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Abstract: To facilitate better implementation of flood control and risk mitigation strategies, a model
for evaluating the flood defense capability of China is proposed in this study. First, nine indicators
such as slope and precipitation intensity are extracted from four aspects: objective inclusiveness,
subjective prevention, etc. Secondly, the entropy weight method in the multi-attribute decision
making (MADM) model and the improved three-dimensional technique for order preference by
similarity to ideal solution (3D-TOPSIS) method were combined to construct a flood defense capacity
index evaluation system. Finally, the receiver operating characteristic (ROC) curve and the Taylor plot
method were innovatively used to test the model and indicators. The results show that nationwide,
there is fine flood defense performance in Shandong, Jiangsu and room for improvement in Guangxi,
Chongqing, Tibet and Qinghai. The good representativity of nine indicators selected by the model
was verified by the Taylor plot. Simultaneously, the ROC calculated area under the curve (AUC)
was 70%, which proved the good problem-solving ability of the MADM-GIS model. An accurate
assessment of the sensitivity of flood control capacity in China was achieved, and it is suitable
for situations where data is scarce or discontinuous. It provided scientific reference value for the
planning and implementation of China’s flood defense and disaster reduction projects and emergency
safety strategies.

Keywords: MADM-GIS model; 3D-TOPSIS method; ROC curve; visualization of flood control
capacity; entropy weight method

1. Introduction

Promoted by the need for economic development, the global water cycle has acceler-
ated substantially, causing a series of abnormal climate changes [1,2]. According to data
released by the Ministry of Water Resources of China, the areas affected by flood disasters
in southern China in 2020 included 198 rivers in 27 districts across the country, with a
total of 30.2 million people involved, and a loss of CNY 61.79 billion as of 14:00 on 9 July
2020. The healthy and stable development of China’s economy and society [3,4] has been
hindered by the expansion in the scope and degree of extreme climate events. Therefore,
the establishment of a flood control capability evaluation model is crucial for maintaining
infrastructure such as reservoirs, reasonably managing and controlling water resources,
and effectively protecting the lives and properties of the Chinese people. It is increasingly
necessary to assess the flood disaster defense capability in urban hydrology.

As a common natural disaster, urban floods generate multitudes of negative impacts
on people across the country. Multi-level studies on the evaluation of flood defense capacity
have been carried out worldwide. The main reasons for flood disasters are unreasonable
urban planning and uncoordinated flood management systems. The emergence of excess
runoff is caused by short-term intense rainfall that exceeds the capacity of the drainage
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system [5,6], which reflects the deep relationship between flood disasters and geographical,
social and other factors. Studies reveal that urban waterlogging is mainly attributable to
dual aspects [7], including (1) a natural perspective: global warming indirectly increases
the probability of urban rainstorms, and (2) a social standpoint: it reflects the impact
on urbanization and the urban water cycle. There are many approaches that have been
developed for the evaluation of pluvial flooding. The related research [8] mainly revolves
around the above two aspects, including six factors, such as meteorological factors and
urbanization factors. Additionally, Elmer, F. et al. [9] showed that the increase in direct
flood damage observed over the last decades may have been caused by changes in the
meteorological drivers of floods, or by socioeconomic development. At the same time,
varieties of urban waterlogging caused by climate change have a significant influence on
economic growth worldwide [10]. Economic factors are not only one of the causes of urban
floods, but also passively affected by the occurrence of disasters. So, the forecasting task
for urban development in flood-prone areas will be further complicated because of the
interaction between the two factors [11]. Basically, the most general type of forecasting
method is based on GIS and remote sensing (RS) technology to draw flood maps [12–20].
The flood disasters are monitored based on the information from different RS platforms
and bands, and the possibility of applying composite information to monitor potential
flooding is analyzed. The disadvantage of this method is that the investment in building
and maintaining a platform is heavier than that in the theoretical research method. Another
approach is a comprehensive weighting method [21–24] that can more comprehensively
solve the problem by constructing an index system. However, there is no fixed system;
if the indicators of different zoning systems vary, there will be extreme contradictions
between the results of the risk assessment and the conclusions drawn. Research studies
have reportedly evaluated the flood defense capacity of a specific area [25] by using a
combination of the entropy weight method and the analytic hierarchy process (AHP)
method [26–30] or the individual TOPSIS method [31]. As a hierarchical multi-objective
comprehensive evaluation method, AHP plays a good evaluation role when the evaluated
object’s attributes are difficult to quantify. However, it is incredibly subjective to rely on the
weight of expert scoring. The problem is that there are too many decision-making layers for
evaluation, and the gap between the judgment matrix and the consensus matrix is too large
to use AHP. This is well solved by TOPSIS. The weight is wholly derived from the data,
and the objectivity is better than that of AHP. However, the degree of data dependence is
deep, and some of the indicators are not always adaptable to the information, which will
harm the model’s accuracy.

Various research studies have been carried out by scientists in other parts of the
world to approach the topic. Zhengzhou, a city in southern China, was selected as the
study area by Lin, Lin et al. to build a flood-susceptibility map, which was generated by
using GIS spatial analysis tools and the analytic hierarchy process method [32]. Wang,
Yamei et al. used a semi-quantitative model and fuzzy analytic hierarchy process (FAHP)
weighting approach to assessing flood risk in the Dongting Lake region of Hunan Province,
which is in central China [33]. The results of this article were compared with the above
two articles, expanding the study area. Additionally, some articles published by Chun,
Xiang et al. [34–37] combined the theoretical method of analysis with actual flood control
capacity evaluations, and analyzed the relevant influencing factors. They presented relevant
theoretical frameworks, but many lacked accurate data support, were not experimentally
validated, and could only be used as theoretical references.

This study presents a regional flood defense capacity evaluation model, called MADM-
GIS, to facilitate the development of flood mitigation strategies and better flood control. It is
the first attempt to treat all regions of China as the research area in the field and over a time
range that is more extended than other papers for a more comprehensive study. According
to a survey of the existing literature, a richer indicator evaluation system than that of
Shuqi, Wu et al. [38,39] was created, and the single indicator problem in the traditional
2D-TOPSIS was avoided by using the improved 3D-TOPSIS method in this paper [40]. The



Entropy 2022, 24, 772 3 of 21

entropy weight method was also creatively combined with multiple spatial analysis tools
in the ArcGIS platform [41–43] to evaluate the flood control capability comprehensively
and realize the visualization of data. The ROC curve [44] was firstly used to test the flood
defense capability evaluation model, and the Taylor diagram [45–47] was innovatively
applied to test the degree of representation of the nine indicators. The obtained verification
results were satisfactory.

