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Abstract: Multiple myeloma (MM) is the second most common hematological cancer and is
characterized by genetic features including translocations, chromosomal copy number aberrations,
and mutations in key oncogene and tumor suppressor genes. Dysregulation of the tumor suppressor
TP53 is important in the pathogenesis of many cancers, including MM. In newly-diagnosed MM
patients, TP53 dysregulation occurs in three subsets: monoallelic deletion as part of deletion of
chromosome 17p (del17p) (~8%), monoallelic mutations (~6%), and biallelic inactivation (~4%).
Del17p is an established high-risk feature in MM and is included in current disease staging criteria.
Biallelic inactivation and mutation have also been reported in MM patients but are not yet included
in disease staging criteria for high-risk disease. Emerging clinical and genomics data suggest that the
biology of high-risk disease is complex, and so far, traditional drug development efforts to target
dysregulated TP53 have not been successful. Here we review the TP53 dysregulation literature in
cancer and in MM, including the three segments of TP53 dysregulation observed in MM patients.
We propose a reverse translational approach to identify novel targets and disease drivers from TP53
dysregulated patients to address the unmet medical need in this setting.
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1. Introduction

Multiple myeloma (MM) is a malignancy of fully differentiated B cells and represents the
second largest hematological cancer in the US [1]. Over the last two decades, remarkable progress
in the development of therapeutics has resulted in approval of novel therapies that include
immunomodulatory drugs, proteasome inhibitors, and more recently an anti-CD38 antibody,
with significant increases in both progression free and overall survival of patients [2,3]. However,
clinical benefit is not uniform, and the disease remains incurable. Patients with high-risk disease
are one segment that are underserved by current therapies [3]. The Revised ISS (R-ISS) criteria that
is used to risk stratify MM patients at diagnosis includes select cytogenetic abnormalities (CA) to
define high-risk MM: the presence of one or more of: 4;14 or 14;16 translocations, or deletion of
chromosome 17p (del17p) [4]. While del17p, which includes the TP53 gene, is a known high-risk
marker in MM, variability in cytogenetic assay cutoff has resulted in a heterogenous population of
patients with this abnormality being designated as high-risk. The Myeloma Genome Project (MGP)
has identified high-risk patients using molecular methods to circumvent challenges associated with
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traditional methods. MGP identified two high-risk patient segments that included TP53 aberrations:
Double Hit MM (DHMM) which includes patients with biallelic inactivation of TP53 (a deletion and a
mutation) and a second segment of patients harboring del17p in a high cancer cell fraction (CCF) [5,6].
In this review, we discuss the current understanding of P53 in cancer, and the prognosis and biology of
patients harboring distinct abnormalities involving TP53: (1) del17p, (2) mutations, and (3) biallelic
inactivating events. These TP53 aberrations can be present in newly diagnosed MM (NDMM) but may
also be acquired in later stages of the disease following treatment. Emerging data and our ongoing
analyses suggest a complex molecular basis of P53 dysregulated high-risk MM. Here, we review TP53
aberrations in cancer, in MM including clinical prognosis in MM, the biology of P53 inactivation,
and attempts to target TP53 in drug development. We suggest a path forward for developing new
therapies by taking a reverse translational approach to address the unmet need for these patients.

2. P53 Aberrations in Solid Tumors and Hematological Malignancies

TP53 was originally discovered as a binding partner of simian virus 40 large T antigen in virally-
transformed cells [7–10]. Initially it was classified as an oncogene, but later work established its role
as a tumor suppressor [11]. A variety of inactivating TP53 mutations have been reported in human
cancers and germline mutations in TP53 are a hallmark of Li-Fraumeni syndrome, a hereditary cancer
predisposition disorder [11–13].

Approximately 50% of human cancers have TP53 alterations [14–16]. In The Cancer Genome Atlas
(TCGA) dataset that includes 32 distinct studies and over 10,000 cancer cases, the prevalence of TP53
mutations are 15.20%, deletions 15.90%, and biallelic inactivation events are 22.02% of cases [17]. In this
dataset, ovarian serous cystadenocarcinoma, uterine, and lung cancers have the highest prevalence
of TP53 abnormalities (~90% of cases) while paraganglioma had the fewest at only 0.50% [18].
Other groups have also reported high prevalence of TP53 abnormalities in solid tumors, particularly
ovarian, pancreatic, breast, and small cell lung cancer [13,19–21]. However, Li and colleagues analyzed
data from 7893 patients and found that TP53 mutations were only prognostically relevant in 9 cancer
types in the TCGA dataset including lung adenocarcinoma, hepatocellular carcinoma, head and
neck squamous cell carcinoma, acute myeloid leukemia (AML) and clear cell renal carcinoma [18].
Approximately 80% of TP53 mutations are missense mutations and are localized in the DNA-binding
domain. Eight of these mutations (R175, V157F, Y220C, G245, R248, R249, R273 and R282) account
for ~28% of total mutations in TP53 with R5, R248 and R273 being reported in multiple tumor types,
suggesting that there is a selection for these mutant alleles in cancer [22].

In addition to single-allele missense mutations, loss of heterozygosity (LOH) in the second allele
of TP53 has been reported in multiple solid tumor studies and mutations in this allele were significantly
higher (25–37%) than in non-del17P cases [12,15,23–26]. Analysis of TP53 gene and pathway alterations
in 32 tumor types from the TCGA dataset revealed that ~91% of cancers exhibit biallelic inactivation of
the TP53 gene. The second allele loss was due to either mutation, chromosomal deletion, or by copy
neutral LOH [27]. Gene expression profiling of both cell lines and patient samples suggested that even
monoallelic deletion of TP53 can result in significantly lower expression levels [26,28].

