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Purpose. To analyze the effects of dosimetric parameters and clinical characteristics on overall survival (OS) by machine learning
algorithms. Methods and Materials. 128 patients with cervical cancer were treated with definitive pelvic radiotherapy with or
without chemotherapy followed by image-guided brachytherapy. 3e elastic-net models with integrating DVH parameters and
baseline clinical factors, only DVH parameters and only baseline clinical factors were constructed in 5-folds cross-validations for
100 iteration bootstrapping, and then were compared using concordance index (C-index) criteria. Finally, the selected important
factors were used to build multivariable Cox-pH models for OS and also shown in nomograms for clinical usage. Results. 3e
median OS occurred was 25.78 months with 25 (19.53%) deaths. 3e elastic-net models integrating clinical and DVH factors had
the best prediction performances (C-index 0.76 in the train set and C-index 0.74 in the test set). 3ree important factors were
selected, including baseline hemoglobin level as the protective factor, primary tumor volume (GTV_P) volume, and body V5 as
the risk factors. 3e final multivariable Cox-pH models were constructed using these important factors and had prediction
performance (C-index: 0.78, 95%CI: 0.73–0.81). Conclusions. 3is is the first attempt to establish elastic-net models to study the
contributions of DVH parameters for predicting OS in patients with cervical cancer. 3ese results can facilitate individualized
tailoring of radiation treatment in cervical cancer patients.

1. Introduction

Cervical cancer is the fourth most frequently diagnosed
cancer and the fourth leading cause of cancer death in
women, with an estimated 604,000 new cases and 342,000
deaths worldwide in 2020 [1]. Multidisciplinary manage-
ment planning based on the tumor size and extension made
by a multidisciplinary tumor board before the start of any
treatment is recommended by European Society for Medical
Oncology (ESMO) guideline of cervical cancer [2]. For
International Federation of Gynecology and Obstetrics
(FIGO) stage IA1 to IB1, surgery is the main treatment with

adjuvant radiotherapy (RT)± chemotherapy in case of risk
factors, and for the FIGO stage IB2–IVA, concurrent che-
moradiotherapy (CCRT) represents the standard [2]. De-
finitive RT± chemotherapy can also be used for patients
with the FIGO stage IVB with oligometastasis [3] or who are
not candidates for hysterectomy. Neoadjuvant chemother-
apy remains controversial for locally advanced cervical
cancer [2]. With regard to immunotherapy, in addition to its
applications in recurrent or metastatic cervical cancer [4, 5],
ongoing trials are investigating the combination of immu-
notherapy with RT or CCRT in locally advanced cervical
cancer [5, 6]. Despite modern advances in various treatment
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modalities, the mortality of cervical cancer still remains high,
with 5-year overall survival (OS) of about 65% after CCRT
[7]. 3erefore, it is crucial to identify prognostic factors to
tailor personalized management strategies for patients with
different risk levels.

3e FIGO staging system has been the most commonly
used method to classify the prognosis of cervical cancer
patients. 3e 5-year OS rates of FIGO stage I-IV cervical
cancer were 83%–100%, 70%–80%, 42%, and 32%, re-
spectively [8, 9]. Over the years, researchers had made a
tremendous effort to identify other clinical prognostic
factors for OS [7]. High body mass index (BMI>25) at the
time of cancer diagnosis was found to be positively as-
sociated with 2-year and 5-year survival rates [10]. Bio-
logical parameters, including pretreatment levels of
hemoglobin, leucocyte, and platelet, were identified as
prognostic factors for locally advanced cervical cancer
[11]. A previously developed nomograms with C-index of
0.713 identified several prognostic factors associated with
OS, including squamous cell carcinoma antigen
(SCC–Ag), BMI, tumor size, pelvic wall involvement, and
para-aortic lymph node metastasis [12]. Concurrent
chemotherapy (≥4 cycles) [13], monocyte [14], age [15],
and performance status were also found to be prognostic
for survival. Another nomogram showed tumor size,
grading, and parametria status affected 5-year OS in lo-
cally advanced cervical cancer primarily treated with
neoadjuvant chemotherapy followed by radical surgery
[16]. Nevertheless, the abovementioned prognostic factors
mainly describe clinical features other than radiotherapy
parameters. Since radiotherapy forms the backbone of
cervical cancer treatment, it is reasonable to presume that
dose-volume histogram (DVH) parameters may have an
impact on OS. Analysis of dose-effect relationship be-
tween DVH parameters and prognosis for cervical cancer
patients suggested that 100%, 98%, and 90% of high-risk
clinical target volume received radiotherapy dose (HR-
CTV D100, HR-CTV D98, and HR-CTV90) were inde-
pendent factors affecting OS [17]. Retrospective DVH
analysis showed that the equivalent dose in 2 Gy (EQD2)
of HR-CTV D90 was significant determinant of OS in
patients with uterine cervical cancer [13]. In addition to
target volume, the prognostic impact of DVH parameters
of organs at risk (OARs) has been studied in a range of
cancer types. Multivariate analyses showed that lung V20
(volume covered by radiation dose of ≥ 20 Gy) and lung
V5 (volume covered by radiation dose of ≥ 5 Gy) were
associated with OS in patients with esophageal cancer
treated with neoadjuvant chemoradiotherapy when
adjusting for surgical margin and pathological treatment
response [18]. To the best of our knowledge, there are no
studies on the effect of DVH parameters of both tumor
and OARs on OS during external beam radiotherapy
(EBRT) of cervical cancer.