2. Study Area and Data Resources
2.1. Study Area

China is hit by heavy precipitation and flood disasters almost every year, so this
paper targets the whole of China as the research area for the first time in the flood defense
capability assessment. China’s longitude ranges from 73◦33′ E to 135◦05′ E, and its latitude
ranges from 3◦51′ N to 53◦33′ N. The terrain is high in the west and low in the east,
forming three steps from west to east. The land area is about 9.6 million square kilometers,
of which mountains, plateaus and hills account for about 67%. At present, China has
34 provincial-level administrative regions, including 23 provinces, 5 autonomous territories,
4 municipalities directly under the Central Government, and 2 particular administrative
regions. Due to the lack of data on Hong Kong, Macau and Taiwan, this article will not
discuss them.

China’s climate is complex and diverse, spanning five climatic zones from south to
north. According to the 2020 “China Climate Bulletin”, a total of 37 nationwide regional
rainstorms occurred in 2020, and the annual number of rainstorm days since 1961 was
second only to 2016. The Yangtze River is the longest in Asia, and the Yellow River
is the second longest river in China. In the summer of 2020, they received the highest
precipitation since 1961, while the second-highest was recorded in the Huaihe River and
Lake Taihu during the same period. In 2020, the country’s total annual precipitation
resources measured 6592.65 billion cubic meters, 616.33 billion more than average.

2.2. Data Resources

Among the evaluation indicators related to flood defense capability that were selected
in this paper, the regional green area, the population density, the number of medical
institutions, GDP, and related data on the flood control area were obtained from the annual
data for each province in China’s National Statistical Yearbook.

DEM, the spatial resolution of the precipitation intensity data, is 1:1,000,000 from
the National Basic Geographic Information Center in China. The fragmented data were
implemented in accordance with the GB/T 13989-2012 “National Basic Scale Topographic
Map Framing and Numbering”. The space storage unit was 6◦ (longitude difference) × 4◦

(latitude difference). The slope data was obtained by surface analysis in the spatial analysis
tool of ArcGIS based on DEM data. The main river data’s spatial resolution was 1:4,000,000,
which came from the National Basic Geographic Information System Vector Data. It needed
to be converted into raster format by using the conversion tool in ArcGIS. The raster data
on river network density could be obtained through the line density analysis in the spatial
analysis tool. They were converted into a scale of 1:1,000,000 through the resampling
extension module in ArcGIS to ensure that the raster calculation was performed based on
the same spatial resolution. Otherwise, the subsequent algebraic calculation of raster data
would be meaningless. The objective flood data in the final inspection process were from
the Global Disaster Data Platform. The return period for a general flood is 10 years; for a
large flood, 10–20 years; and for a major flood, 20–50 years. Thus, in this paper, we selected
the data for various indicators in China from 2001 to 2020. Abbreviations for every Chinese
region are shown in Table 1.
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Table 1. Abbreviations for every Chinese region.

Number Area Name Abbreviation Number Area Name Abbreviation

0 Heilongjiang HL 16 Guangxi GX
1 Xinjiang XJ 17 Guangdong GD
2 Shanxi SX 18 Hainan HI
3 Ningxia NX 19 Jilin JL
4 Tibet XZ 20 Liaoning LN
5 Shandong SD 21 Tianjin TJ
6 Henan HA 22 Qinghai QH
7 Jiangsu JS 23 Gansu GS
8 Anhui AH 24 Shaanxi SN
9 Hubei HB 25 Inner Mongolia NM

10 Zhejiang ZJ 26 Chongqing CQ
11 Jiangxi JX 27 Hebei HE
12 Hunan HN 28 Shanghai SH
13 Yunnan YN 29 Beijing BJ
14 Guizhou GZ 33 Sichuan SC
15 Fujian FJ

3. Methodology
3.1. Analysis Framework

The new flood control capability analysis framework is mainly divided into four parts.
The detailed content will be introduced in terms of the following points:

(1) Data collection and processing;
(2) Flood control capability evaluation index system;
(3) Flood control capability evaluation and calculation;
(4) Model validation.

There is a progressive relationship between the above four parts, forming a complete
evaluation system. As long as the relevant required data are input, a systematic evaluation
of the flood control capacity of any region can be realized. At the same time, the corre-
sponding parameters can be collectively analyzed and adjusted according to the specific
situation, and the comparative experiments can be carried out.

Every five years is regarded as one research period; the 20 years span was divided
into a total of four periods: 2001–2005, 2006–1010, 2011–2015, and 2016–2020. Each stage
generated an evaluation map, in line with the speed of the strategic policy of China’s
five-year plan and social development. Then, this paper compared the changes in flood
sensitivity indicators in each period to profoundly and systematically explore the impact of
each indicator on the flood defense capabilities in various regions. It was shown a brief
overview of the article writing process by Figure 1.
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3.2. Flood Control Capability Evaluation Index System

Appropriate parameter indicators play a decisive role in accurately assessing the scale
of floods and implementing universal defense measures. Based on a reading of the existing
literature [48,49], this paper divided the indicators into four aspects:

FCS = f (OIF, SPF, FMP, FHD) (1)

where FCS denotes the evaluation results of the MADM-GIS model regarding flood defense
capability. OIF refers to the region’s geographical and meteorological conditions and other
natural environmental aspects that can tolerate rainstorms and floods and maintain a stable
state; it can reflect the macro self-regulation ability of the natural environment, thereby
reducing the frequency of extreme disasters. SPF refers to the ability of humans to forecast,
prevent and defend against the disasters; it reflects the nature of the ability of the Chinese
government and relevant departments in various regions to respond to flood disasters
promptly, protect the safety of people’s lives and their properties across the country, and
minimize the loss.FMP refers to the ability of human beings to participate in economic,
medical, social, and other activities to reduce the negative impact of disasters under the
condition that natural conditions cannot change. FHD refers to the nature of the intensity
of the direct factors leading to floods. Nine indicators, including DEM, slope, precipitation
intensity, gross regional product, number of medical institutions, urban population density,
urban green space area, and flood control area [50,51], were extracted from four aspects to
form a flood defense capacity evaluation system. Table 2 is the list of factor abbreviations
and acronyms.
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Table 2. List of factor abbreviations and acronyms.