Compared to solid tumors, dysregulation of TP53 is less frequent in hematological malignancies,
for example, in diffuse large B-cell lymphoma (DLBCL) and AML, ~10–50% of cases have alterations in
TP53 (Figure 1). In DLBCL, biallelic inactivation is the most common TP53 aberration (13%) while
deletion and mutation are each present in ~20% of cases. In AML, alterations in TP53 are less common
with biallelic inactivation and mutation present in ~4% of cases each and deletion reported in only ~3%
of cases. There is only one dataset with SNV data from 211 MM patients available in TCGA which lacks
copy number variation (CNV) data, thus providing incomplete information about monoallelic versus
biallelic inactivation of TP53 in MM [29]. Our analysis from MGP demonstrated that deletion is the most
common abnormality at 8%, followed by mutation (~6%) and biallelic inactivation (~4%) (Figure 1).
Even though the prevalence of TP53 aberrations is high across multiple tumors, their biological effects
are still poorly understood. Various studies have suggested that missense mutations in TP53 are gain of
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function (GOF) mutations and confer oncogenic functions to P53 [22,30–37]. In contrast, other studies
suggest that missense mutations in TP53 are loss of function (LOF) and act through a dominant-negative
mechanism affecting oligomerization [38–42]. A recent report conducted a detailed analysis of TP53
hot spot missense mutations in human myeloid malignancies applying genome editing, saturation
mutagenesis screening and mouse models [40]. This analysis showed that in AML, TP53 mutations do
not confer a neomorphic GOF potential but instead, are dominant negative in nature and affect the
tumor suppressor function of the protein [40].
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3. Prognosis of Del17p/TP53 Inactivation in Multiple Myeloma

3.1. Deletion of 17p in MM

Chromosomal aberrations, including translocations and CNVs are common in MM. However,
heterogeneity in patient populations, detection methods, threshold (defined as the percentage of tumor
cells positive, also known as CCF), sample sizes, and treatment regimens have made it challenging to
interpret their impact on clinical outcome. The prognostic relevance of del17p was described in an
analysis of NDMM patients in the Intergroupe Francophone de Myélome 99 (IFM99) trial [43]. Del17p
(identified by fluorescent in situ hybridization [FISH]) in CD138-positive tumor cells was present
in 11% of patients (58 out of 532) where patients with the deletion had significantly shorter median
event-free survival (EFS; 14.6 vs. 35 mo, p < 0.001) and median overall survival (OS, 22.4 mo vs. not
reached [NR], p < 0.001).

Del17p was one of two markers that retained prognostic value for both EFS and OS in a multivariate
analysis of a large NDMM patient dataset, and is included in the R-ISS as a standard part of risk
assessment in the clinic [4]. However, one source of variability among studies has been the threshold
used to determine whether patients are considered positive for del17p. In the IFM99 study, del17p
patients had a median of 75% plasma cells positive for the deletion, and those with ≥60% positive
cells (CCF >0.6) were considered high-risk. The majority of studies have used a cutoff of >20% to
determine a significant impact on clinical outcome and some have shown that a patient should have
~60% cells positive for the deletion in order to be included in the high-risk del17p subgroup [25,43–50].
However, some groups have used thresholds below 20%, including one Phase 3 study that counted
a patient positive for del17p if even a single cell was positive by FISH [51,52]. The use of different
thresholds/CCFs, different size datasets, as well as different treatment regimens have resulted in
discordance in the reported prognosis of del17p patients (Table 1). In NDMM, the median progression
free survival (PFS) for patients with del17p has been reported to be approximately 15 months in several
studies, with a range from 4 to 26 months (Table 1). Differences in threshold/CCF as well as treatment
intensity impact the clinical outcomes of these patients. The study by Chang and colleagues, and that
by An and colleagues reported shorter median PFS compared to others in Table 1, but it should be
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noted that these patients were treated with high-dose chemotherapy or chemotherapy plus either
thalidomide or bortezomib.

The MGP systematically evaluated large FISH and genomic datasets for the association of CCF to
OS in NDMM patients [6]. This analysis indicated that patients with greater than 55% del17p-positive
cells (CCF > 0.55), had poor clinical outcomes, where patients had median PFS and median OS of only
14 and 36 months as compared to the low CCF group (≤0.55) who had median PFS of 24 months and
median OS of 84 months (FISH dataset, n = 605) [6]. The CCF > 0.55 threshold to identify high-risk
del17p patients (high-risk [HR] del17p, ~7% of NDMM) was validated in a meta-analysis across three
datasets, the original test dataset from the IFM, as well as an independent FISH replication dataset
(n = 235) and a genomic dataset (n = 108) [6].

The poor outcome of high-CCF del17p was also demonstrated in analysis of multiplex
ligation-dependent probe amplification (MLPA) data, a multiplex polymerase chain reaction (PCR)
method for simultaneously detecting CNVs at different genomic regions, where patients with MLPA
cutoffs corresponding to ≥50% tumor cells positive for del17p had significantly shorter PFS and OS than
those with fewer del17p-postive cells [47,53]. These data are consistent with earlier reports suggesting
that a CCF of ~60% should be used to identify high-risk patients [43].