Different approaches can be employed to identify clinical
and dosimetric parameters that affect the patient’s outcome.
A multidimensional nomogram has been developed for
predicting progression-free survival (PFS) in patients with
locoregionally advanced nasopharyngeal carcinoma [19].

3e random survival forest model identified D99 (the dose
that covered 99% of the volume) as an important variable
associated with survival of high-grade glioma [20]. Besides
the random survival forest model, the elastic-net model, as a
machine learning method, yields higher discriminative
performance in (chemo) radiotherapy outcome than other
studied classifiers [21].3erefore, in this study, we employed
an elastic-net model to determine the key clinical and DVH
parameters in predicting survival outcome of cervical cancer
patients.

2. Materials and Methods

2.1. Description of Cohorts. 3e local institutional ethics
committee approved the study (reference number (2019)
049). All patients provided written informed consent for the
use of personal medical records for academic purpose before
treatment and consent form for this specific study was
waived.

A cohort of patients diagnosed with cervical cancer in a
single institute in China from January 2015 to February 2021
was selected for this study. All patients were treated with
definitive radiotherapy. Eligible patients met the criteria: ≥18
years old; previously untreated, pathologically confirmed
cervical carcinoma; stage IB-IVB using FIGO (2018) (only
stage IVB with oligo-metastasis scheduled for radical che-
moradiotherapy included); main treatment was EBRT with
or without chemotherapy followed by image-guided bra-
chytherapy. Key exclusion criteria were the following: small
cell carcinoma of the cervix, acquired immune deficiency
syndrome, concomitant secondary primary malignancies,
radiotherapy in adjuvant or recurrent settings, or patients
who did not complete planned radiotherapy.3e last follow-
up time was 30 April 2021.

2.2. Radiation &erapy. All patients received EBRT using
RapidArc or three-dimensional conformal radiotherapy
(3D-CRT) techniques. EBRTwas delivered on a 6MV linear
accelerator. For RapidArc, GTV_P, and GTV_N were de-
fined as primary gross tumor volume and locoregional
pathological lymph nodes detected by physical examination,
pelvis magnetic resonance imaging (MRI), or positron
emission tomography (PET)/CT. PTV_4500 and PTV_5500
(planning target volume of pelvis andmetastatic lymph node
received prescribed dose of 45Gy and 55Gy): prescription
dose was 45Gy in 25 fractions to PTV_4500 with a si-
multaneous integrated boost of 55Gy to PTV_5500. For 3D-
CRT, two sequential phases were used (45Gy/25 fractions to
pelvis for phase I; FIGO IIIB 16Gy/8 fractions, other stages
10Gy/5 fractions boosting to pelvic wall for phase II). All
EBRT was daily, 5 fractions per week. CT or MRI guided
brachytherapy was performed 3–4 weeks after initiation of
EBRTwith a 192 Ir (iridium) high dose rate, once a week for
a total of 4 times. 3e cumulative equivalent of >84Gy
(EQD2) for stage IB-IIIA and >90Gy (EQD2) for≥ stage
IIIB were set for the cervical tumor. DVH parameters during
EBRT were obtained from the Varian Eclipse treatment
planning system (version 15.0).
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2.3. Chemotherapy. Concurrent cisplatin at 40mg/m2 was
given weekly during EBRT. Carboplatin (area under the
curve (AUC)� 2mg/ml/min) weekly was used as an alter-
native if creatinine clearance ≤50ml/min. In cases involving
long radiotherapy waiting time, induction chemotherapy
with paclitaxel plus carboplatin was given. Chemotherapy
was not recommended to patients aged over 70 or FIGO
stage IB1.