Abbreviation Parameters Abbreviation Parameters

OIF The objective and inclusive factor U Urban green area
C Channel density

SPF The subjective preventive factor W Waterlogging prevention
area

P Population density

FMP The flood mitigation prominence M Medical institution
G GDP

FHD The flood hazard degree
R Rainfall intensity
D DEM
S Slope

3.3. MADM-GIS Model

Multi-criteria decision-making (MCDM) is a decision to choose among a finite (infinite)
set of conflicting and incommensurable schemes. Its origins [52] can be traced back to
the concept of Pareto optimization (1896), and it was brought into the decision-making
field as a normative decision-making method in the 1960s, represented by the research on
objective planning by Charnes and Cooper. MCDM methods are based on the principle
of proposing the best solution among the schemes under certain criteria, so they have
been used more widely recently [53]. There was a Monte Carlo Simulation used in a
multicriteria decision model [54] aiming to prioritize flood risks in urban areas under
climate effects. They also have been applied in many specific fields to solve some selection
and ranking problems, such as information technology [55], design and development [56],
civil engineering and management [57], renewable energy [58] and medical diagnosis [59].
There are more than 100 MCDM methods, and each of them has its own performance
capacity and characteristics, which are often associated with the model’s computational
process and methodology.

MCDM is mainly divided into two categories: multi-attribute decision-making (MADM)
and multiple objective decision-making (MODM), according to whether the decision-
making scheme is limited or unlimited. The MCDM model has been used to evaluate flood
defense capacity in the existing literature [33,60]. Compared with MADM, the scope of
application of MCDM is broader, but inaccurate evaluation results are usually generated.
The difficulty associated with ineffective flood control capability evaluation caused by an
extensive data range processed by MCDM has been solved.

In this paper, the evaluation method for the index system was innovatively combined
with the flood control capability evaluation; the two methods, including the TOPSIS method
and the entropy weight method under MADM, were chosen, and MATLAB was utilized for
the calculations. GIS was used to generate the distribution map of the corresponding period
and location of each indicator proposed by the MADM-GIS model. As it is the first of its
kind built in this field, with efficient and accurate assessment simultaneously completed,
this model represents a relatively new attempt with a certain degree of practical value.
Figure 2 is the MCDM logic diagram that shows the classification and content of MCDM.
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3.3.1. The Entropy Weight Method

The entropy weight method is an objective weighting method based on the degree of
variation in the index. The lower the amount of information reflected by the index, the lower
the corresponding weight will be. Table 3 is the key math symbols and their meanings.

Table 3. Key math symbols and their meanings.

Symbol Description

i The number of evaluation objects
j The number of evaluation indicators
P The forward matrix
aij The elements in a forward matrix
F Probability matrix
Fij Corresponding probability of aij
Sij Information entropy
mij Information utility value
Wj Weight of each indicator

A positive matrix is established according to the data, which is convenient for subse-
quent data preprocessing:

P =

 a1,1 · · · a1,9
...

. . .
...

a31,1 · · · a31,1

 (2)

The most common standardization method, known as the dispersion standardiza-
tion method, was used in this paper to transform the original data linearly. The results
were mapped to the [0, 1] interval, eliminating the interference of different units and
incomparability between indicators.

Z̃ij =
aij −min

{
a1j, a2j . . . anj

}
max

{
a1j, a2j . . . anj

}
−min

{
a1j, a2j . . . anj

} (3)

The proportion of the i-th sample under the j-th index is calculated, and it is regarded
as the probability calculation probability matrix F used in the relative entropy calculation,
where the calculation formula of Fij is:

Fij =
aij

∑n
i=1 aij

(4)

The greater the information entropy of the event is, the smaller the amount of existing
information will be. Furthermore, the amount of information that can be supplemented
will be larger.
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For the j-th index, the calculation formula of its information entropy is:

sij = −
1

ln n

31

∑
i=1

Fij log(Fij) (5)

The information utility value is defined as:

mj = 1− sj (6)

The weight of each indicator can be obtained by normalizing the information utility value:

Wj =
mj

∑m
j=1 mj

(7)

In the process of solving the MADM problem, the weight of the attribute is used
to reflect the relative importance of the attribute, which plays a pivotal role. In this
paper, the entropy weight method was used to calculate the respective weights of the nine
indicators on the impact of flood defense capacity. Figure 3 shows that the weight of P
changed abruptly from the first period to the second period and was relatively stable in the
following 15 years, following a downward trend. However, the process of change in M and
P was precisely the opposite. There was a sudden increase in the transition from the first
five years to the second, and then there was a slight increase. Only the weight of urban
green space decreased gradually and uniformly over time; the corresponding graphs of the
six indicators W, D, C, S, R, and G in the radar chart all transitioned from inside to outside,
which gradually increased over time.
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3.3.2. 3D-TOPSIS Model

The traditional TOPSIS is based on two-dimensional indicators. Only a score for
each indicator individually can be obtained, which is inconvenient for visualization. The
two-dimensional model was improved to three-dimensional in this paper, and the total
score for flood defense capacity in every region was obtained by superimposition. Table 4
is the key math symbols and their meanings.
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Table 4. Key math symbols and their meanings.

Symbol Description
.

qij Indicator raw data
qij The index data after forwarding
Tij Normalized indicator data
Z Weighted normalization matrix

ωij Indicator corresponding weight
Q+ Maximum value in qij
Q− Minimum value in qij
Di

+ The distance between the evaluation object and Q+

Di
− The distance between the evaluation object and Q−

Si Relative proximity

The negative indicators need to be converted into positive indicators, including R, D,
S, C, and the transformed data matrix is still recorded as P.

qij = qmax −
.

qij (8)

The original data should be normalized to avoid large network prediction errors due
to the large magnitude difference between input and output data:

Tij =
qij√

∑n
i=1 qij

2
(9)

Based on the weights obtained above, a standardization matrix is constructed:

Z =

 q1 1·ω1 · · · q1 9·ω1
...