Several studies investigated clinical outcomes of relapsed and/or refractory MM (RRMM) patients
with del17p (Table 2). Lakshman and colleagues reported data in 76 MM patients who were negative
for del17p at diagnosis who later tested positive for del17p. The presence of del17p was detected at a
median of 35.6 months after diagnosis (median of 2 lines of therapy), and was associated with short
median PFS (30.1 vs. 23 mo; p = 0.032) and median OS (106.1 vs. 68.2 mo; p < 0.001) in comparison to
patients without detectable del17p in the same timeframe [44,54]. Other reports of clinical outcomes in
del17p-positive patients demonstrate the association of poor clinical outcome with median PFS ranging
from 3.4 to 21.4 months, presumably impacted by threshold/CCF used as well as treatment intensity
in individual patient cohorts. The recent analysis from Avet-Loiseau and colleagues demonstrates
the impact of treatment intensity where patients with >60% del17p-positive cells had a median PFS
of 15.47 months in the triplet arm versus only 5.1 months in the doublet arm [55]. Taken together
these data demonstrate that patients with del17p have poor clinical outcomes, and that patients with
high CCF del17p are at particularly high risk of early progression and death compared to low-CCF
patients in both NDMM and RRMM settings. These findings are clinically relevant and CCF should be
considered for evaluation of del17p in MM patients and integrated into risk stratification guidelines.
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Table 1. Del17p in NDMM Datasets 1.

Author N Prevalence Del17p in Full Dataset Method Range (Median) of % Positive Cells Threshold/CCF for High-Risk mPFS mOS

Chang [56] 105 9.5%
(n = 10) FISH 18–95%

(Median 53%) None Median
7.9 mo

Median
14.7 mo

Avet-Loiseau [43] 532 11% (n = 58) FISH 32–94%
(Median 75%) ≥60% PCs mEFS

14.6 mo
Median
22.4 mo

Neben [51] 289 10% (n = 29) FISH NR 60–70% PCs 3-yr: 27% 3-yr: 50%

Lode [25] 92 57% n = 54) FISH NR ≥60% PCs NR NR

Boyd [50] 85 100% (n = 85)
(selected population of del17p patients) FISH NR None 14.7 mo 26.6 mo

An [49] 333 6.6% (n = 22) FISH 25–100%
(Median 65%) >50% PCs 4 mo 16 mo

Lonial [52] 646 32% (n = 206) FISH NR ≥1 cell NR NR

Thanendrarajan [44] 779

10% (>20% cutoff; n = 76)
8% (>40% cutoff; n = 62)
7% (>60%; cutoff n = 51)
4% (>80% cutoff; n = 34)

FISH Investigated >20, >40, >60, and >80%
cutoffs ≥20% PCs 3 yr: 61% 3 yr: 67%

Shah [48] 1905 9% (n = 175) MLPA NR NR NR;
HR: 1.57

NR;
HR: 2.10

Shah [47] 1777 10.8% (MLPA < 0.8) (n = 192) MLPA
Investigated > 0.8,

0.7–0.79,
0.55–0.69, and <0.55 cutoffs

MLPA value >0.8 (>20% PCs) NR

≥0.7 to <0.8:
HR = 1.8
≥0.55 to <0.7:

HR = 3.1
<0.5: HR = 2.2

Gaballa [57] 145 23.4% (n = 34) FISH NR NR 8 mo 21 mo

Lakshman [58] 310 100% (n = 310)
(selected population of del17p patients) FISH 8–100%

(Median 69.5%)

Investigated ≥ 20 vs. <20%
≥30 vs. <30%
≥40 vs. <40%
≥50 vs. <50%
≥60 vs. <60%

19.2 vs. 32.5
18.8 vs. 30.8
18.3 vs. 30.8
17.8 vs. 30.3
16.8 vs. 28.3

45.3 vs. NR
45.2 vs. 89.6
45.2 vs. 89.6
44.8 vs. 58.3
38.1 vs. 58.3

Thakurta [6]

605 100% (n = 605)
(selected population of del17p patients) FISH (discovery)

Investigated CCF range 0.3 to 0.8

>0.55 CCF 14.3 mo 36.1 mo

235 100% (n = 235)
(selected population of del17p patients) FISH (replication) >0.55 CCF 17 mo 32 mo

108
100%

(selected population of del17p patients [n = 108]
from n = 1273 MGP)

NGS >0.55 CCF 26 mo 36 mo

1 3-yr = 3-year estimates; del17p = deletion of chromosome 17p; FISH = fluorescent in situ hybridization; HR = hazard ratio; PCs = plasma cells; CCF = cancer clonal fraction; IFM =
Intergroupe Francophone de Myélome; MGP = Myeloma Genome Project; MLPA = multiplex ligation-dependent probe amplification; mo = month; mPFS = median progression free
survival; mEFS = median event free survival; mOS = median overall survival; ND = not determined; NGS = next generation sequencing; NR = not reported; vs. = versus; yr = year.
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Table 2. Del17p in RRMM Datasets 1.

Author Total N Prevalence Del17p
in Full Dataset Method Range (Median) of

% Positive Cells
Threshold/CCF
for High-Risk mPFS mOS

Lakshman [39] 228 (152 control + 76
acquired del17p) 33% (n = 65) FISH 9–100%

(Median 89%) None

23.0 mo
(from diagnosis)

5.4 mo (after
detection of del17p)

68.2 mo
(from diagnosis)

18.1 mo (after
detection of del17p)

Chin [59] 188 22.3% (n = 42) FISH NR None NR; Mixed NDMM
and RRMM NR

Chang [60] 85 22% (n = 17) FISH NR >10%
del17p+ vs. neg.

