Microorganisms and
Cell Cultures (DSMZ, Braunschweig, Germany). The cell lines were both maintained in 5%
CO2 at 38 ◦C and cultured in RPMI medium (Gibco, Rockville, MD, USA) supplemented
with 10% FBS (Gibco).

2.6. RNA Interference

The RiboBio Company (Guangzhou, Guangdong, China) provided AKR1C3 small
interfering RNAs (siRNA-AKR1C3-1) and non-target small interfering RNA (siRNA-NT).
The siAKR1C3 sequence was 5′-GGAACUUUCACCAACAGAUTT-3′. Following the man-
ufacturer’s instructions, transfection was carried out using Lipofectamine 3000 transfection
reagent (Invitrogen, Carlsbad, CA, USA) in Opti-MEM medium (Gibco, Rockville, MD,
USA). After stable transcription, the cells were collected for the next step of the experiment.

2.7. RNA Extraction and Quantitative Real-Time PCR

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract total RNA from
the cultivated cells, which were then treated with DNase I (Promega Corp, Madison, WI,
USA). A high-capacity cDNA synthesis kit (Takara Bio, Inc, kusatsu, shiga, Japan) was
used to make cDNA from 2 µg total RNA in 30 µL of reaction buffer, according to the
manufacturer’s instructions. The ABI StepOnePlus system (Applied Biosustems®, Life
Technologies, Shanghai, China) was used to detect gene expression data. The thermal
cycling conditions were 95 ◦C for 1 min, followed by 40 cycles of 95 ◦C for 10 s and 60 ◦C
40 s. SYBRGreen I (Takara Bio, Inc., Kusatsu, Shiga, Japan) was used in the RT-qPCR to
detect mRNA levels. The expression levels of genes were compared to the expression of the
housekeeping gene GAPDH. The following primers were used for the RT-qPCR analysis:
GAPDH, 5-ACAACTTTGGTATCGTGGAAGG-3/5-GCCATCACGCCACAGTTTC-3 and
AKR1C3, 5′-GGGATCTCAACGAGACAAACG-3′/5′-AAAGGACTGGGTCCTCCAAGA-
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3′. All of the experiments were carried out in quadruplicate and three cell samples were
used each time.

2.8. Cell-Counting Kit 8

Cell cytotoxicity was measured using the CCK-8 test (Yeasen Technology, Shanghai,
China). To assess drug cytotoxicity, cells were seeded at 3 × 103 cells per well in 96-well
plates. After that, cells were treated with various doses of IM for 24 h after achieving
60–70 percent confluence. The cells were given 20 µL of CCK-8 for two hours. At 450 nm,
the optical density was determined.

2.9. Cell Migration and Invasion Assays

After cultivating transfected and untransfected TPC-1 or 8505c cells to 90% confluence,
an artificial ”wound” was generated for the cell migration tests. The distance between cells
was measured. The ratio of transfected and untransfected TPC-1 or 8505c cell data was
used to calculate migration rates. Transwell® plates were used for invasion tests (Corning,
Corning, NY, USA). The cells that infiltrated the lower surface of the filter were fixed and
stained with haematoxylin after being seeded onto Matrigel-coated filters. The ratio of the
transfected group’s invasion value to that of the untransfected group was used to compute
invasion rates.

2.10. Statistical Analysis

Quantitative data are presented as the means ± standard deviations (SDs). Pictures
were compared via ANOVA, followed by Student’s t-tests. p-Values less than 0.05 were
identified as statistically significant. All statistical analyses were performed using SPSS 24.0.
The significance level was set at p-values < 0.05.

3. Results
3.1. Differentially Expressed Ferroptosis-Related Gene Signatures in THCA

The details for the GEO datasets used are listed in Table 1. After a normalization and
standardization process, 1040 dysregulated genes were obtained from the GEO GSE33630
dataset with 573 upregulated and 467 downregulated genes (Figure 1A). In general, 2061
DEGs were obtained from the GEO GSE35570 dataset, with 1081 upregulated and 980 down-
regulated genes (Figure 1B). A total of 928 dysregulated genes were selected from the GEO
GSE60542 dataset, including 471 upregulated and 457 downregulated genes (Figure 1C).

Next, the ferroptosis-related genes were downloaded from the FerrDb database
(Table S1). The differentially expressed genes (DEGs) obtained from the GEO datasets
were intersected with the ferroptosis gene set to obtain “differentially expressed ferroptosis
genes”. As shown in the Venn diagram, 75 ferroptosis-related genes were intersected
between four datasets (Figure 1D and Table S2).

Table 1. The information of datasets from the GEO database.