. . .
...

q31 1·ω31 · · · q31 9·ω31

 (10)

The maximum and minimum values are defined as:

Q+ = (max{a1 1, a2 1 . . . an 1}, max{a1 2, a2 2 . . . an 2}, . . . , max{a1 9, a2 9 . . . an 9})
Q− = (min{a1 1, a2 1 . . . an 1}, min{a1 2, a2 2 . . . an 2}, . . . , min{a1 9, a2 9 . . . an 9})#

(11)

The distances between the maximum and minimum values of the evaluation object
i-th (i = 1, 2, . . . , 31) are respectively defined as:

Di
+ =

√
m
∑

j=1
(Qj

+ − qij)
2

Di
− =

√
m
∑

j=1
(Qj
− − qij)

2#
(12)

3.4. Taylor Diagram

The Taylor plots in the existing literature were used to test extreme air temperature,
the meteorological conditions in different models, or the correlation analysis of correlation
coefficients (CC). It is a new type of ternary diagram that was firstly introduced in the
studied field, which is about the evaluation of flood defense capability. In the figure, the
model is represented by scattering points, the correlation coefficient (CC) is shown by the
radial line, the standard deviation (SD) is represented by the horizontal and vertical axes,
and the root mean square error (RMSE) is indicated by the dotted line. The CC refers to
similarity between the simulation results of different indicators and the observed values.
The differences between the spatial uniformity of simulation results of the models and the
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observations are respectively reflected by RMSE and SD. The smaller the SD is, the more
stable the model is.

The results are as follows. The SD is 0.2–0.4, which is in line with the characteristics
of the heterogeneous coverage of the nine indicators, and the points of data are clustered
around the mean to a small degree. The correlation between the nine indicators is weak,
which is shown by the CC as 0.1–0.9. The combination of the two axes shows that the
nine indicators are highly representative of the research problem, and the problem of
the high degree of index coincidence reducing the model’s accuracy can be solved. The
deviation between the observed and actual values measured by the RMSE is 0.2–0.5,
which indicates that the departure of the data in this paper was slight and the applicable
standard was met. The test results show that the established MADM-GIS model and the
weights corresponding to the indicators are close to the research problem and have practical
significance and scientific and objective persuasion. Figure 4 is the Taylor plot of nine
indicators from 2001 to 2020.
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4. Results and Discussion
4.1. Analysis and Validation

The time interval of the data is from 2001 to 2020, which is divided into four stages,
showing the trend of influencing factors over time in detail. Nine indicators extracted from
four aspects were shown in Table 1; from the perspective of time series, they are divided
into two parts including six indicators from a timing perspective that change significantly
with time U, W, P, R, G, M and D, S, C that almost don’t change. The data is imported into
ArcGIS, and divided into 8 categories by the natural breakpoint method. The higher the
level of the region is, the better the performance of the corresponding index is, and the
corresponding province shows a darker color.

4.2. 3D-TOPSIS Model Parameter Analysis
4.2.1. Urban Green Area

Figure 5 is the spatial-temporal distribution of urban green space in China. From
Figure 5a, the regional differences in urban green space area from 2001 to 2005 are the
most obvious. The urban green areas of the regions such as Sichuan, Guangdong, Jiangsu,
Shanghai are outstanding in China. Comparison of the four maps shows that the growth
rate of the value in Qinghai and Tibet was relatively slow because western China had
a higher altitude, which is not conducive to vegetation growth. From Figure 5a–d, the
differences of the regions were gradually decreasing. The value in Inner Mongolia and
northeast China increased significantly and then tend to be stable, which indicates that the
green engineering in China has been better developed with significant results under the
advancement of China’s five-year plan.
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4.2.2. Waterlogging Prevention Area

The area of waterlogging removal refers to an area where waterlogging-prone farm-
land is rescued from flooding due to the construction of waterlogging control projects or
other water conservancy facilities, and the standard is reached more than once in three
years. It reflects the protection and utilization of water resources in China. Figure 6 is the
spatial-temporal distribution of waterlogging prevention and control areas in China. From
Figure 6a, the flood defense in Inner Mongolia, Tibet, Sichuan and Shandong increased
significantly from 2001 to 2005. In Figure 6b, flood defense in southeastern China continued
to increase within a small range. The work performed by Guangdong, Shandong, Henan,
and Sichuan was excellent. To sum up, as shown in Figure 6d, the efficiency of releasing
policies for flood defense and disaster reduction across the country gradually accelerated.
The area of waterlogging prevention reached a balanced level, and rational water resources
management was comprehensively promoted.
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4.2.3. Population Density

Urban population density refers to the number of people per unit area. Figure 7
is the spatial-temporal distribution of population density in China. As vividly shown
in Figure 7a, owing to the inferior backdrop of development, the population density in
Xinjiang, Heilongjiang, Inner Mongolia, Sichuan, Yunnan and Guangxi is very sparse. It
shows that the period of 2006–2010 was at the peak of regional differences in Figure 7b,c
with the implementation of the five-year plan. In Figure 7b, population density in Xinjiang
and Heilongjiang increased significantly, and also increased widely in southern China.
With the continuous development of China’s economy and society, the population problem
had been solved, and the density of the urban population was increasing nationwide. The
regional differences in terms of population density across the country were becoming
increasingly slim, which is graphically depicted by Figure 7d. Due to the inception of the
two-child policy, the population density across the country has basically become saturated.
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4.2.4. Medical Institutions

The number of medical institutions refers to the total number of health institutions
established in accordance with legal procedures that engage in disease diagnosis and
treatment activities. Figure 8 is the spatial-temporal changes in the number of medical
institutions in China from 2001 to 2020. It represents the number of medical and health
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resources and reflects the ability of a region to provide medical services when floods come.
The higher the flood control ability score climbs, the better the medical configuration is.
There will be more medical resources that can be used to ensure the safety of people’s
lives and property. During 2001–2005, Sichuan, Hunan, and Guangdong’s numbers of
medical institutions were among the top three nationwide. In the second period, Beijing,
Hebei, and Henan performed more outstandingly in this regard, and the number of medical
institutions increased significantly.
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4.2.5. GDP