2.4. Follow Up. In the first 2 years of follow-up, all the
patients had regular assessment every 3 months, then every 6
months in the third to fifth year, and yearly after the fifth
year. OS was the time from the start of EBRT to the date of
death from any cause or the last confirmed date of survival.

2.5. Univariate Analysis and Multivariable Analysis.
Univariate Cox-pH analysis was conducted to generate
hazard ratios (HRs) with confidence intervals (CIs) of each
single risk factor’s contribution for OS.3e factors extracted
by elastic-net models were applied to build the final mul-
tivariable Cox-pHmodel.3e Concordance index (C-index)
were then applied to show the performance of the final
multivariable Cox-pH model. 3e final multivariable Cox-
pH models for predicting OS were used to construct
nomograms.

2.6. Elastic-Net Modeling. Elastic-net regression is a type of
penalized regression [22, 23]. Elastic-net uses both L1 norm

penalty and L2 norm penalty on the regression covariates,
and uses a mixing parameter that defines the proportion
(alpha parameter) of penalty applied to the covariates be-
tween both L1 and L2 norms. Taken together, the elastic-net
regression method allows retention of correlated covariates,
but also regularizes model predictors in a manner that allows
for improved prediction performance.

Elastic-net models were constructed for the prediction of
OS using a 5-folds cross-validation methodology in 100
iterations bootstrapping, to approximate the models’ gen-
eralization abilities when lacking an external validation
dataset [21, 24]. To determine the important features for OS
by elastic-net models, we selected the best alpha and lambda
in the elastic-net model by the criteria of C-index. 3e
features with significant coefficient in elastic-net models and
high selected frequencies in bootstrapping were selected as
important factors.

2.7. Statistical Considerations. All continuous features were
normalized in log10(x+ 1). All statistical analyses were
performed by R software (version 4.0.2, R Development
Core Team, Vienna, Austria). 3e R package glmnet was
used to implement elastic-net modeling. P value less than
0.05 was considered statistically significant.

3. Results

3.1. Patient Characteristics. A total of 128 patients were
assessed as eligible for inclusion in this study. Table 1 lists
detailed characteristics of the study population. 3e median

Table 1: Summarization and univariate Cox-pH analysis of clinical factors for overall survival.

Features Grades Median (IQR) or No (%) HR (95%CI) P value
OS (months) 25.78 (14.26 – 41.57)

Censor 0 103 (80.47%)
1 25 (19.53%)

Age (years) 53 (46 – 63) 0.08 (9.08e− 04 – 6.87) 0.27

ECOG 0 and 1 112 (87.5%) Reference
2 16 (12.5%) 1.74 (0.65 – 4.65) 0.27

FIGO 2018 stage
II 36 (28.12%) Reference
III 83 (64.84%) 1.82 (0.61 – 5.43) 0.28
IV 9 (7.03%) 5.82 (1.44 – 23.48) 0.01

Body mass index 23.05 (20.11 – 25.01) 1.06e − 03 (1.75e− 06 – 0.65) 0.04

EBRT technique 3D-CRT 27 (21.09%) Reference
RapidArc 101 (78.91%) 0.9 (0.38 – 2.14) 0.81

Induction chemotherapy Without 102 (79.69%) Reference
With 26 (20.31%) 1.4 (0.52 – 3.8) 0.51

Concurrent chemotherapy Without 20 (15.62%) Reference
With 108 (84.38%) 0.7 (0.24 – 2.05) 0.52

Pre-RT regional lymph node metastasis Without 43 (33.59%) Reference
With 85 (66.41%) 1.48 (0.62 – 3.57) 0.38