References Accession
Number

Samples
Year

Tumor Normal

Tomas et al. [10] GSE33630 49 45 2012

Jarzab et al. [11] GSE35570 32 51 2015

Tarabichi et al. [12] GSE60542 33 30 2015
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Figure 1. Brief summary of the ferroptosis signals that are differentially expressed in THCA: (A–C) 
Ferroptosis-related gene expression profiles in normal and tumor samples in the datasets. The ex-
pression of genes was used to group them together. High expression is represented by red, whereas 
low expression is represented by blue; (D) a Venn diagram depicting the dysregulated ferroptosis 
genes that were found in all four datasets; (E,F) a graph depicting the GO and KEGG analyses based 
on Metascape Online, as well as a bar plot and a network depicting the distribution and relation-
ships between the various functions; (G) the hub genes in the ferroptosis gene collection are shown 
in the PPI network and MCODE. Red balls are MCODE1. 

Figure 1. Brief summary of the ferroptosis signals that are differentially expressed in THCA:
(A–C) Ferroptosis-related gene expression profiles in normal and tumor samples in the datasets. The
expression of genes was used to group them together. High expression is represented by red, whereas
low expression is represented by blue; (D) a Venn diagram depicting the dysregulated ferroptosis
genes that were found in all four datasets; (E,F) a graph depicting the GO and KEGG analyses based
on Metascape Online, as well as a bar plot and a network depicting the distribution and relationships
between the various functions; (G) the hub genes in the ferroptosis gene collection are shown in the
PPI network and MCODE. Red balls are MCODE1.
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Then, in order to underly the mechanisms of those 75 ferroptosis-related genes in
THCA, we performed a functional analysis on Matescape Online. The gene ontology
(GO) analysis results revealed that the ferroptosis-related genes were mainly enriched in
response to chemical stress, stimulus, and cell death (Figure 1E). The Kyoto Encyclopedia
of Gene and Genomes (KEGG) pathway analysis indicated that those genes were mainly
enriched in apoptotic, autophagy, and aging signaling pathways. In addition, the protein–
protein interaction (PPI) network and MCODE plugin revealed the important modules in
these dysregulated genes, including MUC1, CDKN1A, MAPK1, CDKN2A, MAPKB, and
EGFR (Figure 1G).

3.2. Ferroptosis-Related Genes Predict THCA Prognosis

To explore whether the ferroptosis-related genes were related to the prognosis of
thyroid cancer, a univariate COX regression analysis was applied. Based on the TCGA-
THCA database, five genes were identified (Figure 2A–E). As shown in Figure 2F, AKR1C3,
BID, FBXW7, GPX4, and MAP3K5 were independent prognosis signatures of thyroid cancer.
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A total of eight models were constructed by permutations (Tables S4 and S5). In four
of the seven performance indexes, the AKR1C3_clinical model (Model 3) was better than
the other seven models. Therefore, for further study, we chose AKR1C3, which has never
been reported to function in the development and progression of thyroid cancer. AKR1C3
is a NADP(H) oxidoreductase that belongs to the aldo-keto reductase superfamily and has
been proposed as a therapeutic target for a variety of cancers and endocrine illnesses [13].
The median value of the original AKR1C3 values in 498 patients was 0.9256, which was the
threshold we set. The patients were classified into two groups on the basis of the threshold:
the AKR1C3_high group and the AKR1C3_low group. The Kaplan–Meier survival curves
of the AKR1C3_high and AKR1C3_low groups are plotted in Figure 3A. The blue solid
line and orange solid line are the survival curve of the AKR1C3_high group and the
AKR1C3_low group, respectively. The light color band represents the 95% confidence
interval (CI). In the two Kaplan–Meier survival curves, the survival probability of thyroid
cancer patients decreases with an increase in time. The log-rank test shows a significant
difference between survival curves of the AKR1C3_high group and the AKR1C3_low
group (p = 0.021), illustrating that AKR1C3 can be used as one of the prediction factors for
evaluating the survival status in patients with thyroid cancer.