Gross domestic product (GDP) is the core indicator of national economic accounting,
which can measure the financial status and development level of a country or region
and represents the financial ability to deal with floods. Figure 9 is the chart of temporal
and spatial changes in China’s GDP. The higher GDP is, the more investment that can
be allocated to flood recovery. Meanwhile, the damage caused by a flood can be quickly
mitigated to a great extent. From 2001 to2005, Jiangsu, Shandong, Guangdong, Zhejiang,
and Shanghai were in the leading position in China. Due to the impact of China’s five-
year plan on the economy, economic development improved steadily in Beijing, Hebei,
Henan and Sichuan from 2006 to 2010. The northern regions also responded to the call,
which made a big difference. From the graph, the southern region’s GDP improved in an
all-around way. People’s living standards and social development levels were promoted
under the economic drive.
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4.2.6. Rainfall Intensity

Rainfall intensity refers to the amount of rainfall in a unit of time. Figure 10 is the
spatial-temporal distribution of rainfall intensity in China from 2001 to 2020. It can be
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seen from the four figures that the spatial distribution of rainfall intensity in China is
strong in the south and weak in the north, and there is an apparent planar aggregation
phenomenon in the rainfall in the south. In Figure 10a, the rainfall intensity was the
strongest in the four periods. The rainfall intensity was lower than the previous five years
in Figure 10b. Yunnan, Sichuan, Guangxi, Hunan, Jiangxi and Chongqing are prominent
gathering centers. The transition process from the four figures shows that the aggregation
phenomenon was becoming more and more apparent, and a point-like aggregation can
be seen in Figure 10c. Hunan, Guangxi, Jiangxi, Guangdong, and Fujian were the main
centers of the point aggregation phenomenon. Close attention to each gathering center
should be encouraged, and the management of extreme precipitation events should be
strengthened. The efficiency of monitoring and forecasting needs to be improved. The
government should provide exceptional policy support, and the surrounding provinces
should also provide assistance.
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4.2.7. DEM, Slope and Drainage Density

The steeper the slope is, the more serious the soil erosion phenomenon will be. The
surface runoff and infiltration will be affected. Floods will be caused by the surface runoff
to a certain extent, and the DEM determines the slope. Due to the regulation and storage of
the basin, the floods are in the form of fluctuations. According to the law of conservation
of energy, the higher the DEM is, the greater the potential energy of the water flow. In
the process of downward flow, part of the potential energy of the flood is converted into
kinetic energy, and the flow velocity is accelerated, increasing the risk that the resulting
severe shock will cause harm downstream. Figure 11 is the spatial distribution map of
DEM. Figure 12 is the spatial distribution map of slope. Figure 13 is the spatial distribution
map of major river networks.
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4.3. MADM-GIS Model
4.3.1. Analysis of Results of Entropy Weight Method

The results show that the weight of P changed abruptly from the first period to the
second period and was relatively stable in the following 15 years, showing a downward
trend. However, the process of change in M and P is precisely the opposite. There is a
sudden increase in the transition from the first five years to the second, and then there is a
slight increase. Only the weight of urban green space decreases gradually and uniformly
over time; the corresponding graphs of the six indicators W, D, C, S, R, and G in the radar
chart all transition from inside to outside, which gradually increases over time.
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4.3.2. Analysis of Results of D-TOPSIS Model

Si is defined as the relative proximity, and the calculation formula is:

Si =
Di
−

Di
+ + Di

− (13)

The larger the obtained evaluation matrix Si is, the greater the degree of closeness to
the optimal solution, and the flood defense capability of the area is more robust. When
Si = 0, it is the lowest flood control capability; Si = 1 is the highest. Finally, sort according
to the size of the proximity. The larger the value is, the closer the evaluation object to the
optimal solution is.

The weights in 2001–2005 are taken as an example:

OIF =
2
∑

i=1
xiωi = 0.15063×U + 0.03942× C

FMP =
2
∑

i=1
xiωi = 0.06064×M + 0.09591× G

SPF =
2
∑

i=1
xiωi = 0.21922×W + 0.11295× P

FHD =
2
∑

i=1
xiωi = 0.07479× R + 0.17401× D + 0.17143× S

FCS = OIF + FMP + SPF + FHD

(14)

To obtain the flood defense capacity index for each period, the linear weighted sum
method (LWSM) was used to perform statistical processing on the data. The LWSM is an
evaluation function method, which can solve multi-objective programming problems by
assigning corresponding weight coefficients to each objective and then optimizing its linear
combination. Each basic indicator was multiplied by the corresponding weight and then
summed up. Multiple base metrics were converted into a single numerical index that was
regarded as the final score. Through the value of the final score, it was possible to quantify
and compare the flood defense capability of each city.

From Figure 14, it can be seen that the evaluation scores and absolute values of the
direct economic losses in the 31 provinces show roughly the same trend. As is shown, the
results of the model solution are in line with objective reality, which verifies the validity of
the model. However, the evaluation score does not match the absolute value of the direct
economic loss in Sichuan, Shaanxi, Jiangxi and Hunan. It was found that the occurrence
of this phenomenon is strongly related with social factors outside the model that did not
belong within the scope of the research through actual investigation. There was no effect
on the analysis result, namely, that the higher the score of the MADM-GIS model is, the
lower the value of the direct loss rate caused by the flood is. The evaluation results for
regional flood defense capacity are only related to the actual data, and the government staff
in the relevant regions need to formulate policies and implement various adjustments.
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Figure 14. Combination graph of the final score and direct loss.

Figure 15a is about the flood defense capability assessment scores in China obtained
with the MADM-GIS model. Figure 15b is about the direct losses that are caused by floods
and is based on actual data in China. The stronger the flood defense capability of a region
is, the less the direct loss is, which is in line with objective reality. The two variables
of flood defense capacity and direct loss in Xinjiang, Gansu, and Inner Mongolia are all
at the middle level in China. There is little difference in the comparison of two figures,
whose colors are roughly the same. Tibet, Yunnan, Guizhou, Chongqing, and Guangxi are
mainly located in western China, where flood defense capacity is lower, and direct losses
are heavier than in other regions. The eastern regions, including Hebei, Henan, Jiangsu,
Shanghai, Guangdong, and Zhejiang, played an exemplary role with higher evaluation
scores in coping with severe floods.
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4.4. MADM-GIS Model Validation

Analysis of ROC Curve Results
Figure 16 is the ROC curve of the flood control capacity score to the MADM-GIS

model. The sensitivity and specificity of variables are reflected by the ROC curve [61,62],
and intuitive comparison of different test methods is provided under the same scale. It was
drawn by SPSS software to test the accuracy and feasibility of the model. There are two
advantages of this method. First, there is a broader application range to indirectly analyze
various types of raw data. Secondly, the systematic analysis of multiple covariates can be
carried out, which is more advanced than the ROC curve in analyzing univariate raw data
described in the current literature [50,51,63].
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The closer the inflection point is to the upper left corner of the figure, the greater the
diagnostic value of the model is. The accuracy of test objects was indicated by the AUC
of 0.7 to 0.9; the closer the AUC is to 1, the better the diagnostic effect of the model. As
is shown, the AUC was 70%, and the accuracy and feasibility of the MADM-GIS model
were meaningful.