5.4 vs. 5.0 ns p = 0.60
11.5 vs. 15
ns P = 0.41

Chen [61] 88 15% (n = 13)
13% (n = 11)

FISH
IHC

NR
10–90% (40%)

>10%
>10%

P53/del17p+ vs. neg 2

3.4 vs. 11 mo
3.4 vs. 11 mo

12.1 vs. 28.8 mo
7.2 vs. 28.8 mo

Avet-Loiseau [55] 552
10% (n = 69)

Ixazomib Rd n = 36
placebo-Rd n = 33

FISH
Investigated >5%

>20%
>60%

None

IRd vs. Rd
21.4 vs. 9.7
21.4 vs. 6.7
15.7 vs. 5.1

NR

1 del17p = deletion of chromosome 17p; FISH = fluorescent in situ hybridization; HR = hazard ratio; CCF = cancer clonal fraction; neg = negative; NDMM = newly-diagnosed multiple
myeloma; IHC: Immunohistochemistry; IRd = ixazomib + lenalidomide + dexamethasone; mo = month; mOS = median overall survival; mPFS = median progression free survival;
neg = negative; NR = not reported; Rd = lenalidomide + dexamethasone; RRMM = relapsed/refractory multiple myeloma; vs. = versus. 2 Presence of nuclear P53 by IHC or del17p by
FISH vs. patients who were negative for P53/del17p by the same method.
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3.2. Biallelic Inactivation of TP53 in MM

Early reports from analyses of small numbers of patients suggested an association between
deletion on one allele and mutation on the second allele of chromosome 17p, putatively resulting in
complete inactivation of P53 function [25,44,46]. These studies reported clinical outcome of patients
with biallelic inactivation as well as del17p alone; however, small numbers limited the ability to
differentiate the impact of biallelic versus monoallelic inactivation. In a cohort of 92 NDMM patients,
Lodé and colleagues reported that among 54 patients with del17p, 20 (37%) also had a mutation in
TP53; however, no differences in survival were observed between patients with complete inactivation
of TP53 and those with del17p alone [25]. In a larger NDMM dataset (n = 779) where both TP53
mutation and FISH data were available (n = 72), a significant correlation between mutation and deletion
was observed [44]. Patients with biallelic inactivation (n = 7) had significantly shorter PFS and OS
than patients with monoallelic inactivation (n = 26, del17p or TP53 mutation alone) where 3-year OS
was 29% versus 84% and 3-year PFS was 29% versus 73%. This study did not separately report the
outcomes for patients with only a mutation or deletion.

From the MGP, using the largest uniformly-processed genomic dataset from NDMM patients
(n = 1273), DHMM was identified and independently validated as a molecularly-defined high-risk
group. DHMM is ~6–8% of NDMM and includes two groups of patients, (a) biallelic inactivation of
TP53 and (b) amplification (≥4 copies) of 1q21 with ISS3 with median PFS of 15.4 months and median
OS of 20.7 months [5,62]. Patients with biallelic inactivation of TP53 had significantly shorter PFS than
patients with monoallelic del17p, (18 mo estimate: PFS 36% vs. 76%; OS: 58% vs. 90%) [5]. However,
this analysis did not consider the CCF >0.55 cut off for determination of HR del17p.

Using the >0.55 CCF cutoff defined by genomics-based methods, analysis from MGP identified
high-risk del17p patients as discussed in Section 3.1. The MGP data also showed a significant association
between the presence of CCF >0.55 and of mutation on the second allele of TP53, where 27 of 28 patients
with a TP53 mutation had CCF >0.55 [6]. Patients with biallelic inactivation had significantly shorter
PFS than patients with one wild-type copy of TP53 [6]. In an updated analysis of this dataset with
longer clinical follow-up, patients with HR del17p + TP53 mutation have the shortest OS (Figure 2,
orange line, median 28.8 mo, p = 0.008). Figure 2 provides updated OS data for patients with HR del17p
(median 45 mo) in the MGP dataset. These data highlight that NDMM patients with either biallelic
inactivation of TP53 or high CCF del17p have very poor clinical outcome. Together, these two groups
of P53 dysregulated patients comprise approximately 6–7% of the NDMM population (the addition of
the DHMM amp1q segment would bring this to ~10% of NDMM).

The timing and order of acquisition of deletion and mutations leading to biallelic inactivation of
TP53 in MM patient samples has not been widely studied. A recent preclinical study was performed in
isogenic AMO-1 MM cell lines containing monoallelic and biallelic TP53 variants followed by in-vitro
competition assays. Interestingly the authors found that biallelic TP53 inactivated cells outcompete
monoallelic TP53 variant containing cells. Although this study was limited to one cell line, the data
provided some experimental evidence for the acquired proliferation fitness of biallelic clones [63].
Due to the recessive nature of tumor suppressor mutations, biallelic inactivation is generally a
prerequisite for acquiring an oncogenic or tumor maintenance phenotype. While biallelic inactivation
would result in loss of P53 function, it is unclear what drives the high-risk feature of a higher clonal
fraction of del17p cells with respect to P53 function.
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3.3. Monoallelic Mutation of TP53 in MM