White blood cells (103 cells/ul) 6.59 (5.12 – 8.12) 1.85 (0.23 –14.72) 0.56
Hemoglobin (g/L) 117.5 (102.5 –129.25) 8.96e − 04 (4.34e− 06 – 0.18) 9.84e-03
Platelets (103 cells/ul) 260 (217.5 – 318) 2.29 (0.17 – 30.44) 0.53
Neutrophils (103 cells/ul) 4.24 (3.03 – 5.65) 2.61 (0.51 – 13.42) 0.25
Lymphocytes (103 cells/ul) 1.74 (1.3 – 2.08) 0.11 (9.11e− 03 –1.22) 0.07
Monocytes (103 cells/ul) 0.34 (0.25 – 0.44) 0.34 (0.06 –1.94) 0.22
Abbreviations: OS� overall survival; EBRT�external beam radiation therapy; 3D-CRT� three-dimensional conformal radiotherapy; RT�radiotherapy;
ECOG�Eastern Cooperative Oncology Group; FIGO�International Federation of Gynecology and Obstetrics; IQR� interquartile range; HR� hazard ratio;
CI� confidence interval.
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OSwas 25.78 (interquartile range, IQR: 14.26–41.57) months
with 25 (19.53%) deaths. 3e median age was 53 (IQR:
46–63) years. 78.91% patients were treated with RapidArc
and the others were treated with 3D-CRT. 20.31% patients
had induction chemotherapy before EBRT and 84.38%
patients had concurrent chemotherapy during radiotherapy.
Results of univariate Cox-pH analysis of clinical factors
influencing OS were also summarized in Table 1. Patients
with a higher BMI or baseline hemoglobin levels had longer
OS (HR: 1.06e - 3, 95%CI: 1.75e - 6–0.65, P value� 0.04; HR:
8.96e - 4, 95%CI: 4.34e - 6–0.18, P value <0.01, respectively);
while patients had poor survival with FIGO 2018 stage IV
(HR: 5.82, 95%CI: 1.44–23.48, P value� 0.01).

3.2. DVH Parameters. In this study, 20 DVH features were
extracted, including dmax, dmean, and volume of tumor
targets (GTV_P, GTV_N, PTV_4500, and PTV_5500), and
dmax, dmean, V5, V45, and volume of OARs (body and
bones) (Table 2). As summarized in Table 2, the median
dmean of GTV_P was 47.1 (IQR: 46.6–49.21)Gy and the
median dmax was 53.2 (IQR: 48.6–57.8) Gy. 3e median
dmean of the whole body was 12.11 (IQR: 10.67–13.9) Gy
and of the bones was 29.22 (IQR: 27.84–31.88)Gy.

Univariate Cox-pH analysis results of DVH parameters
for OS are also presented in Table 2. Patients with poor
survival had significantly higher volume metrics of tumor
(GTV_P volume HR: 9.8, 95%CI: 2.67–35.91, P value: <0.01;
PTV_4500 volume HR: 181.2, 95%CI: 1.98–1.66e+ 04, P

value� 0.02; GTV_N dmean low vs. none HR: 2.69, 95%CI:
1.06–6.8, P value� 0.04). Furthermore, patients with poor
survival had a higher total body dose (dmean HR: 544.54,
95%CI: 7.9–3.75e+ 04, P-value� 3.53e - 3; V5 HR: 991, 95%
CI: 8.97–1.1e+ 05,P value� 4.06e-03; V45HR:11.34, 95%CI:
1.13–114.19, P value� 0.04).

Pearson’s correlations between all DVH parameters are
shown in Figure 1. Relatively strong positive correlations
among the dosimetry of the tumor were found (Pearson’s
correlations> 0.5). While there were little correlations be-
tween clinical characteristics and DVH parameters, also little
correlations among tumor dosimetry and OARs dosimetry.

3.3. Prediction Performances of Elastic-Net Models. To study
the risk factors of survival, three kinds of elastic-net models
were established, including the model with integrating
clinical factors and DVH parameters, with only clinical
factors and with only DVH parameters. 3ese three models

Table 2: Summarization and univariate Cox-pH analysis of DVH parameters for overall survival.