5. Conclusions

MADM-GIS, a flood defense capability evaluation model with strong inclusiveness
and adaptability, was highlighted in this paper. It is the first attempt to evaluate the flood
defense capability in every region of China, and the problem of China’s poor response to
flooding disasters in the past was resolved. First, the data visualization platform based
on ArcGIS was assisted by MATLAB and SPSS software. It was established to display
the time-space pattern of the calculation results of the indicators and analyze the process
of change in the nine indicators during the past 20 years. Combined with the entropy
weight method and the improved 3D-TOPSIS method, the defense capability scores of
various regions were obtained, and the corresponding spatiotemporal distribution map
was generated. Then, the ROC curve was utilized as the model to test the method. As
to the AUC = 70%, it was a satisfactory result, and the Taylor diagram was combined to
intuitively represent enough adaptation of each index. Finally, the evaluation ability under
different index modes was compared, and the usability and accuracy of the MADM-GIS
model were verified.

The results of analysis show that the main influencing factors in the evaluation of
flood defense capacity were W, U, and D, and that their weights hardly changed with
time, which indicated they were the top three of the nine indicators. From 2001 to 2020,
the differences in urban green space between regions were gradually narrowing, and
there were upstanding effects in waterlogging control displayed in Guangdong, Shandong,
Henan, and Sichuan. GDP in the southern region increased significantly, and the capacity
of medical resources support for rainstorm and flood disasters was strengthened. From
2016 to 2020, the regional differences in overall population density across the country
gradually decreased, and the population density was nearly saturated. The most obvious
point-like aggregation phenomenon in regional rainfall intensity was shown from 2011 to
2015, and Hunan, Guangxi, Jiangxi, Guangdong, and Fujian were mainly at the center of the
point-like aggregation. The final evaluation results show that the flood control capacity of
Tibet, Yunnan, Guizhou, Chongqing and Guangxi needs to be improved significantly, and
there is a plenty of room for improvement. Hebei, Henan, Jiangsu, Shanghai, Guangdong,
and Zhejiang are in the leading positions in China.
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The spatial situation for flood defense capabilities in China was described in this
paper and will contribute to enriching the system for evaluation of urban flood control
capabilities. An objective and scientific reference plan was provided for the measures taken
by the Ministry of Water Resources and related departments to deal with flood control and
disaster mitigation.

Since the research scope covered the whole area of China, only the main factors were
selected for the evaluation indicators to prevent interference from secondary factors with
the research conclusions of the model. Therefore, there were regional limitations in the
promotion and application of the model. For the evaluation of flood defense capacity in
smaller areas, the application of the model needs to be combined with the actual situation
in each region to obtain more accurate and reliable research results with detailed evalua-
tion indicators. This paper selected the data from 2001 to 2020, which were acquired in
combination with data on China’s political development and economic development. For
more targeted research, the time range can be expanded and the database can be enriched
to analyze more factors that contribute to the results. More indicators were selected in
this paper than for ordinary evaluation models; hence, there was no detailed analysis of
the sensitivity between indicators. Follow-up data and further experiments are needed to
enrich the contents of the model and improve its efficiency.

Author Contributions: Conceptualization, W.Y.; Data curation, X.L.; Software, X.L.; Validation,
A.Z.; Visualization, C.C.; Writing—review & editing, W.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: http://www.stats.gov.cn/tjsj/ndsj/, https://www.gddat.cn/newGlobalWeb/#/
chinaDisasterDatabase, https://www.resdc.cn/ (accessed on 12 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Peng, L.; Ma, Y.; Wei, R.; He, Y.; Mu, Z.; Li, X.; Liu, C. Using GIS Grid Dataset to Simulate and Identify Flooding Risks in Irrigation

Areas in Yarkant in Xinjiang. J. Irrig. Drain. Eng. 2020, 39, 124–131.
2. Feng, K.; Fan, L.; Yifei, W.; Jian, F.; Lili, L. Spatial Relationship between Flooding Frequency and Climate Change based on

Climate Change Regionalization in China from 1961 to 2010. J. Catastr. 2017, 32, 35–42. [CrossRef]
3. Lyu, H.-M.; Wang, G.-F.; Shen, J.; Lu, L.-H.; Wang, G.-Q.; Wang, G.-F.; Shen, J.; Lu, L.-H.; Wang, G.-Q. Analysis and GIS Mapping

of Flooding Hazards on 10 May 2016, Guangzhou, China. Water 2016, 8, 447. [CrossRef]
4. Li, S.; Du, J.; Zhang, Z.; Xin, H. Risk regionalization for flood hazard in southern Shaanxi Province based on grey target model

and GIS. Yangtze River 2021, 52, 17–21.
5. Abebe, Y.; Kabir, G.; Tesfamariam, S.; Kabir, G.; Tesfamariam, S. Assessing urban areas vulnerability to pluvial flooding using GIS

applications and Bayesian Belief Network model. J. Clean. Prod. 2018, 174, 1629–1641. [CrossRef]
6. Miller, J.D.; Hutchins, M.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water

quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [CrossRef]
7. Zhang, D.; Yan, D.; Wang, Y.; Lu, F.; Liu, S. Research Progress on Risk Assessment and Integrated Strategies for Urban Pluvial

Flooding. J. Catastr. 2014, 29, 144–149. [CrossRef]
8. Ning, Y.-F.; Dong, W.-Y.; Lin, L.-S.; Zhang, Q.; Dong, W.-Y.; Lin, L.-S.; Zhang, Q. Analyzing the causes of urban waterlogging and

sponge city technology in China. IOP Conf. Ser. Earth Environ. Sci. 2017, 59, 12047. [CrossRef]
9. Elmer, F.; Hoymann, J.; Düthmann, D.; Vorogushyn, S.; Kreibich, H.; Hoymann, J.; Düthmann, D.; Vorogushyn, S.; Kreibich, H.