In NDMM, TP53 mutations are generally present in 3–8% of patients (Figure 1) [5,46,64]. As in
other tumor types, TP53 mutations in MM are spread across the entire gene, with many mutations
occurring within the DNA-binding domain [5]. Figure 3 highlights the structure of the TP53 gene (top),
mutations in TP53 in the MGP dataset (middle panel) as well as the sites most frequently mutated
(Figure 3, bottom) in ≥2 patients. TP53 mutation was identified as a driver event in MM [65]. However,
the relevance of monoallelic TP53 mutation as an independent poor prognostic marker in MM has
not been established. Owen and colleagues concluded that TP53 mutations were rare events in MM
(detected in 1/31 [3%] patients) and were therefore of limited prognostic value [64]. Chng and colleagues
reported the prognosis in NDMM where TP53 mutations were detected in 3% (9/268) of patients and
were associated with short OS compared to patients without a mutation, however, it should be noted
that ~50% of this cohort of patients also had a del17p [46,66]. Another study reported that patients
with TP53 mutation (n = 20) did not have a significantly different outcome compared to those without a
mutation [25]. In the MGP dataset, there were 33 patients with monoallelic mutation of TP53, and after
a median follow-up of 29.8 months, the OS of these patients (Figure 2, monoallelic mutation, blue line)
was not significantly different than patients without a TP53 abnormality (Figure 2, remaining, red line).
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Longer follow-up or analysis of larger datasets are needed to clarify the prognostic value of monoallelic
TP53 mutation in MM patients.
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Figure 3. TP53 mutation spectrum in MM: Top: Structure of TP53 gene with numbered exons, colors
correspond to domains highlighted in middle and bottom panels. Middle: TP53 mutations in MM by
type and location within the gene. Bottom: Hotspot mutations in TP53 in MM. Only mutation sites that
were detected in ≥2 patients in the MGP dataset (n = 863) are shown. Each circle represents one patient
with blue representing missense mutations, purple representing splice site mutations, red representing
frameshifts, and orange representing nonsense mutations. TAD = Transactivation domain TAD (green),
PRD = proline rich domain (yellow), OD = oligomerization domain (blue).

Nonetheless, TP53 mutations could be important drivers for maintaining/propagating MM clones
in association with co-occurring driver gene mutations. The variant allele frequencies of the TP53
mutations are sub-clonal for the majority of the mutations observed in the 33 patients within the MGP
dataset. The functional consequence of TP53 mutations in MM is yet to be experimentally determined,
but in silico predictions suggest that multiple hot spot mutations may have a damaging effect. Figure 3
(bottom) and Table 3 summarizes the TP53 hot spot mutations (detected in ≥2 patients) in MM and
their predicted functional impact and score from three different in silico methods: Mutation Assessor,
Sorting Intolerant from Tolerant (SIFT), and Polymorphism Phenotyping V2 (PolyPhen2) [67–69].
The majority of TP53 hotspot mutations are predicted to be medium impact by Mutation Assessor and
the same mutations are predicted as deleterious and damaging by SIFT and PolyPhen2 algorithms.
Mutation Assessor classifies mutations into 4 categories based on functional impact score (FIS) to
estimate the probability of phenotypic consequence of the mutation. A FIS score ≤0.8 is classified as
neutral impact, FIS score of 0.8–1.9 as low impact, FIS score of 1.9–3.5 as medium impact and >3.5 as
high impact. Among the hot spot mutations observed in MM, mutations at Y126, R175, R248, R273,
and R282 are also common in other tumor types in the TCGA database [17]. Laboratory validation is
needed to confirm the predicted functional consequence of the observed mutations in MM cells.
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Table 3. In Silico Predicted Functional Consequence of TP53 Mutations in MM 1.

Mutation
Score and Predicted Impact

Mutation Assessor SIFT PolyPhen2

1 Y126C 3.25, Medium 0.00, Deleterious 1.00, Probably damaging

2 Y126H 3.25, Medium 0.00, Deleterious 1.00, Probably damaging

3 Y126splice NA NA NA

4 S127F 3.29, Medium 0.00, Deleterious 1.00, Probably damaging

5 M133K 0.00, Neutral 0.00, Deleterious 0.12, Benign

6 M133T 0.00, Neutral 0.00, Deleterious 0.09, Benign

7 F134S 2.00, Medium 0.00, Deleterious 1.00, Probably damaging

8 F134L 2.64, Medium 0.00, Deleterious 1.00, Probably damaging

9 C135Y 3.08, Medium 0.00, Deleterious 1.00, Probably damaging

10 C135FS NA NA NA

11 A161T 2.99, Medium 0.00, Deleterious 1.00, Probably damaging

12 Y163D 3.17, Medium 0.00, Deleterious 1.00, Probably damaging

13 Y163C 3.17, Medium 0.00, Deleterious 1.00, Probably damaging

14 R175G 3.28, Medium 0.00, Deleterious 1.00, Probably damaging

15 R175H 2.58, Medium 0.11, Tolerated 0.31, Benign

16 G199V 3.11, Medium 0.00, Deleterious 1.00, Probably damaging

17 Y234C 2.99, Medium 0.00, Deleterious 0.99, Probably damaging

18 R248W 3.28, Medium 0.00, Deleterious 1.00, Probably damaging

19 R248Q 2.94, Medium 0.00, Deleterious 1.00, Probably damaging

20 P250L 3.27, Medium 0.00, Deleterious 1.00, Probably damaging

21 R267W 3.22, Medium 0.05, Tolerated 0.73, Probably damaging

22 R273L 3.18, Medium 0.00, Deleterious 0.99, Probably damaging

23 R273H 2.08, Medium 0.13, Tolerated 0.63, Probably damaging

24 R282G 2.46, Medium 0.03, Deleterious 0.28, Benign

25 E285K 3.04, Medium 0.13, Tolerated 0.98, Probably damaging

26 R337C 1.56, Low 0.09, Tolerated 0.34, Benign

27 R337L 2.95, Medium 0.01, Deleterious 0.91, Probably damaging
1 Predicted functional consequences of mutations by three different in silico methods. Mutation Assessor classifies
mutations based on functional impact score: ≤0.8 as neutral, 0.8–1.9 as low, 1.9–3.5 as medium and >3.5 as high. SIFT
(Sorting Intolerant From Tolerant) classifies scores of <0.05 as deleterious. PolyPhen2 (Polymorphism Phenotyping)
scores range from 0 (benign) to 1 (probably damaging).