Features Grades Median (1st – 3rd) or Num (%) HR (95% CI) P value
GTV_P dmean (Gy) 47.1 (46.6 – 49.21) 1.26e+ 04 (1.3e – 03 –1.22e+ 11) 0.25
GTV_P dmax (Gy) 53.2 (48.6 – 57.8) 5.93e+ 03 (0.19 –1.86e+ 08) 0.1
GTV_P volume (cm3) 75 (52.18 –122.58) 9.8 (2.67 – 35.91) 5.77e– 04
PTV_4500 dmean (Gy) 47.62 (46.84 – 50.05) 6.68e+ 03 (8.8e – 03 – 5.07e+ 09) 0.2
PTV_4500 dmax (Gy) 58.5 (56.98 – 59.2) 9.2e+ 03 (0.02 – 4.07e+ 09) 0.17
PTV_4500 volume (cm3) 1.38e+ 03 (1.25e+ 03 –1.54e+ 03) 181.2 (1.98 –1.66e+ 04) 0.02
GTV_N dmean (Gy) None 51 (39.84%) Reference

Low 39 (30.47%) 2.69 (1.06 – 6.8) 0.04
High 38 (29.69%) 1.12 (0.39 – 3.24) 0.83

GTV_N dmax (Gy) None 51 (39.84%) Reference
Low 42 (32.81%) 2 (0.76 – 5.27) 0.16
High 35 (27.34%) 1.59 (0.59 – 4.24) 0.36

PTV_5500 dmean (Gy) None 56 (43.75%) Reference
Low 36 (28.12%) 1.81 (0.67 – 4.89) 0.24
High 36 (28.12%) 1.37 (0.54 – 3.51) 0.51

PTV_5500 dmax (Gy) None 56 (43.75%) Reference
Low 37 (28.91%) 1.79 (0.66 – 4.84) 0.25
High 35 (27.34%) 1.38 (0.54 – 3.53) 0.5

Body dmean (Gy) 12.11 (10.67 –13.9) 544.54 (7.9 – 3.75e+ 04) 3.53e – 03
Body dmax (Gy) 58.5 (56.98 – 59.23) 2.89e+ 04 (0.05 –1.54e+ 10) 0.13
Body V5 (%) 45.32 (42.21 – 49.51) 991 (8.97 –1.1e+ 05) 4.06e – 03
Body V45 (%) 6.77 (5.37 – 9.47) 11.34 (1.13 –114.19) 0.04
Body volume (cm3) 2.45e+04 (2.11e+ 04 – 2.84e+ 04) 0.02 (1.5e–04 – 2.4) 0.11
Bones dmean (Gy) 29.22 (27.84 – 31.88) 74.13 (0.15 – 3.58e+ 04) 0.17
Bones dmax (Gy) 58.1 (53.88 – 58.8) 3.35e+ 03 (0.01 – 1.04e+ 09) 0.21
Bones V5 (%) 96.79 (95.69 – 98.5) 1.62e+ 13 (1.29e-09 – 2.04e+ 35) 0.24
Bones V45 (%) 13.77 (10.73 – 20.26) 3.12 (0.66 –14.75) 0.15
Bones volume (cm3) 1.17e+ 03 (1.07e+ 03 –1.28e+ 03) 123.26 (0.12 –1.23e+ 05)> 0.17
dmax�maximum dose; dmean�mean dose; GTV_P or GTV_N� gross tumor volume of primary tumor or regionally metastatic lymph nodes, respectively;
HR� hazard ratio; CI� confidence interval; PTV_4500 or PTV_5500� planning target volume receiving prescription dose of 45Gy or 55Gy, respectively; V5
or V45� the relative volumes (in percentage) covered by dose levels of ≥5Gy or 45Gy, respectively.
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had best prediction performances when alpha parameters
equal to 0.8, 0.7, and 0.5, respectively. 3e prediction metric
C-index was used to evaluate and compare the performances
of three models in the train set and the test set as shown in
Figure 2.

In the train set, models integrating clinical and DVH
features had the best performances (C-index: 0.76, 1st–3rd

quartile: 0.74–0.77). Also, in test sets, the models integrating
clinical and DVH features (C-index: 0.74, 1st–3rd quartile:
0.68–0.8) performed much better than models based on
clinical features only (C-index: 0.67, 1st–3rd quartile:
0.58–0.72), and a little better than models with DVH pa-
rameters only (C-index: 0.72, 1st–3rd quartile: 0.62–0.78).
3ese results indicated DVH parameters had contributions

Bones volume
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Figure 1: Pearson’s correlations among clinical factors and DVH parameters. All continuous factors were normalized in log10 (x+ 1).
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C-
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de
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(a)

C-index
mean (1st -3rd) In train set In test set

All risk factors 0.76 (0.74-0.77) 0.74 (0.68-0.8)

Clinical features 0.68 (0.67-0.71) 0.67 (0.58-0.72)

DVH dosimetrics 0.76 (0.74-0.78) 0.72 (0.62-0.78)

(b)

Figure 2: 3e performances of three kinds of elastic-net models summarized in the train set and the test set. 3e first model included both
clinical features and DVH parameters, the second model included only clinical features, and the third model included only DVH pa-
rameters. Red represents C-index performances in the train set, and green represents C-index performances in the test set.
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to survival, future more indicated that DVH parameters
applied complementary information of clinical factors in
survival prediction.