Drivers of flood risk change in residential areas. Nat. Hazards Earth Syst. Sci. 2012, 12, 1641–1657. [CrossRef]
10. Lyu, H.M.; Shen, S.L.; Sun, W.J.; Cheng, W.C. Discussion on Sponge City Construction under the Circumstance of Urban

Waterlogging. In Proceedings of the International Conference on Transportation Infrastructure and Materials, Qingdao, China,
9–12 June 2017.

11. Mobilia, M.; Califano, F.; Longobardi, A.; Califano, F.; Longobardi, A. Analysis of Rainfall Events Driving MDHEs Occurred in
the Solofrana River Basin, Southern Italy. Procedia Eng. 2015, 119, 1139–1146. [CrossRef]

12. Feng, B.; Wang, J.; Zhang, Y.; Hall, B.; Zeng, C.; Wang, J.; Zhang, Y.; Hall, B.; Zeng, C. Urban flood hazard mapping using a
hydraulic–GIS combined model. Nat. Hazards 2020, 100, 1089–1104. [CrossRef]

http://www.stats.gov.cn/tjsj/ndsj/
https://www.gddat.cn/newGlobalWeb/#/chinaDisasterDatabase
https://www.gddat.cn/newGlobalWeb/#/chinaDisasterDatabase
https://www.resdc.cn/
http://doi.org/10.3969/j.issn.1000-811X.2017.04.007
http://doi.org/10.3390/w8100447
http://doi.org/10.1016/j.jclepro.2017.11.066
http://doi.org/10.1016/j.ejrh.2017.06.006
http://doi.org/10.3969/j.issn.1000-811X.2014.01.026
http://doi.org/10.1088/1755-1315/59/1/012047
http://doi.org/10.5194/nhess-12-1641-2012
http://doi.org/10.1016/j.proeng.2015.08.960
http://doi.org/10.1007/s11069-019-03850-7


Entropy 2022, 24, 772 20 of 21

13. Hong, H.; Panahi, M.; Shirzadi, A.; Ma, T.; Liu, J.; Zhu, A.-X.; Chen, W.; Kougias, I.; Kazakis, N.; Panahi, M.; et al. Flood suscep-
tibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential
evolution. Sci. Total Environ. 2018, 621, 1124–1141. [CrossRef] [PubMed]

14. Lu, C.; Meichen, F.; Li, W. Comprehensive flood risk assessment based on RS and GlS in a county arca. South-to-North Water
Transf. Water Sci. Technol. 2019, 17, 37–44.

15. Malczewski, J. Local Weighted Linear Combination. Trans. GIS 2011, 15, 439–455. [CrossRef]
16. Peng, W.; Hongwei, D. Study on Flood Hazard Risk Zoning Based on GIS and Logistic Regression Model. Adv. Earth Sci. 2020, 35,

1064–1072.
17. Wang, Q.; Zeng, J.; Xin, R. Risk Identification of Storm and Flood Disaster Based on GIS Multi-criteria Evaluation and BP Neural

Network: A Case Study on the Min delta. J. Catastr. 2021, 36, 192–200. [CrossRef]
18. Xu, X.; Zhuang, D. Automated extraction of drainages in china based on dem in gis environment. Resour. Environ. Yangtze Basin

2004, 13, 343–348. [CrossRef]
19. Chen, X. The application of remote sensing and geographical information system (GIS) in flood damage analysis. J. Hydraul. Eng.

1997, 71–74.
20. Xu, Y.; Zhang, B.; Zhou, B.; Dong, S.; Yu, L.; Li, R. Projected Risk of Flooding Disaster in China Based on CMIP5 Mode. Adv. Clim.

Change Res. 2014, 10, 268–275.
21. Liu, H.; Qing, C.; Ni, Z. Risk Analysis of Flood Disaster in Guangxi Based on Combination of Combined Weight and ArcGIS.

J. Catastr. 2015, 30, 76–79.
22. Yang, W.; Xu, K.; Lian, J.; Bin, L.; Ma, C.; Xu, K.; Lian, J.; Bin, L.; Ma, C. Multiple flood vulnerability assessment approach based

on fuzzy comprehensive evaluation method and coordinated development degree model. J. Environ. Manag. 2018, 213, 440–450.
[CrossRef] [PubMed]

23. Wang, Y. The Risk Regionalization of Torrential Flood Disaster in Loess Plateau Region in Gansu Based on GIS and Comprehensive
Weight Method. China Rura. Water Hydropower 2018, 118–122. [CrossRef]

24. Xu, Y.; Xu, X.; Ma, N. Assessment and regionalization of flood disaster risk Shaanxi Province at the county scale. Arid Land Geogr.
2018, 41, 306–313.

25. Xu, N.Z.; Bai, W.R. Effects of flood and drought on development of agriculture and social economy in China. J. Catastr. 2002, 97,
57–62.

26. Das, S.; Gupta, A.; Gupta, A. Multi-criteria decision based geospatial mapping of flood susceptibility and temporal hydro-
geomorphic changes in the Subarnarekha basin, India. Geosci. Front. 2021, 12, 101206. [CrossRef]

27. Jiang, W.; Cheng, C.; Zhang, Y.; Zhao, H. Risk assessment of flood disasters in Zhejiang province based on GIS/AHP integration
method. Bull. Surv. Mapp. 2019, 2, 125–130.