4. Biology of Del17p/P53 Inactivation

In normal cells, P53 is maintained at a low level by a series of regulators and is activated by
a variety of stress stimuli. P53 controls a vast genetic network, complex transcriptional programs,
and diverse biological responses that have been recently reviewed [70]. The most studied function
of P53 is its ability to promote cell cycle arrest and apoptosis via transcription of P21 in response to
DNA damage, which is deemed central to its role in tumor suppression. P53 also controls many other
biological processes including metabolism, proliferation, inflammation, autophagy and epithelial to
mesenchymal transition [70]. The complexity of the P53 signaling network has made interpretation of
P53′s function, and consequences of its dysfunction challenging—particularly when considering the
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impact of cell type and mechanism of inactivation (e.g., mutation, deletion, or both). Here we review
the major roles of P53 and the impact of P53 dysfunction in cancer overall and in MM specifically.

4.1. Role of P53 in Genomic Instability, DNA Repair, Aneuploidy, and Checkpoint Control

P53 maintains genome stability by inducing cell cycle arrest, senescence, or apoptosis upon DNA
damage to reduce the risk of propagation of a defective genome. Genome instability is an inherent
characteristic of almost all human cancers and is accompanied by dysregulation of several cellular
processes, such as DNA replication, G2/M cell cycle checkpoint control, chromosomal segregation, DNA
repair, and genome integrity. P53 is frequently inactivated in cancer resulting in tumors characterized
by gross structural defects, chromosomal missegregation, ploidy changes, and higher prevalence
of chromothripsis [12,14,49,71–74]. A pan-cancer analysis demonstrated an association between
aneuploidy and mutation of TP53 [14]. One of the mechanisms by which dysregulated P53 is thought
to contribute to aneuploidy is via regulation of G2/M processes and centrosome amplification [75–77].
Multiple studies have shown a complex link between proteins involved in cell cycle regulation, mitotic
checkpoints, genomic instability, tumorigenesis, and the P53 pathway [78–81]. A tightly regulated
feedback loop has been reported between P53 and mitotic kinases (eg, WEE1, PLK1, NEK2, BUB1,
TTK, AURKB and PLK1) [79,82–84]. Phosphorylation of P53 in response to mitotic spindle damage
has also been reported [85]. The intricate details of the mechanisms and regulatory signals between
mitotic kinases and P53 remain poorly understood, but P53 dysfunction disrupts this critical regulation,
resulting in abrogation of the G1 checkpoint and upregulation of mitotic kinases allowing cells to
override the G2/M checkpoints and contribute to genome instability and tumorigenesis. A clear
understanding of the biology of dysregulation of P53 dependent physiological processes in biallelic,
del17p, and mutated P53 patients is critical in identifying new anti-cancer targets.

4.2. P53 Synthetic Lethality

One way to explore new targets is by identifying vulnerabilities of cancer cells with dysregulated
P53 that could provide opportunities to selectively kill or inhibit the growth of P53-deficient cells versus
those with wild-type P53 (Figure 4). Loss of the G1/S cell cycle checkpoint in P53-deficient cancer
cells renders them entirely dependent on the G2/M checkpoints to maintain genome integrity [86].
Such dependency exposes a unique vulnerability of P53-deficient cancer cells, resulting in synthetic
lethal relationship between P53 and multiple genes/pathways (Figure 5). P53-deficient cancer cells
exhibit synthetic lethal interactions with ionizing radiation and genotoxic agents (e.g., cisplatin,
camptothecin, doxorubicin). For example, P53-deficient cells are more sensitive to genotoxic stress
when treated with inhibitors of ATR, Chk1, PLK1, and Wee1 kinases versus cells with functional
P53 [87–91]. P53-deficient cells have also been reported to be dependent on the p38MAPK/MK2
pathway for survival following treatment with DNA-damaging agents. MK2 depletion in P53-deficient
cells suppressed Cdc25A-mediated S phase arrest following cisplatin treatment and Cdc25B-mediated
G2/M arrest following doxorubicin exposure, resulting in mitotic catastrophe and tumor regression
in vivo [92]. Further, inhibition of ATM also exhibited synthetic lethality with topoisomerase inhibitors
in a P53-deficient background [93] (Figure 4). P53 synthetic lethality has also been reported with SGK2,
PAK3, CHK1, Wee1 and Myt1 in cervical cancer cell lines [94,95].
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common across both studies [96,97].  

The region of chromosome 17p that is commonly deleted includes several essential genes that 
are adjacent to TP53. For example, one of the largest subunits in the human RNA polymerase II 
complex (POLR2A) resides in close proximity to the TP53 gene locus (Figure 6). Concomitant deletion 
of POLR2A with hemizygous TP53 deletion has been reported in multiple human cancers [98,99]. 
Unlike TP53 that is regulated post-transcriptionally and post-translationally, expression of POLR2A 
is directly correlated with gene copy number. Hence, the inhibition of the POLR2A gene in cells with 
hemizygous del17p genomic deletion resulted in synthetic lethality and increased cell death [99]. E3 
ligase Ring-Box 1 (RBX1) has also been identified as another P53 synthetic lethal partner which 
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P53 deleted castration-resistant prostate cancer cell lines resulted in synergistic inhibition of cell 
growth [98].  