3.4. Important Factors in Elastic-Net Models. 3e perfor-
mances of all factors in the models with integrating clinical
and DVH parameters were summarized, including the
mean- and P value of their coefficients in the elastic-net
models and the selected frequencies in 100 iterations, as
shown in Figure 3 and (Supplemental Table 1). In clinical
factors, the hemoglobin level at baseline was an important
protective factor from death (mean coefficient: 0.47, 95%CI:

0.38–0.57, P value: <0.01, frequency:72%). In DVH pa-
rameters, both GTV_P volume and body V5 are the most
promotive factors for death (mean coefficient: 1.26, 95%CI:
1.21–1.32, P value: <0.01, frequency: 92%; mean coefficient:
2.54, 95%CI: 2.1–3.09, P value: <0.01, frequency: 90%,
respectively).

3.5. &e Final Multivariable Cox-pH Model. For the possi-
bility of clinical usage, the final multivariable Cox-pHmodel
integrating the key clinical characteristics (hemoglobin at
baseline) and DVH parameters (GTV_P volume and body
V5) was constructed as shown in Figure 4(a) with C-index

White blood counts Bones volume PTV_5500 Dmean

PTV_4500 Dmean

PTV_4500 volume

GTV_P volume

GTV_P Dmaen

GTV_N Dmean
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Body Dmean

Body Dmax

RT technique
Pre-RT regional

lymph node metastasis
Platelets

Neutrophils
Monocytes

Lymphocytes
Induction chemotherapy

Hemoglobin
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(a) (b) (c)

Figure 3: 3e important factors selected by elastic-net models including all factors, which constructed in 5-fold cross validation and 100
bootstrapping iterations. (a) Clinical factors; (b) DVH parameters of OARs; (c) DVH parameters of tumor. X-axis is the mean coefficient of
one factor, color is its P value, and size is its frequency in 100 iterations.

Features HRs (95%CI) P-value Forest Plot

Hemoglobin 0.02 (4.11e-5 – 9.94) 0.21

GTV_P volume 4.17 (1.02 – 17.07) 0.05

Body V5 142.47 (0.89 – 2.27e4) 0.05
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Figure 4: Multivariable Cox-pH models with the key factors selected by elastic-net models integrating clinical characteristics and DVH
parameters. (a) 3e HRs (95%CI) and P value of risk factors in multivariable Cox-pH, and shown in the forest plot; (b) the corresponding
nomogram. All continuous factors were normalized in log10 (x+ 1).
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(0.78, 95%CI: 0.73–0.81). 3e corresponding nomogram for
survival prediction were developed for clinical use as shown
in Figure 4(b).

4. Discussion

3e present study analyzed the effects of dosimetric pa-
rameters and clinical characteristics on OS by machine
learning algorithms. 3e results showed that elastic-net
models with integrating clinical and DVH factors had best
prediction performances (C-index 0.76 in the train set and
C-index 0.74 in the test set). 3ree important factors were
selected, including baseline hemoglobin level, primary tu-
mor volume (GTV_P), and body V5. 3e final multivariable
Cox-pH model constructed using these important factors
had prediction performance (C-index: 0.78, 95%CI:
0.73–0.81) better than previous studies [25–27]. It indicated
that the addition of DVH parameters to clinical factors in the
model improved the prediction ability for OS. At the same
time, the final multivariable Cox-pH model and the no-
mogram plot with only three readily available indicators in
practice making it feasible in clinical application.