AUC, accuracy, precision, recall, F1 score, sensibility, and specificity values of the
AKR1C3_clinical model were 0.816, 0.853, 0.990, 0.857, 0.919, 0.857, and 0.750, respectively.
For the clinical model, the seven performance indexes were 0.775, 0.799, 0.987, 0.803, 0.886,
0.803, and 0.688, respectively. The performance comparison of the AKR1C3_clinical model
and the clinical model is shown in Table 2. The ROC curves of these two models are
provided in Figure 3B. We found that all performance indexes of the AKR1C3_clinical
model were better than those of the clinical model. Among all patients (survival group,
482 and non-survival group, 16), the number of patients correctly predicted by the two
models was 393 (survival patients, 382 and non-survival patients, 11), accounting for
78.92% of the patients and the number of patients who could not be correctly predicted
by both models was 68 (survival patients, 64 and non-survival patients, 4), accounting for
13.65% of the patients, demonstrating the effectiveness of our models for predicting the
survival status of thyroid cancer patients. The number of patients that the AKR1C3_clinical
model correctly predicted but the clinical model could not correctly predict, whether in
the survival group or the non-survival group, was greater than the number of patients that
the clinical model correctly predicted but the AKR1C3_clinical model could not correctly
predict (Table S3). It shows that the AKR1C3_clinical model has better discrimination
capability than the clinical model. The prediction performance of the signature-based risk
score for OS was also evaluated using time-dependent ROC curves. The values for the area
under the curve were: 0.941 for one-year OS, 0.945 for two-year OS, and 0.795 for five-year
OS (Figure 3B,C).

The risk scores of the AKR1C3_clinical model were calculated using the following
formula: Risk_score = 4.03 − 0.65 × pathologic_stage − 0.72 × T_stage + 0.15 × N_stage +
0.16 × extrathyroidal_extension − 0.10 × residual_tumor − 0.35 × AKR1C3 (Figure 3D).
According to the prediction results of the formula, all patients were divided into a predictive
survival group and a predictive non-survival group. The Kaplan–Meier survival curves of
the predictive survival and non-survival groups are shown in Figure 3E. A log-rank test was
used to evaluate the difference between two survival curves. The p-value was 3.34 × 10−13

(<0.05), indicating that there was a significant difference between the predictive survival
group and the predictive non-survival group when using the AKR1C3_clinical model.
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Figure 3. The predictive model construction. (A) Kaplan–Meier survival curves of the AKR1C3_high
group and AKR1C3_low group; (B) ROC curves of the AKR1C3_clinical model and clinical model;
(C) ROC curves of the AKR1C3_clinical model and clinical model at one, two, and five years; (D) risk
score of the AKR1C3_clinical model; (E) Kapla–Meier survival curves of the predictive survival group
and predictive non-survival group using the AKR1C3_clinical model; (F) Proposed nomogram to
predict 1-,3-, and 5- OS for THCAe; (G) calibration curve for the probability of the 3-year OS.
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Table 2. Performances of AKR1C3_clinical model and Clinical model.

AKR1C3_Clinical Model Clinical Model

AUC 0.816 0.775

Accuracy 0.853 0.799

Precision 0.990 0.987

Recall 0.857 0.803

F1 score 0.919 0.886

Sensibility 0.857 0.803

Specificity 0.750 0.688

3.3. Construction of the Nomogram

Based on the above results, a predictive ferroptosis-related prognostic nomogram
was also established. As shown in Figure 3F, this nomogram, which is based on AKR1C3
expression and patient characteristics, including T stage, N stage, pathologic stage, and
extrathyroidal extension, is able to predict a thyroid cancer outcome with a satisfying
C-index of 0.870 (95% CI 0.838–0.903). As shown in the calibration curve (Figure 3G), the
predictive probability is in accordance with the three-year OS.

3.4. Downregulation of AKR1C3 Inhibited the Viability of Thyroid Cancer Cell Lines

Through the above experiment we found that patients with high AKR1C3 expression
had a worse prognosis, which indicated that AKR1C3 may play a facilitator role in the
progression process in thyroid cancer. To further explore the biological significance of
AKR1C3 in THCA tumor progression, the 8505c and TPC-1 cells were transfected with
siRNA targeting AKR1C3 (siAKR1C3) or negative control siRNA (siNC). As shown in
Figure 4B, efficient depletion of AKR1C3 was confirmed by RT-qPCR. The wound-healing
assay, cytotoxicity CCK-8 assay, and transwell assay were used to assess the effect of
AKR1C3 in thyroid cancer cell proliferation. As shown in Figure 4C–H, downregulation of
AKR1C3 significantly inhibited proliferation, invasion, and migration in both cell lines as
compared with the control group.
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Figure 4. Reducing AKR1C3 expression in thyroid cancer cells inhibits proliferation, migration and
invasion: (A) TPC-1 and 8505c cell lines were transfected with siNC or siAKR1C3, and the level
of PHLPP1 mRNA expression was assessed by RT-qPCR; (B,C) the CCK-8 assays indicated that
knockdown of AKR1C3 inhibits cells proliferation in TPC-1 and 8505c; (D–G) the wound-healing and
transwell asssays suggested that AKR1C3 reduces cell migration and invasion in TPC-1 and 8505c
(** p < 0.01, *** p < 0.001).