Figure 5. Synthetic lethal interaction of P53 with cell cycle and other genes and their distribution across
cell cycle. Experimentally validated or detected in functional genomic screens (red), in silico predicted
(black) and both (green). PLK1 = polo-kinase 1, ATM = ataxia telangiectasia mutated, GEF-H1 = guanine
nucleotide exchange factor-H1, MK2 = MAP-kinase activated protein kinase 2, SGK2 = serine/threonine
kinase, CHK1 = Serine/threonine-checkpoint kinase 1, MAP4 = microtubule-associated protein 4,
MYT-1 = Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase, Wee1 = nuclear
serine/threonine kinase 1, CDK16 = cyclin-dependent kinase 16, RYK = receptor-like tyrosine
kinase, MTOR = mechanistic target of rapamycin, STK17B = serine/threonine kinase 17b,
PLK4 = polo-like kinase 4, MAST2 = microtubule associated serine/threonine kinase 2, MAP3K
= 4 mitogen-activated protein kinase kinase kinase 4, MARK2 = MAP/microtubule affinity-regulating
kinase 2, CDK1 = cyclin-dependent kinase 1, NEK2 = NIMA (never in mitosis gene a)-related kinase 2,
PRKCSH = protein kinase C substrate 80K-H, AURKA = aurora kinase A, BUB1 mitotic checkpoint
serine/threonine kinase, CDC7 = cell division cycle 7 homolog, SRPK1 = SRSF protein kinase 1,
TTK = TTK protein kinase, VRK1 = vaccinia related kinase 1.

Additionally, Wang and Simon employed a computational method to predict genes with P53
synthetic lethality. Using publicly-available cell line and gene expression datasets, they identified
18 kinases with potential synthetic lethal interactions with P53, including PLK1, NEK2, BUB1,
and AURKA [96]. Another study identified a similar set of potential P53 synthetic lethal genes by
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analyzing publicly-available data in 33 different human cancer types to identify 120 genes that were
overexpressed in P53 deficient cells/tumors, including 19 genes that were common across tumor
types [97]. A significant number of these putative P53 synthetic lethal genes are potentially druggable
mitotic kinases (AURKA, BUB1, BUB1B, CDK1, MELK, NEK2, PLK1 and TTK), with 6 out of 8 kinases
common across both studies [96,97].

The region of chromosome 17p that is commonly deleted includes several essential genes that
are adjacent to TP53. For example, one of the largest subunits in the human RNA polymerase II
complex (POLR2A) resides in close proximity to the TP53 gene locus (Figure 6). Concomitant deletion
of POLR2A with hemizygous TP53 deletion has been reported in multiple human cancers [98,99].
Unlike TP53 that is regulated post-transcriptionally and post-translationally, expression of POLR2A
is directly correlated with gene copy number. Hence, the inhibition of the POLR2A gene in cells
with hemizygous del17p genomic deletion resulted in synthetic lethality and increased cell death [99].
E3 ligase Ring-Box 1 (RBX1) has also been identified as another P53 synthetic lethal partner which
regulates POLR2A-mediated mRNA synthesis by K63 linked ubiquitination. Inhibition of RBX1
in P53 deleted castration-resistant prostate cancer cell lines resulted in synergistic inhibition of cell
growth [98].Cells 2019, 8, x FOR PEER REVIEW 7 of 23 
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P53 Synthetic Lethality in MM

MM has remarkable genomic instability that leads to accumulation of aberrations resulting in
tumor progression, drug resistance, and metastasis [100]. For example, increased DNA double-stranded
breaks (DSB) may lead to disease progression in MM [101]. Genomic instability provides a growth
advantage and may allow acquisition of drug resistance, but it may also create vulnerabilities that can
be exploited by targeting synthetic lethal interactions [102]. An example of this strategy is induced
sensitivity of MM cells to poly (ADP-ribose) polymerase (PARP) inhibitors following 26S proteasome
inhibition. Inhibition of the proteasome in MM cells abrogates H2AX polyubiquitination and abolishes
recruitment of BRCA1 and RAD51 to DSB sites and homologous-recombination (HR)-mediated DNA
repair [103]. Co-treatment of MM cells with proteasome inhibitors and PARP inhibitors leads to
accumulation of unrepaired DNA DSBs and cell death [103]. Similarly, mutations in DNA editing
enzymes, (eg, APOBECs) have been reported in a specific MM genomic subgroup that is associated with
primary/secondary translocations, poor prognosis, drug resistance, oncogenic activation, and sub-clonal
diversity [104–110]. APOBEC mutagenesis induces the DNA damage response and can result in
cell death [111–113]. Therefore, loss of P53 enables tolerance to APOBEC-mutagenesis-induced DNA
damage and promotes cancer cell survival [113]. Together, these data suggest that targeting genes
with a synthetic lethal relationship with P53 could be an effective therapeutic approach for multiple
P53-deficient malignancies. Additional research is needed to identify genes with significant P53
synthetic lethal relationships in MM.
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4.3. Biology of High-risk Del17p in MM

The clinical relevance of del17p is well established in MM, but the exact mechanism by which
del17p promotes aggressive disease biology remains unclear. Questions remain on the role of the
deletion size, clonality, and cellular signaling. Without a better understanding of the features that are
driving poor clinical outcome, development of effective therapies to target those features remains
challenging. An integrative multi-omics analysis identified 12 distinct disease subsets of MM and
indicated that del17p and DHMM, despite being associated with poor clinical outcome, did not all
cluster together in one subset [114]. Instead, patients with DHMM or del17p were distributed across
several subsets, including high-risk and non-high-risk groups indicating that these features are not the
only drivers of the underlying high-risk biology.

The length of the deleted region can vary from a few mega bases (MBs) to deletion of the entire
short arm of chromosome 17. The TP53 gene is located in the minimally deleted region (0.25 MB)
suggesting that it is a critical gene in the 17p13 region [50]. A deletion event usually involves several
genes and it remains unclear how genes other than TP53 contribute to tumorigenesis. A heterozygous
deletion of a 4MB region in mouse chromosome 11B3, syntenic to human 17p13.1, showed that
co-deletion of TP53 along with Eif5a and Alox15b resulted in more aggressive disease [115]. Additional
research is needed to improve our understanding of drivers of high-risk biology in MM patients
with del17p.