In clinical factors, our study found that the hemoglobin
level at baseline was an important protective factor from
death which was widely acknowledged. Many other studies
have reached similar conclusions. Pretreatment hemoglobin
was found to be a potential biomarker for survival prognosis
in not only early cervical cancer [28] but also locally ad-
vanced cervical carcinoma [12].3e first international expert
consensus guideline informing a minimum hemoglobin
transfusion target of 90 g/L was endorsed to balance tumor
radiosensitivity with appropriate use of a scarce resource for
patients with cervical cancer undergoing EBRT and bra-
chytherapy [29]. 3e hemoglobin level more than 90 g/L at
presentation was positively associated with a 5-year OS rate
[30]. A new score identified <120 g/L for hemoglobin at the
time of diagnosis impacted disease free survival (DFS) and
OS [11].

In DVH parameters, both GTV_P volume and body V5
were the most promotive factors for death. It is consistent
with the conclusions of other studies that the larger GTV_P
volume, the worse the survival. 3e 5-year survival rate of
cervical cancer patients with tumor volume <40 cm3 was
significantly better than that of patients with >40 cm3 [31].
3e total volume of metabolic tumors was an independent
prognostic factor for the recurrence-free survival of patients
undergoing radical radiotherapy and chemotherapy for
cervical cancer [32]. Researches on other tumors also sup-
port this conclusion. GTV_P volume ≥5 cm3 was associated
with a significantly worse OS in patients with sinonasal
mucosal melanoma [33]. Another finding suggested that a
pathological tumor volume of ≥18 cm3 was significantly
correlated with shorter OS of oral squamous cell carcinoma
[34]. Similar conclusion was also found in rectum cancer
[35], nasopharyngeal carcinoma [36], supraglottic carci-
noma [37], and glioblastoma [38].

Body V5 is, especially, an important risk DVH param-
eters we found for survival, which was little considered in
radiation therapy before. 3ere are two types of radiation

health effect, including acute and late on-set disorders.
Clinical symptoms of acute disorder begin with a decrease
in lymphocytes, and then the symptoms appear, such as
alopecia, skin erythema, hematopoietic damage, gastroin-
testinal damage, and central nervous system damage, with
increasing radiation dose [39]. Body radiation can poten-
tially result in both acute and long-lasting adverse effects,
particularly, on hematopoietic and immune cells [40].
Studies have shown that radiation-induced lymphocytope-
nia is associated with poor prognosis in solid tumors [41],
such as cervical cancer [42] and non-small cell lung cancer
[43]. Regarding the late on-set disorder, predominant health
effects are cancer [44–46], non-cancer disease [47, 48], and
the genetic effect [49–51]. In addition, it should be noted that
with the development of modern radiotherapy techniques,
such as intensity-modulated radiotherapy (IMRT), patients
receive a larger volume of low-dose radiation. Body dose-
volume distributions may influence the risk of second
primary cancer [52]. Moreover, radiation-induced normal
tissue damage and repair also has a dose-volume effect [53].

3ere are some limitations in this study. First of all, this
is a retrospective study. A prospective study is needed to
collect more complete data. Secondly, since the international
cervical cancer staging system does not include prognostic
biomarkers, and current treatment recommendations are
mainly based on staging, we did not include nonanatomical
prognostic biomarkers, such as human papillomavirus
(HPV) infection data and SCC-Ag values. 3irdly, the
median follow-up for our analysis was 26.4 months, and
longer follow-up is needed to fully assess long-term survival
benefits. Lastly, although a 5-folds cross-validation meth-
odology in 100 iterations bootstrapping was used to assure
the models’ generalization abilities, an external validation is
needed in the future study. Nonetheless, the findings of our
study provide valuable data to guide clinical practice and
future research.

In conclusion, this is the first attempt to establish elastic-
net models to evaluate the roles of DVH parameters in
predicting OS in patients with cervical cancer. In addition to
clinical factors, DVH parameters such as GTV_P volume
and body V5 appear to be important predictors of survival
outcome. 3ese results can facilitate individualized tailoring
of treatment and patient counseling in the holistic man-
agement of cervical cancer.
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and M. Terradas, “Radiation-induced malignant transfor-
mation of preneoplastic and normal breast primary epithelial
cells,” Molecular Cancer Research: MCR, vol. 17, no. 4,
pp. 937–948, 2019.

[50] O. Shemetun, M. A. Pilinska, and M. Pilinska, “Radiation-
induced bystander effect - modeling, manifestation, mecha-
nisms, persistence, cancer risks literature review,” Problems of
RadiationMedicine and Radiobiology, vol. 24, pp. 65–92, 2019.
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