4. Discussion

The prognosis of thyroid cancer patients is related to many factors including clinical
factors and genes. Previous studies have reported that age, TNM stage, extrathyroidal
extension, and lymph node metastasis were considered to be independent risk factors for
the prognosis of thyroid cancer patients [14,15]. Genetic alterations such as BRAF and
TERT mutations can also affect the survival rate of thyroid cancer patients [16] Ferroptosis,
a recently discovered type of programmed cell death, appears to play a critical role in
carcinogenesis and cancer therapy efficacy, according to mounting data [17,18]. Prognostic
models based on ferroptosis-related genes are becoming a new research hotspot for pre-
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dicting OS in various malignancies, with prognostic models based on public databases
and next generation sequencing (NSG) providing more comprehensive clinical-genetic
prognostic value. The predictive usefulness of ferroptosis-related genes for THCA patients’
OS is uncertain, and more research is needed.

In this study, first, we investigated DEGs from the GEO GSE33630, GSE35570, and
GSE60542 datasets and compared them to a verified ferroptosis gene collection from the
FerrDb database; we discovered 75 ferroptosis-related genes. Then, the 75 ferroptosis-
related genes were put through a functional analysis, which revealed that they were
linked to cell death, etc. To identify the ferroptosis genes with poor prognosis and create
a ferroptosis-based prognostic model, we conducted univariate and multivariate Cox
regression analysis.

After that, we collected the ferroptosis-related genes from the FerrDb database. No-
tably, all five genes we selected had been validated. Sandra Neitemeier et al. [19]. confirmed
that mitochondrial transactivation of BID was the ultimate execution step in this oxidative
cell death paradigm, linking ferroptosis to mitochondrial damage. Zeng Ye et al. discov-
ered that FBW7 enhanced the lethal effect of gemcitabine in pancreatic cancer by inducing
ferroptosis and apoptosis [20]. In previous studies, BID, FBXW7, and GPX4 had already
been found to be significant in thyroid cancer [21–23], whereas the role of AKR1C3 and
MAP3K5 in the development and progression of thyroid cancer has not yet been reported.

Permutations were used to create a total of eight models, as shown in Tables S4 and S5.
Although Model 8 (which included all clinical parameters as well as five ferroptosis-
related genes) had the greatest AUC value, our AKR1C3_clinical model (Model 3) had
the best accuracy. The AKR1C3_clinical model (Model 3) outperformed the other seven
models in four of the seven performance indexes. Meanwhile, the introduction of one gene
signature can reduce cost and have more clinical application value than the introduction
of five ferroptosis-related gene signatures. It indicates the superiority of our proposed
AKR1C3_clinical model in both experimental performance and clinical cost.

Recently, aldo-keto reductase was found to play a significant role in tumor develop-
ment and cancer drug resistance [24,25]. As a member of the aldo-keto reductase family 1,
AKR1C3 has been shown to be increased in erastin-resistant DU-145 prostate cancer cells in
a recent study, suggesting that AKR1C3 might be a suppressor of cell ferroptosis [26]. It was
confirmed by the prognostic model and the nomogram that AKR1C3 has an important role
in the survival prediction of thyroid cancer patients. To achieve a deeper understanding
of the effect that AKR1C3 enrolled, CCK-8, wound healing, and transwell assays were
conducted. These findings showed that AKR1C3 downregulation may have an inhibition
function in thyroid cancer cells.

In addition to this study, Qian et al. [27] and Lin et al. [28] investigated ferroptosis-
related genes in palliative thyroid carcinoma. Different from Qian et al. and Lin et al. who
only used the data in the TCGA-THCA database to build a predictive model for OS, we
first screened the differential genes from the GEO database, and then validated them in
the TCGA database. Choosing data from different database sources improved the validity
of our experimental results. Meanwhile, from the perspective of reducing the economic
burden of patients, the combination of clinicopathological factors and gene expression in
the construction of a prediction model is more valuable for clinical application. We believe
our research provides new insights into thyroid cancer treatment.

There are a few limitations in this study. Our risk model was created and verified
using public databases; however, additional prospective real-world data are required
to substantiate its clinical importance. Second, we only looked at the effect of reduced
AKR1C3 expression on biological processes; the specific mechanism in vivo and in vitro
needs to be explored further.



Genes 2022, 13, 997 12 of 13

5. Conclusions

We developed a predictive model based on ferroptosis-related genes that was highly
linked to thyroid cancer progression. In addition, we discovered that AKR1C3 is a facilitat-
ing factor in thyroid cancer progression.
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www.mdpi.com/article/10.3390/genes13060997/s1, Table S1: The list for 259 ferroptosis-r3elated
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regression models; Table S5: Performance of different logistic regression models.
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