5. Targeting TP53 in Drug Development

The majority of TP53-related drug development efforts have been directed towards designing
therapies to exploit cancer-specific vulnerabilities associated with dysregulation of TP53, such as del17p,
TP53 mutations, TP53 promoter methylation, and MDM2 overexpression [70,116]. The therapeutic
utility of synthetic lethal interaction of P53 with POL2RA is currently being examined in preclinical
models. The amanitin toxin, which inhibits POL2RA is being tested as an antibody-drug conjugate
(ADC). In MM, anti-B cell maturation antigen (anti-BCMA) amanitin-ADCs have shown efficacy and
tolerability in preclinical models [117,118]. Additional testing is needed to determine clinical efficacy
and tolerability of these agents.

Another promising approach has been the deployment of compounds which can restore the
wild-type function of P53. Small molecules and peptides have been designed to stabilize P53 mutant
proteins [119–123]. Metallochaperones have been reported to restore the function of mutant P53 by
zinc incorporation [124]. Similarly, inhibition of amyloid-like structure formation in aggregation-prone
mutants of P53 has shown promise as a therapeutic strategy in TP53-deficient tumors [124,125].
For example, APR-246 has been reported to reactivate mutant P53 and is currently in clinical
development [119] (Figure 7A).

MDM2, and E3 ubiquitin ligase, regulates P53 activation in multiple ways including interaction
with the transactivation domain of P53 and inhibition of P53 activity [126,127]. MDM2 also facilitates
P53 nuclear export and can negatively regulate P53 through ubiquitin-mediated degradation by the
proteasome [128–131]. In normal cells, MDM2 helps maintain low levels of P53 by inducing continuous
ubiquitin-mediated degradation of P53. However, in response to cellular stress (eg, DNA damage,
hypoxia, oncogenic activation), the interaction between MDM2 and P53 is disrupted, which leads to
stabilization of P53. Interestingly, P53-mediated transcription also regulates MDM2. Thus, MDM2
and P53 are closely linked to each other through an autoregulatory negative feedback loop [132,133].
MDM2 is overexpressed in some plasma cell leukemia patients and several MM cell lines, resulting in
inhibition of P53 activity [134]. Stabilization of P53 by inhibiting the MDM2-P53 interaction offered a
novel strategy and led to development of Nutlin [116,135] (Figure 7B). Nutlin was reported as the first
inhibitor of the P53-MDM2 interaction which demonstrated synergistic activity in MM with known
anti-MM agents such as bortezomib, melphalan, and etoposide [135–137]. However, Nutlin is only
effective in cells with wild-type P53, making it ineffective in del17p and mutant P53 backgrounds.
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Phase 1 trials with MDM2 antagonists in leukemia and liposarcoma have exhibited dose-limiting
toxicities including neutropenia and thrombocytopenia [138].

The focus on MDM2 antagonism also led to the development of the concept of cyclotherapy
(Figure 7C). These agents induce transient cell cycle arrest by stabilizing P53 in WT cells while P53
mutant cells continue to divide and exhibit enhanced sensitivity to chemotherapeutic agents [139].
The clinical development of cyclotherapy agents as well as preclinical efforts to discover cyclotherapeutic
drug combinations are currently ongoing [140,141].

Another potential anticancer therapy in WT P53 containing tumors is based on cellular senescence,
a known barrier to tumorigenesis [142]. Mouse cancer models have shown clear evidence of
P53-dependent senescence in tumor suppression, and P53-induced senescence by MDM2 antagonists
have shown promise as anticancer therapy [143–148].

Attempts to reintroduce wild-type P53 using gene therapy have unfortunately remained
unsuccessful. Adenovirus-mediated transfer of wild-type P53 in ovarian cancer patients failed in
randomized phase II/III trial [149]. It has also been shown that mere expression of wild-type P53 is not
sufficient to arrest the growth of all transformed cells.

P53-specific antigenic peptides can be presented on major histocompatibility complex molecules
from tumor cells overexpressing mutant P53 and can evoke an antitumor immune response. Vaccination
against mutant P53 has been shown to be effective in tumor-bearing mice [150,151]. Several peptide
vaccines and dendritic cell vaccines utilizing mutant P53-targeted immunotherapy are in clinical
development [152–155]. A number of Phase I/II immunization trials have been conducted so far using
P53 immunogens, but unfortunately none of them have shown acceptable clinical efficacy [156].Cells 2019, 8, x FOR PEER REVIEW 9 of 23 
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normal cells from genotoxic agents. Nutlin arrests WT P53 containing normal cells, while P53 mutant
cancer cells continue cycling and die due to accumulation of DNA damage.

6. Conclusion and Future Perspective

There are 3 distinct segments of patients with TP53 dysregulation that have been identified in
MM: monoallelic mutation, del17p, and biallelic inactivation. Based on analyses of the MGP data,
the biallelic and high CCF del17p patients appear to have poorest prognosis, while the prognostic
role of monoallelic mutations is less clear. Analysis of longitudinal patient samples is needed to more
fully understand the timing and sequence of these aberrations as well as clinical outcomes following
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treatment with specific therapeutic regimens in each patient subset. Further, additional research is
needed to identify co-occurring genetic interactions of P53/del17p dysregulation in MM. A reverse
translational approach could identify dysregulated pathways and disease drivers in these segments
from patient sample analysis. This approach could lead to discovery of new targets and eventually to
new therapies to address the unmet medical need of these MM patients.
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