28. Xiao, Y.; Yi, S.; Tang, Z. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering
spatial heterogeneity of risk preference. Sci. Total Environ. 2017, 599, 1034–1046. [CrossRef]

29. Zhan, X. Risk evaluation for flood disasters in the plain area based on gis. Resour. Environ. Yangtze Basin 2003, 12, 388–392.
30. Chen, X.; Han, R. An Analysis of the Influencing Factors of Flood Evolution in Haihe River Basin Based on Hydrologic

Regionalizations. China Rural Water Hydropower 2021, 69–77. [CrossRef]
31. Arabameri, A.; Rezaei, K.; Cerdà, A.; Conoscenti, C.; Kalantari, Z.; Rezaei, K.; Cerdà, A.; Conoscenti, C.; Kalantari, Z. A

comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Sci.
Total Environ. 2019, 660, 443–458. [CrossRef]

32. Lin, L.; Wu, Z.; Liang, Q.; Wu, Z.; Liang, Q. Urban flood susceptibility analysis using a GIS-based multi-criteria analysis
framework. Nat. Hazards 2019, 97, 455–475. [CrossRef]

33. Wang, Y.; Li, Z.; Tang, Z.; Zeng, G.; Li, Z.; Tang, Z.; Zeng, G. A GIS-Based Spatial Multi-Criteria Approach for Flood Risk
Assessment in the Dongting Lake Region, Hunan, Central China. Water Resour. Manag. 2011, 25, 3465–3484. [CrossRef]

34. Xiang, C.; Wang, Y.; Shi, G. Evaluation on Flood Control and Disaster Reduction in Hangjiahua Polder Area. J. Zhejiang Water
Conserv. Hydropower Coll. 2014, 26, 29–32.

35. Wu, S.; Zhao, W.; Wang, Z.; Cang, S.; Qu, X.; Wang, Y.; Li, S. Assessment and Zoning of Flood Disasters Risk Based on GIS: A
Case Study of Zhejiang Province. China Rural Water Hydropower 2020, 51–57.

36. Wang, X.; Bao, Z. Evaluation Method and its Application of Flood Control and Disaster Reduction Ability in Polder Areas. J. Irrig.
Drain. Eng. 2013, 32, 128–131.

37. Zhao, Y.; Tang, D.T.; Haung, X. Actual Urban Flood Control Capacity Evaluation Model Based on Energy Analysis. Yellow River
2017, 39, 29–31, +35.

38. Zhang, H.; Zhang, J.Q.; Han, J.S. GIS—Based assessment and zoning of flood/waterlogging disaster risk: A case study on middle
and lower reaches of Liaohe River. J. Nat. Disasters 2005, 14, 141–146.

39. Zhou, Q.; Xu, X.; Su, J. Application of GIS Geometric Analysis for Identification of Flood-prone Areas and Construction of Surface
Structure. China Water Wastewater 2018, 34, 114–117.

40. Liu, C.; Shang, S.; Zhao, Q.; Xie, H. Flood Resilience Assessment in Hunan Province Based on GIS and TOPSIS-PSR. Water Resour.
Power 2018, 36, 70–73.

http://doi.org/10.1016/j.scitotenv.2017.10.114
http://www.ncbi.nlm.nih.gov/pubmed/29074239
http://doi.org/10.1111/j.1467-9671.2011.01275.x
http://doi.org/10.1016/j.jcat.2021.05.007
http://doi.org/10.3969/j.issn.1004-8227.2004.04.009
http://doi.org/10.1016/j.jenvman.2018.02.085
http://www.ncbi.nlm.nih.gov/pubmed/29505999
http://doi.org/10.3969/j.issn.1007-2284.2018.08.024
http://doi.org/10.1016/j.gsf.2021.101206
http://doi.org/10.1016/j.scitotenv.2017.04.218
http://doi.org/10.3969/j.issn.1007-2284.2021.11.012
http://doi.org/10.1016/j.scitotenv.2019.01.021
http://doi.org/10.1007/s11069-019-03615-2
http://doi.org/10.1007/s11269-011-9866-2


Entropy 2022, 24, 772 21 of 21

41. Haq, M.; Akhtar, M.; Muhammad, S.; Paras, S.; Rahmatullah, J.; Akhtar, M.; Muhammad, S.; Paras, S.; Rahmatullah, J. Techniques
of Remote Sensing and GIS for flood monitoring and damage assessment: A case study of Sindh province, Pakistan. Egypt. J.
Remote Sens. Space Sci. 2012, 15, 135–141. [CrossRef]

42. Xu, Y.; Du, J.; Zhang, L.; Ge, X.; Peng, B.; Du, J.; Zhang, L.; Ge, X.; Peng, B. Research on system of flood disaster control and
reduction supported by gis in medium and small basins. Chin. Geogr. Sci. 2002, 12, 30–34. [CrossRef]

43. Zhao, G.; Pang, B.; Xu, Z.; Yue, J.; Tu, T.; Pang, B.; Xu, Z.; Yue, J.; Tu, T. Mapping flood susceptibility in mountainous areas on a
national scale in China. Sci. Total Environ. 2018, 615, 1133–1142. [CrossRef] [PubMed]

44. Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Tien Bui, D.; Pham, B.T.; Chapi, K.; et al. A
comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran.
Sci. Total Environ. 2018, 627, 744–755. [CrossRef] [PubMed]

45. Jiang, S.; Jiang, Z.; Li, W.; Shen, Y. Evaluation of the Extreme Temperature and Its Trend in China Simulated by CMIP5 Models.
Adv. Clim. Change Res. 2017, 13, 11–24.

46. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192.
[CrossRef]

47. Li, X.F.; Xu, C.C.; Li, L.; Luo, Y.; Yang, Q.; Yang, Y. Evaluation of air temperature of the typical river basin in desert area of
Northwest China by the CMIP5 models: A case of the Kaidu-Kongqi River Basin. Res. Sci. 2019, 41, 1141–1153.

48. Cao, L.; Li, J. Integrated risk assessment of flood disaster in Zhejiang Province based on RS and GIS. J. Nat. Disaster 2015, 24,
111–119.

49. Li, S. Risk Assessment and Zonation of Rainstorm and Flood Disasters in the Southeast Region of Inner Mongolia: A Case Study
of Tongliao. Meteorol. J. Inn. Mong. 2019, 23–28. [CrossRef]

50. Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A.; Moradi, E.; Golshan, M.; Adamowski, J.;
Sajedi-Hosseini, F.; et al. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification
and regression trees, and support vector machines. Sci. Total Environ. 2019, 651, 2087–2096. [CrossRef]

51. Mahmoud, S.H.; Gan, T.Y.; Gan, T.Y. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East.
J. Clean. Prod. 2018, 196, 216–229. [CrossRef]

52. Yang, M.; Li, J.; Guang, Y.; Zuo, J. Model building and accuracy analysis of domestic SW-LiDAR airborne integration system.
Sci. Surv. Mapp. 2014, 39, 9–12.
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